

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Managing Technical Debt
Tom Brazier on budgeting for the cost of doing it
wrong.

7 Programming – Abstraction by Design
Nigel Eke acts as a guide to aspect oriented
programming, using AspectJ as an example.

15 Exceptional Design
Hubert Matthews discusses some ways to design
programs to use exceptions.

19 C++ Trivial Logger
Seweryn Habdank-Wojewódzki creates his own
logging system.

24 FRUCTOSE – a C++ Unit Test Framework
Andrew Marlow describes the development of
FRUCTOSE and how it is different from other unit
test frameworks.

32Letter to the Editor
Alexander Nasonov writes more on singleton.

OVERLOAD 77

February 2007

ISSN 1354-3172

Editor

Alan Griffiths
overload@accu.org

Contributing editor

Paul Johnson
paul@all-the-johnsons.co.uk

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Richard Blundell
richard.blundell@gmail.com

Alistair McDonald
alistair@inrevo.com

Anthony Williams
anthony.ajw@gmail.com

Simon Sebright
simon.sebright@ubs.com

Paul Thomas
pthomas@spongelava.com

Ric Parkin
ric.parkin@ntlworld.com

Roger Orr
rogero@howzatt.demon.co.uk

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@cthree.org

Copy deadlines
All articles intended for publication in
Overload 78 should be submitted to
the editor by 1st March 2007 and for
Overload 79 by 1st May 2007.

EDITORIAL ALAN GRIFFITHS
The Power of Inertia
“The principle of inertia is one of the fundamental laws of
classical physics which are used to describe the motion of
matter and how it is affected by applied forces. Inertia is the
property of an object to remain constant in velocity unless
acted upon by an outside force.” [Wikipedia]
Inertia in individuals, teams and
organisations
Like physical objects individuals, teams and
organisations have the property that they will continue
uniformly straight ahead unless acted upon by an

external force. This can be a good thing, it can also be a bad thing.
Sometimes it is necessary to find an external force sufficient to effect
change.
When this happens in individuals it is often described as “a habit” – one
can deliberately cultivate good habits (e.g. writing and running unit tests)
and can accidentally fall into bad habits (e.g. failing to resynchronise the
code being worked on with source control). Once developed these habits
are unlikely to change unless some “external force” (perhaps in the form
of a colleague’s comments) motivates a change.
Teams are the same – once a build & test server is in place reporting the
status of the project after each check-in it will remain there (until
something happens) but if it isn’t there very few teams will make the effort
to put it into place. Actually, much the same can be said of source control.
When it comes to organisations the same is true, they will cling to
processes and procedures that are demonstrably against their interests until
there is sufficient pressure to cause a change.
It can be frustrating when trying to effect a change in a person, team or
organisation – because it will often feel that one keeps pressing and
pressing and nothing happens. On the other hand, once the desired change
is, finally, under way it then has inertia on its side.

The latest in the ISO C++/CLI story
Since my editorial in Overload 75 about the ISO “Fast Track” last year
there have been few obvious developments in the C++/CLI story. There
has been no new revision of the standard submitted and the Ballot
Resolution Meeting has been scheduled in Oxford (for the Friday,
Saturday and Sunday at the end of the ACCU conference week).
Behind the scenes there have been things happening – the ECMA group
responsible for submitting the standard (TC39/TG5) has been trying to
decide what to do next. This isn’t as easy as it might appear – just as there
is no provision for National Bodies to say “please withdraw this from the
standards process”, there is no provision for a submitter to withdraw a

standard once it has passed the “comments” stage.
And so, despite the significant concerns expressed
by various experts in the field, things are rolling

relentlessly on. As the ISO C++ working group is meeting in Oxford the
week following the ACCU Conference, they should be well represented
at the Ballot Resolution Meeting.

And now for something almost, but not entirely, the
same
As expected, the ECMA Technical committee for Office Open XML
Formats submitted the ECMA Office Open XML standard to ISO for fast
track approval on the 5th January. According to their schedule of work
[ECMATC45] this 6000+ page document is intended to standardise
“Office Open XML” which is the latest way for Microsoft Office
applications to store and interpret documents as files.
Making this information public is a commendable piece of openness on
the part of Microsoft, but there is no advantage to the wider community
from this being made an ISO standard. One does not have to read the whole
thing to discover its true nature is documentation of a proprietary format.
How else to explain the many references to the behaviour of Microsoft
products (e.g. requiring the replication of bugs in Excel’s date handling)
and the incorporation of Microsoft technologies that are clearly not open
(e.g. Windows Metafiles).
One of the principles for ISO standards is “Consensus – The views of all
interests are taken into account: manufacturers, vendors and users,
consumer groups, testing laboratories, governments, engineering
professions and research organizations.” [ISO] It doesn’t take much
investigation to discover that most manufacturers of office software
products are supporting the existing ISO standard for document formats.
(For a list of products supporting the ISO OpenDocument format
[ISOOpenDoc] see the list maintained by the OpenDocument Fellowship
[OpenDocApps].)
As I noted before, the National Bodies have a thirty day period to identify
“contradictions” that could prevent the standard being adopted by ISO.
(So this period should be closed by the time you read this.) Andy
Updegrove [Updegrove] summarises this process as follows:

During the first one-month step, any member may submit
‘contradictions’, which, loosely defined, means aspects in which
a proposed standard conflicts with already adopted ISO/IEC
standards and Directives. Those contradictions must then be
‘resolved’ (which does not necessarily mean eliminated), and
these resolutions are then presented back to the members
during the second stage to consider as part of the voting
package. During this second, five-month step, other objections,
questions and comments can be offered by members.

Alan Griffiths is an independent software developer who has been using ‘Agile Methods’ since before
they were called “Agile”, has been using C++ since before there was a standard, has been using Java
since before it went server-side and is still interested in learning new stuff. His homepage is http://
www.octopull.demon.co.uk and he can be contacted at overload@accu.org
2 | Overload | February 2007

EDITORIALALAN GRIFFITHS
February 2007 | Overload | 3

There are also many users and consumers who do not feel that ISO
standardisation of this standard is in their interests. There is even a
collaborative (Wiki based) project to document contradictions on
Grokdoc [Grokdoc]. It remains to be seen how many of the National
Bodies can be persuaded to take action to oppose this standard as a result.
(For the reasons I described in my earlier editorial the default position is,
in practice, to vote for adopting a standard that is under discussion.)
In the case of Office Open XML, even more so than in the case of C++/
CLI, the presumption that any standard being submitted to voting on by
National Bodies has been properly reviewed is wrong. It is a large
document (over 6,000 pages), has been created in a relatively short period
of time and with a small number of reviewers.
There appears to be no advantage to anyone outside of Microsoft in ISO
adopting this as a standard – when there are requirements like ‘Emulate
Word 6.x/95/97 Footnote Placement’, this is not going to be easy for
anyone else to implement. What is more, the licences I’ve seen for these
products forbid reverse-engineering to discover how these features
operate.
Despite all this I fear that Office Open XML will follow C++/CLI down
the fast track. The responsible ISO (JTC-1) committee will not find the
contradictions a sufficient cause to divert this standard from the Fast Track
and the longer (5 month) voting period will begin. If this happens, a lot of
effort will be required to produced sufficient informed “no votes” to force
a ballot resolution meeting, and this may still decide to proceed with
adoption.

The ISO Fast-Track process
I’m sure you’ll realise by now that I feel that the ISO Fast-Track process
isn’t always working in the best interests of the IT industry (either
consumers or producers) and not even in the interests of ISO itself.
I think the problem resolves to one thing – it doesn’t impose a condition
that there is sufficient interest from the National Bodies in the adoption
of the standard. The first question that should be asked is not “does this
standard contradict anything we have already?”, but “do we want to work
on adopting this as a standard?”. The problems arise when too few of the
National Bodies care enough to scrutinise a submission properly.
Hopefully, as a result of the input it is getting, JTC-1 will recognise the
need for change and revise the process accordingly.

Overload and Overload
As I explained in my last editorial, there has been something of a crisis in
the Overload team. You’ll see that the names in the credits have changed
yet again to reflect the new line-up. Thanks again to those leaving the team
for efforts over the years that have passed, and to those joining the team
for their efforts in times to come.
Thanks also to all of you that submitted articles – especially the few whose
articles I had to turn down because they didn’t quite seem to fit Overload.

I do hope the feedback was helpful and that we will see more submissions
from you in the future.
The current issue didn’t quite run as smoothly as in the “golden age” I
described last time – in particular I have to apologise to a couple of authors
for feedback taking longer than it should have done, and also to the
production editor for a slightly late delivery of the edited articles. We
understand how to address these mistakes and – fortunately – no real harm
was done. We intend to do better next time.
After the difficulties with Overload 76, I’m pleased to see that the new
team has settled into the task and I confidently look forward to things
running smoothly straight ahead for the foreseeable future.
All that remains to keep Overload going is for the rest of you to submit
some articles for the next issue. And this is the time to do so: with many
of the “usual suspects” focused on conference presentations, this is a
chance for the rest of you to sneak in and write the article that everyone
will be reading and talking about at the conference.
Those of you that are presenting should not rest on your laurels – you have
the material for an article to hand – so now is the very best of times to write
it up.

Overload on the web
My comments last time about making Overload available on the website
seem to have overlapped with Allan Kelly making the archive publicly
available. The result isn’t what I’ve been intending: instead of a single
PDF for each issue I plan for the articles to be presented separately,
preferably as HTML, and for links to work. Once again, sorry for the delay.

CUTE download
I’ve had a short note from Peter Sommerlad to say that
CUTE is now available for download [Sommerlad].

References
[Wikipedia] http://en.wikipedia.org/wiki/Inertia
[ECMATC45] http://www.ecma-international.org/memento/TC45.htm
[ISO] http://www.iso.org/iso/en/stdsdevelopment/whowhenhow/

how.html
[ISOOpenDoc] http://www.iso.org/iso/en/

CatalogueDetailPage.CatalogueDetail?CSNUMBER=43485
[OpenDocApps] http://opendocumentfellowship.org/applications
[ECMA] http://www.ecma-international.org/activities/General/

presentingecma.pdf
[Updegrove] http://www.consortiuminfo.org/standardsblog/

article.php?story=20070117145745854
[Grokdoc] http://www.grokdoc.net/index.php/EOOXML_objections
[Sommerlad] http://wiki.hsr.ch/PeterSommerlad/

wiki.cgi?CuTeDownload

FEATURE TOM BRAZIER
Managing Technical Debt
Tom Brazier on budgeting for the cost of doing it wrong.
Short term vs. long term trade-offs
ost of us have experienced occasions where we’ve been required
to take short-cuts to make delivery deadlines. These short-cuts are
seen as bad by many prominent people in the software industry. In

fact, Robert C. Martin puts it this way [Martin]:
The next time you say to yourself: “I don’t have time to do it right.” – stop!
Rethink the issue. You don’t have time not to do it right!
Nonetheless, short term hacks continue to proliferate and many developers
are under a lot of pressure to make them. Given that the long term by
definition lasts for longer than the short term, this is a problem.
In fact, it’s a big old warty problem with attitude and bad breath. Taking
short-cuts generally means that the next time the software is touched, it
needs to be fixed before any further work can be done. So the second piece
of work is even more expensive to do correctly than the original piece of
work, and you can be sure that the deadlines are just as tight as they were
the first time. Worse, developers generally prefer to play it safe – if
someone has left them a dodgy-looking piece of code, they prefer to leave
well enough alone. So, unless there are strong individuals present who are
really dedicated to good engineering, the team takes another short-cut and
works around the code affected by the previous short-cut1. The third
change involves working around the first two short-cuts, and so on.
If one follows the trend to its logical conclusion, and in my experience
many teams do, one finds that the code complexity grows at an increasing
rate. After several changes to the software, it reaches the point where
nothing can be changed without significant time and risk. Usually at some
point, the team begins to realise that they need to fix the things they’ve
broken. But by then it’s too late because they are spending all their time
just keeping a fragile system running and have no spare capacity to fix the
code. They’ve painted themselves into a classic Catch 22 situation.
This article is not primarily about escalating long term costs, so I won’t
labour the point. We’ll assume the above argument is sufficiently
convincing. The trouble is that in many cases, a good counter-argument
can be made for the short term benefits.
Consider a small company in a niche market – its entire future generally
rests upon being first to market. Longer term software problems simply
aren’t important in this case because they are not visible to the customers
until it’s too late. And they are certainly less important to the software
company for whom the long term won’t exist unless it makes the sale in
the short term.
Or take the financial industry. When new ideas come to the market, there
is generally a small window during which very large amounts of money

can be made. In this case, a company which spends too long writing the
software might as well not have bothered in the first place.
Similar short term pressures occur on both large and small scale every day
for any number of reasons.
As any weatherman will tell you, the short term is always clearer than the
long term. So while short term costs might not be as great, they are easier
to quantify. It can be very difficult, therefore, to determine just what the
relative costs and benefits are when deciding whether to “do it the right
way” or to take a “short-cut”.

Technical debt
The phenomenon mentioned above of costs growing at an increasing rate
led Ward Cunningham to liken poorly-engineered software to debt
[Cunningham]. This turns out to be an extremely good analogy. We’ve all
heard of people who’ve completely lost control of their credit cards, and
who spend all the money they earn just servicing their debts. A company
in the Catch 22 situation above is just like someone whose credit card debt
has become out of hand.
Formalising the analogy, any time a software team follows bad
engineering practices they incur two kinds of cost. First, there is the cost
of repaying the “capital”, i.e. undoing bad code and replacing it with well-
engineered code. Second, there is the “interest”, the ongoing increased cost
of supporting, maintaining and enhancing the software.
It is generally fairly manageable to take on a small amount of technical
debt, but if one doesn’t pay the interest cost, or insists on taking on ever
more and more technical debt, one soon loses control.
So the analogy serves as a great example because it allows us to draw on
the commonly known human experience of taking on debt.

Managing technical debt
Having set the scene, we can now get to the real point of this article – how
to manage technical debt. I observed above that sometimes it is vital to
create software in the shortest possible time, regardless of quality. At other
times it is not vital, but there is a lot of pressure nonetheless. At all times,
it is hard to quantify what the long term benefits and costs are.
Human beings have thousands of years experience with managing
financial debt. Can this experience teach us anything about managing
technical debt? A little googling will confirm that many people, some of
them quite prominent, think the answer is “yes”.
Here are some key strategies for managing financial debt:

1. Only ever enter into debt if the benefits outweigh the costs. So, for
example, a student loan, or a mortgage is generally considered good
debt. In the long term the benefits of education or owning your own
home outweigh the cost of the debt. Most credit card debt, on the

M

Tom Brazier has been fiddling with computers since getting a
ZX Spectrum for his 11th birthday. Having progressed
somewhat from Sinclair BASIC, he now works as a technical
architect in the city. He can be contacted at tom@firstsolo.net

1 There is a good discussion about this under Tip 4, Don’t Live With Broken
Windows, in The Pragmatic Programmer [HuntThomas]
4 | Overload | February 2007

FEATURETOM BRAZIER

in many situations the best outcome for
society as a whole only occurs when all

individuals choose a less than best
outcome for themselves personally
other hand, is not sensible because the exorbitant interest costs out-
weigh any benefit.

2. Know how you will repay the debt when you enter into it. This is
pretty much mandatory with a mortgage, because the banks make it
a prerequisite. Credit card debt, once again, often doesn’t have this
sort of planning associated with it.

3. Keep track of your debt. Ensure you are paying it off. Understand
which debt is the most costly and pay that off first. These are the first
principles that are discussed with people who've lost control of their
financial debt.

If we adapt these to technical debt we get the following strategies:

Ensure the benefits outweigh the cost
This isn’t as easy as it sounds because it is hard to quantify the cost. But
we can work to educate our customers, and help them to see that there are
generally significant long term costs caused by rushing in the short term.
Another practice, which seems obvious but is often neglected, is to
understand why the customer thinks something is really urgent. Often
software users give unreasonable deadlines out of ignorance and would be
quite happy to allow more time if the software team talked to them. Other
times, users ask for something they think will solve their problem, when
a simpler and technically better alternative would do just as well.
Another idea is to break down the requirements into something that can
be delivered quickly followed by something that will take a little longer.
If you can get one or two high priority features in front of the users quickly,
they will often be happy to wait for the lower priority ones.
The key points here are to communicate with the users and to be creative.

Know how you will repay the debt
Never take on technical debt without first spending some time thinking
about a more strategic approach. Too often “tactical fixes” are at complete
odds with any potential “strategic solutions” even though there exists an
alternative short term approach which would go at least part way towards
a strategic solution. With some thought you may be able to find a better
tactical fix and reduce the debt straight away.
Having spent, say, half an hour working out a reasonable strategic
direction, think about how and when the strategic solution will be
implemented. Assign a value for the “capital”, i.e. how many man days it
will take to repay the debt.
Assign the debt an “interest rate”. That is to say, get an idea of the increase
in running costs caused by the debt – you might want to use several
categories, like high, medium and low.
Finally, and this is really key, raise a change request ticket and add this
information to your project plan.

Keep track of your debt
If you follow the advice above about adding technical debt to your project
plan, then suddenly you’ll be able to keep track of your level of debt. At
any point, you can say, “I have X man weeks of outstanding high, medium

or low interest technical debt”. Then you can start setting thresholds, for
example you may say that you won’t accumulate more than 2 months of
high interest debt, 4 months of medium interest debt or 6 months of low
interest technical debt.
As debt increases, you can see it happening and you can therefore manage
it. This will mean increasing resourcing or pushing back on some new
work. But now you can justify the increased cost because you have real
data about what needs to be fixed. This is far better than a vague,
unspecified concern about poor engineering practice, or a system that just
keeps failing unpredictably.
Keeping track of your debt also means re-assessing it from time to time
because the capital cost of technical debt increases over time. There are at
least two factors at work here. In the short term, the longer you wait before
repaying the debt, the less you remember about how to repay it. This is
particularly true when team members leave, taking the knowledge with
them. Over the longer term, the technology industry moves on and it
becomes harder to find people who know how to work with the technology
in which the debt was incurred. For example, it’s not as easy as it once was
to find someone who can fix code written in FORTRAN or COBOL. Even
C is moving (many would say has moved) into this camp.
So you need to keep this inflation effect in mind. Re-evaluate existing debt
occasionally and be reticent about open-ended technical debt.

Does it really work?
Of course, there is no silver bullet. However, I have used some of the ideas
above extensively and found they do help a lot. I have only fairly recently
begun to follow the last of the suggestions labelled “keep track of your
debt”. So far it looks promising.
Googling confirms that I’m not the only one to find these ideas helpful.

In the long run we’re all dead [Keynes]
One debt management strategy that hasn’t been mentioned so far, but is
frankly a very real for many people, is to leave the company (or even the
country). How does one answer the team member who says, “What’s in it
for me, I won’t be the guy who sees the long term benefits or costs”?
A less than motivational answer is that this is what we get paid for. So it’s
a matter of moral obligation.
For a more motivation answer we can appeal to the sense of a job well done.
But perhaps the best answer is a pragmatic one. If all software teams
control technical debt well, then everyone’s lot is improved. This
introduces a whole new topic which deserves an article of its own, the
Tragedy of the Commons. This is an observation that in many situations
the best outcome for society as a whole only occurs when all individuals
choose a less than best outcome for themselves personally.
The Tragedy of the Commons is related to a problem from Game Theory
called the Prisoner’s Dilemma. This is a game in which two players may
either “co-operate” or “defect”. The pay-offs are cleverly structured so
that:
February 2007 | Overload | 5

FEATURE TOM BRAZIER

it is the responsibility of the software
engineering team to take into account the
short term benefits and costs as well as the
long term benefits and costs
1. Each individual player is most motivated to defect.
2. The best pay-offs occur when both players co-operate.

According to Wikipedia [Wikipedia], Robert Axelrod [Axelrod]
performed an experiment with automated agents which played an
extension of the Prisoner’s Dilemma. He found that greedy agents tended
to fare worse than more altruistic agents in the long run.
So with a bit of hand waving and some smoke and mirrors, we can make
a case for the pragmatic answer.

So what should you do?
The ideas in this article need buy-in from the entire software development
team. Very importantly, they need buy-in from the team leader. So you’d
think this article is aimed at software team leaders, letting the rest of us
off the hook. Not so. In practice it is often the techies at the coal-face who
have to exert influence over managers to get the point across.
Given that most of us are in a team of more than one, the first step will be
to act as an influencer. Introduce the technical debt analogy. I’ve found
that people tend to take to the basic idea quite quickly. From there, it is a
matter of gently extending the analogy.
Finally, the ideas above are just a starting point. For example, at least one
web article [ThinkBox] extends the analogy to concepts like taking
payment holidays and making lump-sum repayments.

Conclusion
Let us assume that a software engineer’s job is to create the most profitable
software for the least cost. Then it is the responsibility of the software
engineering team to take into account the short term benefits and costs as
well as the long term benefits and costs. This is hard because we work with
complex systems and incomplete data, Kevlin Henney would say that we
lack visibility [Henney]. Thinking in term of managing technical debt like
we’d manage financial debt gives us ways of collecting data about the long
term and therefore increasing visibility.

References
[Martin] “The Tortoise and the Hare”, Robert C. Martin, 2004, http://

www.artima.com/weblogs/viewpost.jsp?thread=51769
[HuntThomas] Andrew Hunt and David Thomas, The Pragmatic

Programmer: From Journeyman to Master, Addison-Wesley, 1999
[Cunningham] Ward Cunningham, The WyCash Portfolio Management

System, 1992, http://c2.com/doc/oopsla92.html
[Keynes] John Maynard Keynes, A Tract on Monetary Reform,1923
[Wikipedia] Prisoner’s dilemma, http://en.wikipedia.org/wiki/

Prisoner's_dilemma
[Axelrod] Robert Axelrod, The Evolution of Cooperation, 1985
[ThinkBox] Repaying technical debt, November 2005, http://www.think-

box.co.uk/blog/2005/11/repaying-technical-debt.html
[Henney] Kevlin Henney, Five Considerations in Practice, ACCU

conference 2006
6 | Overload | February 2007

FEATURENIGEL EKE
Programming
 – Abstraction by Design
Nigel Eke acts as a guide to aspect oriented
programming using AspectJ as an example.
wo unrelated paragraphs...
Schadenfreude (pronounced ‘Shar-den-froy-der’). This is a German
word that has no direct translation into English. Look it up in a

dictionary and it may get translated to ‘gloat’, but this is not the complete
translation. Literally it means ‘damage-joy’. Specifically it means ‘taking
delight in another’s misfortune’.
The physicist Richard Feynman once served on a commission to select
textbooks for schools. Many of the books were introducing ‘the new
maths’ and set theory in particular. Feynman’s comments on set theory
were that it comprised new definitions for the sake of definition, a perfect
case of introducing words without introducing ideas. ... specialised
language should wait until it is needed, and the peculiar language of set
theory is never needed. [Gleick]
This article introduces aspect-oriented programming, so why start with
these two examples, especially when they appear to have no relationship
to programming, let alone aspect-oriented programming?
If we take a look at programming, programming languages, and their
history, a couple of concepts come to the fore. One is related to how we
program, regardless of language. The second is related to what the
programming languages themselves provide.
Before we dive into to some of the new concepts covered by aspect-
oriented programming, I would like summarise what has happened during
the development and creation of computer programming languages.
However, if you really wish to get straight into the details then skip to the
“Aspect-oriented programming” section.
Let us start by asking “What are we doing when we program computers?”
In fact there is more than one answer to this question depending on your
perspective. Generally we are telling the computer to follow a particular
set of instructions to produce some output based on various information
input into the program. But the program itself is not just a set of instructions
to be executed. The program also comprises source code, which we have
to read. The source code informs us, both as developers and future
maintainers, what the intentions were when we originally wrote the code.
Let us explore both of these briefly.

Programming a set of executable instructions
Program instructions are generally written in a programming language.
They are translated by the language’s compiler into the processor codes
for a target processor. The codes get loaded into the target computer’s
memory and get executed. I use the term ‘compiler’ liberally here to cover
genuinely compiled and interpreted languages.
If we take a look at the history of this translation step, a common theme
emerges.

Originally programs were loaded into the computer’s memory by
‘programming’ through toggling the switches on the front panel of
the computer. A program was then executed by loading the

computer’s program-counter register with the address of the start of
the program. Once upon a time this used to be the only way to load
a program into a computer – even if the ‘toggled’ program was just
run once to read further programs from paper tape or disk-drives. As
a minor aside – the external article [Wiki(1)] serves as tongue-in-
cheek reminder of these ‘Real Programmer’ memories.
Assembler languages provide mnemonics to represent the processor
instruction codes. This enables the programmer to concentrate in
terms of what the processor instructions actually do, rather than the
binary code needed to perform those instructions. It also allows
memory locations to be accessed by some descriptive name, rather
than a physical address. A level of confidence is provided over and
above the toggling of switch settings. It is easier to remember ADD
#2, R1;1 rather than loading two words of instructions with the
values 65C1 and 0002.
High level languages – such as FORTRAN and COBOL – remove
any dependency on the underlying processor architecture. This
means that the programmer is no longer concerned with the
instructions need to control the processor, but can focus on what the
program itself is intended to do. High-level languages give us a level
of confidence over and above having to choose the right registers for
a processor instruction, or device address for an i/o operation.
Writing:

 IF Salary > 10000 GOTO nobonus;
 LET Salary = Salary + Bonus;
 nobonus:

is clearer, and less error-prone, than:

 MOV Salary, R0;
 SUB #2710, R0; 'Often Hex or Octal!
 BGT nobonus;
 MOV Salary, R0;
 ADD Bonus, R0;
 MOV R0, Salary;
 nobonus:

Structured languages – Algol-68, Coral-66 among others – are also
independent of the underlying processor architecture. Their
constructs provide more rigour than the procedural counterparts

T

Nigel Eke is a Software Engineer of some 30 years standing.
He is a luddite who still uses a hand operated paper-tape punch
to program. He also has a strange sense of humour. He is
currently working and enjoying the lifestyle in Sydney, Australia,
where he’s planning on retiring and learning to use these new-
fangled ASR-33 teletypes.

He can be contacted at me@nigel.eke.com1 Add the value ‘2’ to the contents of register R1
February 2007 | Overload | 7

FEATURE NIGEL EKE

it is the vocabulary provided by the
language keywords and how we use our
naming that helps us write, understand and
maintain programs
above, when describing the program flow. They also enable a divide
and conquer approach to writing the program. This results in cleaner
modularity and less of the monolithic spaghetti-code programs that
tended to result from using the high-level languages.
Object-oriented languages take this one stage further. These
languages enable the program to use terms which focus on problem
domain objects, e.g. Customer, Account or solution domain
objects, e.g. ButtonEventAdaptor. This has the benefit that the
modular responsibilities become more clearly defined than with
structured approaches. Object-oriented programming also means
that the relationships between objects are shown through
inheritance, composition and aggregation. One of the benefits of
inheritance is that it enables code reuse. Object-oriented
programming languages take structure one stage further and give us
a level of confidence regarding a module’s responsibilities.
There are also a few ‘specialist’ languages. Logic programming
languages, such as Prolog, work simply by defining a set of
predicates, goals and sub-goals, in order to seek out a solution. An
automatic tree-search is performed for the prime goal. APL (Array
Programming Language [Wiki (2)]) uses symbols, rather than text,
to dictate what the program will do. These languages provide a
method to write a solution in a form that serves a specific classes of
problems.

Each one of these phases in the history of programming languages adds a
level of abstraction over and above the previous level. Each advance or
change in programming language provides a different way to describe the
solution; each provides a different view of that solution with respect to the
original problem.
This can also be said of the many programming languages that have not
been given a mention [Wiki (3)]. The creator(s) of these languages must
have a felt the need to design a language which provided something not
available in other languages, albeit a new feature, new keywords, even a
new syntax simply to make the compiler writer’s job easier.

Program source code
Regardless of the language being used, the program source code also
conveys other information.
Comments provide more information about a block of code, i.e. its
intention – or perhaps we should say original intention, given the number
of times code and comments become out of synch. Sometimes comments
make statements about the requirements being satisfied.
Variable naming tells us what information is being held in that variable.
Procedural naming tells us something out the task being performed by the
procedure. Class naming tells us something of the responsibilities of that
class and, perhaps, expected functions performed on objects of that class.

Preamble summary
So how does this relate to Schadenfreude and Feynman?

Correct, concise and consist use of names helps make a clearer program.
A clear program provides us with confidence that the solution we’re
writing actually does work.
It will be better if we can use the term ‘Schadenfreude’ rather than a lengthy
textual description. Of course I realise Schadenfreude is not the best
description to use for an English speaking audience – again this comes
back to choosing the right name in the right context.
Nevertheless, it is the vocabulary provided by the language keywords and
how we use our naming that helps us write, understand and maintain
programs.
The choice of the right tools for the job also helps us deliver clearer
solutions to the problem. This means not only choosing the right
language(s) but also the right subset of their keywords to satisfy the
demands of your programming environment. Do not use ‘set theory’ just
because it is there. A clever generically programmed C++ solution may
not be appropriate if the remaining people in the development group are
still wet behind the ears programmers.

Aspect-oriented programming
The history and comments above are all a rather long preamble into the
main topic of this article. As we walk through some of the key elements
of aspect-oriented programming keep in the back of your mind how each
of the stages of development of other programming languages adds to the
ability to design and code a solution.
The additional abstraction mechanisms introduced with aspect-oriented
programming extend those provided in the aforementioned languages,
particularly some concepts introduced in object-oriented languages.
Aspect-oriented programming is based on separation of concerns, i.e.
breaking a program into distinct areas of functionality. In fact this is a
common concept with structured programming and object-oriented
programming languages, but aspect-oriented programming takes this view
one stage further.
Even though the inheritance of object-oriented programming gives us code
reuse we still find times when code is duplicated. For example, tracing call
paths through code, where we are concerned about the aspect of ‘tracing’,
or the bracketing of start and commit where we are concerned with
making certain our database transactions are atomic.

Hello World example
I’m not intending this article to cover every detail of aspect-oriented
programming, but rather highlight the coding and design abstractions that
it provides. Nevertheless, it is worthwhile diving straight in to a simple
AOP Hello World example.
Java and AspectJ (an AOP language whose syntax closely follows that of
Java) will be used in the example languages. Aspect-oriented
programming, however, is not limited to Java and AspectJ – more on this
later.
8 | Overload | February 2007

FEATURENIGEL EKE

the keywords of the AspectJ language help
us with our abstraction
In this example we want to trace the execution of the methods in two
classes, Name and Address.
The core classes look like Listing 1 – a couple of attributes and their
corresponding getters and setters.
If we add tracing by more traditional methods we end up with Listing 2.
Similar coding is also inserted into the Name class. As you can see, not
only does it detract from the real work of the class, it is also pretty
repetitive. Not only that, but the repetition is across classes as well as the
methods within a class. This is therefore error-prone – you only have to
look at the (deliberately – yes, honest!) bugs introduced in getTown()
and setTown().
The common theme that we’re considering here is one of tracing. Or, to
put this in terms used in AOP, the concern we have is the aspect of

tracing. (Note how the keywords of the AspectJ language help us with our
abstraction).
So let’s, first off, forget all the println statements from Address and
go back to the original class, then define an aspect for performing
tracing.

Listing 1

package com.nigeleke.accuexample.classes;
public class Name {

 public Name (String forename, String surname)
 {forename_ = forename; surname_ = surname;}

 public String getForename() {return forename_;}
 public void setForename(String forename) {
 forename_ = forename;}

 public String getSurname() {return surname_;}
 public void setSurname(String surname) {
 surname_ = surname; }

 private String forename_;
 private String surname_;
}

package com.nigeleke.accuexample.classes;
public class Address {

 public Address (String street, String town)
 {street_ = street; town_ = town;}

 public String getStreet() {return street_;}
 public void setStreet(String street) {
 street_ = street;}

 public String getTown() {return town_;}
 public void setTown(String town) {
 town_ = town;}

 private String street_;
 private String town_;
}

Listing 2

package com.nigeleke.accuexample.classes;
public class Address {

 public Address (String street, String town) {
 System.out.println("Entered Address:ctor");
 street_ = street; town_ = town;
 System.out.println("Exiting Address:ctor");
 }

 public String getStreet() {
 System.out.println(
 "Entered Address::getSteet");
 System.out.println(
 "Exiting Address::getSteet");
 return street_;
 }

 public void setStreet(String street) {
 System.out.println(
 "Entered Address::setSteet");
 street_ = street;
 System.out.println(
 "Exiting Address::setSteet");
 }

 public String getTown() {
 System.out.println(
 "Entered Address::getTwin");
 System.out.println(
 "Exiting Address::getTown");
 return town_;
 }

 public void setTown(String town) {
 System.out.println(
 "Entered Address::setStreet");
 town_ = town;
 System.out.println(
 "Exiting Address::setStreet");
 }

 private String street_;
 private String town_;
}

February 2007 | Overload | 9

FEATURE NIGEL EKE

we are able to separate all common code
related to tracing from the main classes
The aspect looks very much like a class definition:
package com.nigeleke.accuexample.aspects;
public aspect Tracing {

 // (1)
 public pointcut constructor() :
 execution(
 com.nigeleke.accuexample.classes.*.new(..));

 // (2)
 public pointcut anyMethod() :
 execution(
 * com.nigeleke.accuexample.classes.*.*(..));

 // (3)
 before() : constructor() || anyMethod() {
 System.out.println("Entered ctor or method");
 }

 // (4)
 after() : constructor() || anyMethod() {
 System.out.println("Exiting ctor or method");
 }
}

Declarations (1) and (2) declare pointcuts. The pointcuts are used
in the selection of join-points, i.e. the locations in the OO code that
are of interest to us. For tracing, this will be each time we enter or exit a
constructor or a method.
Declaration (1) states that we are interested in all constructors of all classes
within the com.nigeleke.accuexample.classes package;
declaration (2) states that we are interested in all methods in all classes,
again within the com.nigeleke.accuexample.classes package.
Specifically they state we are interested in the execution of the package’s
constructors or methods.
Statements (3) and (4) are known as advices. They inject their advice,
i.e. the body of code associated with them, at the join-points defined
by the pointcut filter expressions.
Statement (3) is saying that, before we execute a constructor (pointcut
1) or execute a method (pointcut 2) we will print out a trace to say we
have entered. Similarly statement (4) is saying that, after we’ve executed
the constructor or method will will print out a tracing to say we're exiting.
So when we run this code:
Address address = new Address("aStreet", "aTown");
address.setStreet("bStreet");
address.setTown("bTown");

Name name = new Name("aForename", "aSurname");
name.setForename("bForename");
name.setSurname("bSurname");

we get:
 Entered ctor or method
 Exiting ctor or method
 Entered ctor or method
 Exiting ctor or method
 Entered ctor or method
 Exiting ctor or method
 Entered ctor or method
 Exiting ctor or method
 Entered ctor or method
 Exiting ctor or method
 Entered ctor or method
 Exiting ctor or method

As this stands, the text to say we’re entering or exiting isn’t particularly
useful. It doesn’t convey the names of the classes or methods involved. Nor
does it provide us any information about parameters passed, or values
returned.
Although simplistic, what this does demonstrate is that, by defining the
Tracing aspect, we are able to separate all common code related to
tracing, from the main classes of Name and Address.
Let’s just pause and repeat that – “we are able to separate all common code
related to tracing from the main classes”. Simply link this aspect with the
original, simple, class code, and we get automatic tracing.
By making a small change to only the Tracing aspect more useful
information about the objects and methods being traced is provided. So by
changing the body of the before() and after() advices to use a further
feature of AspectJ (thisJoinPoint) as shown in Listing 3, we get the
output shown in Listing 4.

Listing 3

package com.nigeleke.accuexample.aspects;
public aspect Tracing {

 public pointcut constructor() :
 execution(
 com.nigeleke.accuexample.classes.*.new(..));

 public pointcut anyMethod() :
 execution(
 * com.nigeleke.accuexample.classes.*.*(..));

 before() : constructor() || anyMethod() {
 System.out.println(
 "Entered " + thisJoinPoint);
 }

 after() : constructor() || anyMethod() {
 System.out.println(
 "Exiting " + thisJoinPoint);
 }
}

10 | Overload | February 2007

FEATURENIGEL EKE

The creator of the class need not even be
aware that tracing is required, or have any

knowledge about how tracing is performed.
Already more useful output, and we have not had to touch any of the
methods in the Name or Address classes.
Yet another small change to the aspect and we are able to list the argument
values and the return values. In Listing 5, the around() advice is used
so that we can access the return value, which gives the output in Listing 6.

Again we have not had to touch any of the methods in the Name or
Address classes.
Further, when we add a new class, Account for example, the Tracing
aspect displays even more power. The new class will automatically get the
tracing functionality required for the package. The creator of the class need
not even be aware that tracing is required, or have any knowledge about
how tracing is performed. They can simply concentrate on the
responsibilities of the Account class.

Listing 4

Entered execution(com.nigeleke.accuexample.classes.Address(String, String))
Exiting execution(com.nigeleke.accuexample.classes.Address(String, String))
Entered execution(void com.nigeleke.accuexample.classes.Address.setStreet(String))
Exiting execution(void com.nigeleke.accuexample.classes.Address.setStreet(String))
Entered execution(void com.nigeleke.accuexample.classes.Address.setTown(String))
Exiting execution(void com.nigeleke.accuexample.classes.Address.setTown(String))
Entered execution(com.nigeleke.accuexample.classes.Name(String, String))
Exiting execution(com.nigeleke.accuexample.classes.Name(String, String))
Entered execution(void com.nigeleke.accuexample.classes.Name.setForename(String))
Exiting execution(void com.nigeleke.accuexample.classes.Name.setForename(String))
Entered execution(void com.nigeleke.accuexample.classes.Name.setSurname(String))
Exiting execution(void com.nigeleke.accuexample.classes.Name.setSurname(String))

Listing 5

package com.nigeleke.accuexample.aspects;
public aspect Tracing {

 public pointcut constructor() :
 execution(
 com.nigeleke.accuexample.classes.*.new(..));

 public pointcut anyMethod() :
 execution(
 * com.nigeleke.accuexample.classes.*.*(..));

 Object around() : constructor() || anyMethod() {
 System.out.println(
 "Entered " + thisJoinPoint.toShortString());

 Object[] args = thisJoinPoint.getArgs();
 for (Object arg : args) {
 System.out.println(
 "with argument: " + arg);
 }

 Object o = proceed();

 System.out.println(
 "Exiting " + thisJoinPoint.toShortString());
 System.out.println("returning: " + o);

 return o;
 }
}

Listing 6

Entered execution(Address(..))
with argument: aStreet
with argument: aTown
Exiting execution(Address(..))
returning: null
Entered execution(Address.setStreet(..))
with argument: bStreet
Exiting execution(Address.setStreet(..))
returning: null
Entered execution(Address.setTown(..))
with argument: bTown
Exiting execution(Address.setTown(..))
returning: null
Entered execution(Name(..))
with argument: aForename
with argument: aSurname
Exiting execution(Name(..))
returning: null
Entered execution(Name.setForename(..))
with argument: bForename
Exiting execution(Name.setForename(..))
returning: null
Entered execution(Name.setSurname(..))
with argument: bSurname
Exiting execution(Name.setSurname(..))
returning: null
February 2007 | Overload | 11

FEATURE NIGEL EKE
This simple example, therefore, shows the main concept introduced by
aspect-oriented programming – cross-cutting concerns, i.e. common
functionality across classes. The Tracing aspect manages common
tracing functionality; the Name, Address and Account classes manage
their sole responsibilities, and they do not need to be concerned with how
to perform tracing in their methods. It also adds a consistency to what is
traced, and how it is traced, which may otherwise be lost.

Visualising aspects
There is one immediate consequence of the Tracing aspect. It is not
possible to know, simply by reading the Name and Address source code,
that the code in Tracing has an impact on what gets executed.
This is not necessarily a bad thing. The writer of Name, Address and any
other classes which get added to this package, should only be concerned
with the simple responsibilities of these classes.
In some respects this is not much different to someone inspecting the code
of some parent class in a hierarchy, without knowing, or needing to know,
how the implementations of methods in the child classes override their
parent.
In practise however, it is pragmatic to know what interactions occur
between aspects and classes.
The AspectJ development environment [AJDT] provides us with two
mechanisms to view the impact of aspects on other classes.
The first of these mechanisms is shown in figures 1 and 2, where there are
small indicators in the left margin of the source code editor. The classes

show inbound arrows, indicating where their methods are being advised
by other aspects. The aspects show outbound arrows, indicating their
advises will have a side effect on a class’s methods.
The second mechanism provides a view of the bigger picture. Figure 3,
taken from the space-war example provided with AJDT, shows a vertical
bar for each class. The horizontal bars are colour coded with a different
colour for each aspect. These show the approximate position within the
class of the join-points affected by an advice. Double-clicking on them
takes you to the appropriate position within the class source.

Pointcuts
With the aspects previously defined we are able to see some of the power
of aspect-oriented programming. The pointcut helps determine the
join-point within the object-oriented code, which is affected by an
aspect’s advice.
pointcuts are not just used to determine simple execution paths,
however. pointcut expressions can also be used to determine:

1. calls made to any package, e.g. calls made to the standard java JDBC
access methods.

2. read or write access to a class’s attributes.
3. whether the execution path is within a given package.

In the first of these examples there is a distinction between the call of and
the execution2 of a method. The join-point for a call exists just before
the call to the method is made, i.e. in the body of the client. The join-
point for execution exists just after the call has been made, but before
the main body of the method is executed, i.e. in the body of the method.

Figure 1 Figure 2

Figure 3

12 | Overload | February 2007

FEATURENIGEL EKE
Initially it appears preferable to use ‘execution’ rather than ‘call’ as the
advice code will only get injected once. However there are times when only
a library is available, and it is not possible for the advice code to be inserted
into the library code. These are the times when ‘call’ is used.
In the final example, it is possible to have an aspect which restricts how
output is performed and not allow calls via System.out. However the
aspect itself may want to use System.out, so it becomes necessary to be
able to state ‘all calls to System.out that are not within this aspect’s
package’.
pointcut expressions can be very general, or very specific, depending
on requirements. It is possible to define a pointcut expression, for
example, for ‘all public methods which start with set, take a String
argument as the first parameter’, for example this may be used to make
sure no client sets null values.

Advices
What about advices? These are not restricted simply to injecting code
before or after a method is executed. Firstly there is a more general use the
before() and after() advices of our initial example. around()
embraces both before() and after() advices. We used this earlier in
the Tracing example, but is shown again in Listing 7 as a cut-down
example.
Advices can also be used to declare compile time warnings and exceptions.
This is something we alluded to earlier when we were discussing
restricting calls via System.out.
The aspect in Listing 8 applies a policy on the usage of System.out, and
creates a compile-time warning if System.out is used externally.
The warning can be changed to error when the policy needs to be
enforced more strongly. When an error is declared then the developer’s
compilation will fail.

More advanced features of AOP
Given that this article started by looking at new programming concepts
introduced in each generation of programming languages, I would like to
address some of the more advanced features of AOP. Before I do though,
I would also thoroughly recommend Eclipse AspectJ [Colyer et al] for a
more detailed description. Although it is centred around the Java-based
AspectJ language it still provides a very solid and easy to read explanation
of AOP generally.

Abstract aspects. In the same way classes can be abstract and
extended by concrete classes, so can aspects. We could, therefore,
have an abstract Tracing aspect which defines pointcuts but the
implementation of the advices are left to the concrete aspects. This
way a framework, for example, can determine where tracing should
be performed within the framework structure, but the
implementation is required to implement the actual tracing, i.e. users
define how.
Abstract pointcuts. Similarly pointcuts can be declared as being
abstract, and the actual definition left for later. (Abstract pointcuts
can only be declared within abstract aspects). If we look again at our
framework tracing example – we may define the Tracing aspect so
that its advices are implemented in the abstract aspect and provide
the actual tracing wanted by the framework. The pointcut definitions
can now be left to the concrete aspect, i.e. users of the framework
determine what needs to be traced.
Method and field injection. An aspect can inject new methods and
fields into existing classes. At first sight this may seem an odd and
conflicting abstraction. It certainly does not sound like concerns are
being kept separate.
Imagine, however, that we have the Address class, above and, as
part of a user interface, we have an AddressUI class whose
function is to display address objects. When the address object

changes its observing addressUI object needs to be notified so that
display fields are updated with the new values. This is a classic
requirement for implementation of the Observer pattern [Gamma et
al].
We can define (standard Java) Subject and Observer interfaces.
We can define an abstract ObserverProtocol aspect that it will
operate on objects providing Subject and Observer interfaces.
The abstract ObserverProtocol aspect:

injects a field into Observers to hold the Subject being
observed;
injects a method into Observers to set the subject;
injects a field into Subjects to hold the set of Observers;
injects methods into Subjects to add and remove an
observer.

Finally we define a concrete AddressUiObserver whose
responsibilities are:

to define Address as implementing Subject and
AddressUI and implementing Observer.
define the concrete pointcut to state what events constitute
an update on the Subject.
define the Subject’s update() method as only this aspect
knows what the Observer method needs to be called for
notification of changes to the Subject.

That’s it. The end result is a reusable observer protocol
implementation and classes which know nothing of Subjects and
Observers which are, nevertheless, able to provide Subject and
Observer interfaces.

Finding and using aspects
When we write in object-oriented programming, the class names are
generally nouns, e.g. Account, or Customer.

2 Used earlier
3 Sad to say, still is...

Listing 8

package com.nigeleke.accuexample.aspects;
public aspect OutputPolicy {

 pointcut accessSystemOut() :
 get(* System.out);
 pointcut inThisPackage() :
 within(com.nigeleke.accuexample.aspects.*);

 declare warning :
 accessSystemOut() && !inThisPackage() :
 "Warning – System.out restrictions apply.";
}

Listing 7

package com.nigeleke.accuexample.aspects;
public aspect Tracing {

 public pointcut constructor() :
 execution(
 com.nigeleke.accuexample.classes.*.new(..));

 public pointcut anyMethod() :
 execution(
 * com.nigeleke.accuexample.classes.*.*(..));

 Object around() : constructor() || anyMethod() {
 System.out.println("Entered ctor or method");
 Object o = proceed();
 System.out.println("Exiting ctor or method");
 return o;
 }
}

February 2007 | Overload | 13

FEATURE NIGEL EKE
Good aspects come from other grammatical areas – adverbs and adjectives
for example, e.g. size, speed. Real-life examples include security and
auditing.
Temporal requirements also give an indication that an aspect may be
appropriate, e.g. before performing this action the user must have been
authenticated, or after writing to the database an audit record must be
written.
Finally rule, or policy based requirements are also fine candidates for an
aspect, e.g. loans over $10,000 must be approved by a lender.
There was3 a tendency among those new to object-oriented programming
to create inappropriate classes, with unclear responsibilities or incorrect
inheritance hierarchies. Further, I still observe that monolithic object-
oriented spaghetti modules abound which are still a maintainer's
nightmare. Perhaps we should call these spaghetti-meatballs?
Aspect-oriented programming is not the silver-bullet to fix this as it will
still depend on the skill of the designer / programmer. I am certain that the
use of AOP will still fall foul to environments that do not follow formal
design practices, or well structured design reviews, or have personnel with
a solid OO skill-set.
Also, just as our OO design practices have changed over the years and we
have learned what constitutes good and bad OO design. I am sure those of
us new to AOP will follow a few common bad practices and select aspects
when they are not appropriate, or not use them when we could have done.
To help the learning curve for individuals, and for companies, the
following adoption phases are recommended [AOSD]:

Explore AOP individually, or within small teams. Practical use
would include enforcement policies, such as “do not use
System.out” (as mentioned earlier). It is also possible enforcing
package dependencies, to make certain these are not violated. These
are compile time dependencies, so have no runtime impact. At this
initial stage it is recommended to avoid runtime dependencies in a
production environment.
Create project specific aspects and aspect libraries for the project
infrastructure. This would include aspects like Tracing, which is a
low-risk part of the project development.
Create core business aspects, i.e. those defining business rules for an
individual application.
Define use within an AOP architecture, and introduce to all future
development. This would include Security, Authorisation and
Authentication aspects.

Not just Java
The examples given here are for AspectJ, which interleaves itself with Java
classes, but there is also AspectC++ [AspectC++], which is very similar
to AspectJ, but the advice bodies are C++, and the pointcut syntax aligns
itself more closely with the C++ language.
The Spring framework [Spring (1)] also provides mechanisms to use
aspect-oriented techniques. I believe this integrates closely with AspectJ,
but also allows linking of aspects to the join-points via XML declarations
or via the use of annotations. There are advantages and disadvantages in
all styles and [Spring (2)] will lead you through these if you are interested.
I’m not really familiar with the Spring framework, but from a casual glance
it appears that AspectJ provides a semantic richness, and a separation, not
present in the other manners of defining aspects. [I would be more than
happy to see an article on ‘AOP with Spring’]. It is the expressiveness
permitted in AspectJ that enables the abstractions, mentioned at the start
of this article, to be clearly articulated in code, so this would be my
preference over using XML to express the same.

Miscellanea
One point that came to light while researching this article – Xerox have a
US patent 6,467,086 for AOP/AspectJ. The AspectJ source code is
released under the Common Public License, which grants some patent

rights. And this all leads to a whole other discussion point regarding
software patents.
Also, on the future of aspect-oriented programming, Bjarne Stroustrup was
asked his opinion of aspect-oriented programming [InfoTech], where he
stated: I don’t see aspect-oriented programming escaping the
“academic ghetto” any day soon, and if it does, it will be less pervasive
than OO. When it works, aspect-oriented programming is elegant, but
it’s not clear how many applications significantly benefit from its use.
Also, with AO, it appears difficult to integrate the necessary tools into
an industrial-scale programming environment.

Personally I would really like to think he is wrong about AOP escaping
the “academic ghetto”, but I would certainly agree it requires the correct
tools to be available. Although most of my experience has been with
AspectJ, I will be following the development of AspectC++ with interest.

Summary
As you can see, programming languages have developed over the course
of time so that we can communicate our ideas, our algorithms and our
requirements more succinctly and more clearly to both the computer and
the program maintainers.
Aspect-oriented programming languages provide a mechanism for the
separation of the concerns, which were previously developed by common
and repeated code snippets in object-oriented developments. I hope this
article has given a small taste of aspect-oriented programming and what
it can deliver for analysts, designers and developers.
One final thought from Feynman’s biography: We must remove the rigidity
of thought. ... we must leave freedom for the mind to wander about in try to
solve the problems.

Hopefully aspect-oriented programming languages will enable us more
freedom to solve our problems.

Acknowledgements
I would like to express my thanks to Paul Johnson, Alan Griffiths and
everyone else on the Overload editorial team who critiqued and help
improve my original submission.

References
[Gleick] James Gleick, Genius – Richard Feynman and Modern Physics,

Abacus; ISBN 0-349-10532-4.
[Wiki(1)] http://en.wikipedia.org/wiki/Real_Programmers_Don't_Use_

Pascal
[Wiki (2)] http://en.wikipedia.org/wiki/APL_language#Overview
[Wiki (3)] http://en.wikipedia.org/wiki/

Alphabetical_list_of_programming_languages
[AJDT] AspectJ Development Tools (AJDT) – http://www.eclipse.org/

ajdt/
[Colyer et al] Eclipse AspectJ; Adrian Colyer, Andy Clement, George

Harley, Matthew Webster; Addison-Wesley; ISBN 0-321-24587-3.
[Gamma et al] Design Patterns; Gamma, Helm, Johnson and Vlissides;

Addison-Wesley; ISBN 0-201-63361-2.
[AOSD] http://aosd.net/
[AspectC++] AspectC++ – http://acdt.aspectc.org/
[Spring (1)] Spring AOP – http://www.springframework.org/
[Spring (2)] Spring AOP declaration style – http://

www.springframework.org/docs/reference/aop.html#aop-choosing
[InfoTech] http://www.techreview.com/InfoTech/17868/

Useful links
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Structured_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
Aspect-oriented Software Development – http://www.aosd.net/
US Patent 6,467,086 – Aspect Oriented Programming
14 | Overload | February 2007

FEATUREHUBERT MATTHEWS
Exceptional Design
Hubert Matthews discusses some ways to design programs
to use exceptions.
Introduction
his article describes the approach I have taken to designing
applications that I have written over the last few years. It is also a
distillation of the techniques I have been teaching on C++ courses for

some years. It is not meant to be the one and only true way of designing
using exceptions, but rather a report on techniques I have found useful. The
second part of the article explores why this approach isn’t universal and
some of the barriers – psychological and technical – to its adoption.

In a nutshell, the core design concepts I use are:
Many throws, few catches
Placement of catches is determined by recovery points, which are
based around business requirements not technical considerations
Catches should also be placed at module boundaries
Implement the strong exception safety guarantee whenever
reasonable
Make intermediate code exception-neutral
Log at the point of detection, recovery (if any) at the point of
handling
Use local control structures in preference to throwing an exception
Use standard exceptions or subclasses thereof
Use as few subclasses as possible, ideally zero or one
Add additional information to the exception class for multi-level
recovery and for business and technical context
Don’t nest exceptions

These techniques are primarily focused on C++, the language I code in the
most. C++ has a cleaner exception model than Java and C# as well as
deterministic destruction (i.e. destructors instead of try/finally
blocks), both of which make the use of exceptions easier and more elegant.

First step
The first thing I do when writing a C++ program is to place a double try/
catch block in main():

int main()
{
 try {
 // main body of code
 } catch (const std::exception & e) {
 cerr << “Caught exception: “ << e.what()
 << endl;
 return 1;
 } catch (…) {
 cerr << “Caught unknown exception” << endl;
 return 1;
 }
}

This ensures that no exception can propagate out of main() and thereby
cause the program to terminate unceremoniously (fragile programs that
disappear without a trace are not popular!). It is an example of the maxim
“catches at module boundaries”. In this case the boundary is between my
program and the host operating system (indirectly via the run-time library),
which expects a return code. The catch(…) acts as a catch-all (literally)
for other exceptions. These may be caused by an errant throw (for
example someone throwing a plain integer or a string) or on earlier
versions of Visual C++ errors such as access violations and divide-by-zero
errors were translated into anonymous C++ exceptions using Windows’
structured exception handling (SEH). The GNU g++ compiler can be
persuaded to turning signals into exceptions, but again this is architecture
and processor specific.
This universal “last gasp” handler therefore protects against these
anonymous exceptions and adds perceived robustness to the program. One
of the programs I wrote and maintained for 8 years on Windows used a
third-party library that would occasionally cause access violations, so this
catch(…) technique was very useful. try/catch blocks also need to be
placed at the top of every thread function and probably around any code
that executes in button handlers in GUI applications (as exceptions cannot
propagate across GUI message pumps). In production code more error
logging than this would be appropriate (and perhaps even a core dump on
Linux or Unix).

Recovery strategy
The next step is to determine what the recovery strategy for the program
should be. This can range from a graceful shut down for simple end-user
programs through partial completion all the way up to resilient recovery,
retry or fail over for long-running server programs. Recovery is a business-
requirements issue more than it is technical design. The key question to
ask is “what should happen now?” rather than “what can we do?”.
Sometimes recovery is multi-layered with some classes of error being
handled at an intermediate level and others being escalated to a higher
layer. As an example, one of the applications I wrote had two intermediate
layers: the first layer was a list of command scripts to run and the second
layer was the scripts themselves. There was a recovery point (i.e. a try/
catch pair) around each script line invocation that enabled the script to
continue despite an errant line, with a second recovery point around each
script file to allow for missing or inaccessible script files. The “last gasp”
handler at the outer layer was used to catch errors such as memory
allocation errors.
In order to create such a layering, it was necessary to use a custom
exception class instead of one of the standard subclasses of
std::exception. This custom class inherited from std::exception
and added an additional severity flag:

T

Hubert Matthews can be contacted at hubert@oxyware.com
February 2007 | Overload | 15

FEATURE HUBERT MATTHEWS

Cross-component error reporting is not
something that you want to tie into a
component’s control flow
class AppException : public std::exception {
public:
 enum Level { warning, severe, fatal };
 AppException(
 Level level, const std::string & msg)
 : std::exception(msg), level(level) {}
 const Level level;
};

This extra level information allows intermediate catch handlers to choose
whether to recover or re-throw:

try {
 // inner-level code
} catch (const AppException & e) {
 if (e.level == AppException::warning)
 Log(e); // "recovery"
 else
 throw; // appeal to a higher authority
}

The severity level for each exception is decided at the call site when the
exception is thrown:

if (FileIsNotAccessible(filename))
 throw AppException(AppException::severe,
 “Can’t open file “ + filename);

With such a structure in place, handling errors becomes conceptually much
easier as if a subroutine detects an error it cannot handle locally then it can
just throw. Handling errors locally is of course preferable and normal
control structures should be given preference over the use of exceptions.
An alternative approach is to use a very limited exception hierarchy with
one subclass per error level. This allows the multi-level catch handler
shown above to use the type of the exception to catch only certain error
levels:

class WarningException : public std::exception {};
class SevereException : public std::exception {};

try {
 // inner-level code
} catch (const WarningException & we) {
 // handle only warnings, let severe exceptions
 // propagate to the next level up
 Log(we);
}

The effective difference between these two approaches is minimal; both
achieve the same effect. The catch handler is effectively identical and the
throw site is also the same in all but syntax.

I use a single exception class rather than an application-specific exception
hierarchy as I have found little need to differentiate between different types
(rather than different severities) of exception when handling them. Doing
so would require a whole chain of catch handlers that rapidly degenerates
into the equivalent of an if-else-if chain testing against types:

try {
 // code
} catch (const SubException1 & e) {
 // handle exception case 1
} catch (const SubException2 & e) {
 // handle exception case 2
} catch (const SubException3 & e) {
 // handle exception case 3
}

There are a number of problems with such code. First, the order of the
catches is now important as more derived classes must be caught before
their bases. Second, adding a new exception type requires the catch
handlers to be updated, which is a sign of undue coupling. Third, I can think
of little significant difference from a recovery perspective that justifies the
above problems. My other objection to the use of an exception hierarchy
is that I feel that inheritance is primarily a way of coding variations in
behaviour. In this case, however, the variation isn’t in the exceptions; it’s
in the handler. Therefore normal control structures in the handler should
suffice and having a single exception class reduces the coupling in the
application.
Some sources – particularly in the Java camp – suggest nesting exceptions.
Again, I have found little use for this or for other advice such as the use
of checked exceptions in Java. The simplicity of the proposed approach is
appealing and has served me well on small programs. Extending this
approach unmodified to a larger scale is possible but unlikely. More likely
is to place try/catch blocks at component boundaries and use return
codes across the interface with exceptions internally. This allows each
component to look after its own clean-up and resource management
without imposing anything on the caller. Cross-component error reporting
is not something that you want to tie into a component’s control flow; the
raising of events or logging of errors is easier, cleaner and more usual.
Throwing exceptions across network or process boundaries isn’t a clean
idiom either, so good old error codes are best here too. Handling errors on
a system-wide scale is a different matter altogether. Languages like Erlang
lead the way here.
This style of design relies on the use of exception safe techniques
throughout the code. The strong guarantee – which offers commit/rollback
semantics – should be used wherever it is practicable. Intermediate code
should be exception neutral (i.e. have no try/catch blocks for clean-up)
as this makes code clearer and easier to test as there is then no difference
between the normal path and the path taken when an exception is thrown
from lower-level code. These techniques have been well documented by
members of the C++ community: auto_ptr, RAII, copy-swap idiom, “do
work on the side”, etc. [Sutter99], [Stroustrup00]. One point to note is that
16 | Overload | February 2007

FEATUREHUBERT MATTHEWS
the transactional nature of the strong guarantee is often provided for
persistent data by using a relational database. For file storage, no such
transactionality is available and developers must code it themselves. The
same goes for in-memory state changes (although software transactional
memory is a current research topic [STM05]). Rollback in such cases is
provided not at the recovery point (the catch handler) but by the stack
unwinding caused by the propagation of the exception. Designing commit
mechanisms that do not throw can itself be a challenge!

Things that don’t work and anti-patterns
I have seen a number of exception anti-patterns in C++ code in addition
to the multiple subclasses anti-pattern:

try/catch surrounding each call
Exception squashing (no recovery)
Overuse of exceptions
throws in catch blocks

One anti-pattern I have often seen is surrounding each call with a try/
catch block in order to add error context for logging:

void FunctionX()
{
 try {
 FunctionY();
 } catch (const MyException & e) {
 Log(e);
 throw MyException(
 “Error: FunctionX -> FunctionY”, e);
 }
 // similarly for call to FunctionZ()
}

This is worse than error codes for a number of reasons. The clarity of
exception neutrality is lost, so the main application code is intertwined
with error handling in exactly the way return codes are. When justifying
this approach, programmers have told me that they believe that the extra
context information is useful for debugging. I have never found it so as
the most relevant information is available at the point where the error is
detected, that is, where the exception is thrown. Adding in all of these
intermediate try/catches is also a heavy burden that bloats the code and
adds no user-visible functionality or tackles the real purpose of exception:
recovery. I presume that developers who do this do not understand the
purpose of stack unwinding and are still thinking in a C-style idiom.
If this approach is avoided, then the next item up the anti-pattern food chain
is the null recovery block. This is where the catch handler either ignores
the exception totally:

try {
 //
} catch (const MyException &) {}

because the programmer doesn’t know what to do (and the specification
is silent) or attempts to stumble on regardless. This anti-pattern is more
common in Java because of the presence of checked exceptions as it can
eliminate the need to alter the exception specification of the function.
(InterruptedException springs to mind here.) There is little need to
say why this is not a recommended practice! Just logging the error and
continuing is almost as bad. (The “last gasp” handler falls into this category
but since it by definition is called only when recovery is not possible then
we turn a blind eye in this case.)
Some people overuse exceptions and use them when local control
structures would be more appropriate. An example might be using an end-
of-file exception instead of an error code, an event that is entirely
predictable and something that does not need long-range recovery.
The final anti-pattern – throwing from within a catch block – is rarer and
is more of a sin of omission than one of poor design or limited
understanding. Sometimes this is exactly what is required when recovery

at an intermediate level has failed or isn’t possible, but often it is caused
by calling a function that itself throws. Caveat coder. Examples abound in
Java of calling jdbcStatement.close() and friends in finally
blocks with a null object reference. The use of exception neutral
intermediates reduces the number of places that this anti-pattern can occur
to a few recovery points where additional thought, care and review time
can be expended.

Consequences
Viewing exceptions as recovery requests has a number of important
consequences. The primary effect is that it alters the perspective of the
developer from a historic “stuff happens” view to a forward-looking “so
what am I going to do about it” view, a change of focus that opens up a
lot of possibilities as well as posing a large number of requirements-level
questions about what recovery means. In “agile” terminology it is the start
of a conversation with the customer that may well lead to some additional
user stories. In a classic RUP-style use-case based approach it starts to fill
in the “errors, exception and alternative paths” section of a full-dress
Cockburn-style use case [Cockburn00]. This change in viewpoint should
not be underestimated as it turns exceptional conditions from technical
“oops” moments into user-visible events, events that contribute to the
robustness and resilience of the application and about which users will
usually have strong opinions. Altering a “can’t save file foo.doc” show-
stopping modal pop-up into a sequence of alternative actions – such as
saving under a different name, on a separate device, etc. – transforms an
application and users’ trust in it. The change of emphasis could be
compared to the change that occurs when developers use test-driven
development: you see things from another angle, one that illuminates the
specification more than the implementation.
Once recovery from an exception becomes a user-visible event then it
becomes a target for testing. Traditionally, error handlers have been poorly
tested as it is often extremely difficult to provoke suitable errors. Exception
neutrality now shines brightly for two reasons: reduction of error paths and
ease of testing. Since exception-neutral code has no explicit error paths
then any path through the code – normal or exceptional – provides
adequate coverage. Thus, error handling does not add to the McCabe
complexity of the intermediates and only the recovery points need testing
for exceptional cases. There are only a handful of such catch blocks in
the system so only these few places that contain complex recovery code
have to be tested independently. Doing this by using mock objects that
always throw often means inserting abstract base classes or interfaces as
substitution points for mock objects. The overall testing burden for error
handling is thus lower, it is less invasive and the orphan child Recovery
need no longer feel like Cinderella on a bad night. (One point to remember
is that exception neutrality and exception safety are orthogonal issues. The
lack of catch blocks or calls to uncaught_exception() does not
imply that throwing an exception will not lead to subtle errors or resource
leaks!)

Why don’t programmers do this currently?
Given the glowing overview and snake-oil claims for this approach, why
do programmers not use it? Habit and old idioms, low-level detail and
suspicion of exceptions are some of the reasons. Lots of developers are
quite conservative creatures of habit and stick to what they know. Others
are attracted to the Lorelei call of the new. Only a few, or so it seems to
me, take the time to analyse how they could improve the use of their current
languages and tools.
Habit and old idioms Developers have been using return codes for years
and they are comfortable with them. Return codes are simple and fit well
with local control structures. I am not advocating abandoning return codes
as they should be the first port of call when handling errors. Exceptions
are useful as an escalation request only when all local attempts have failed,
in a similar manner to avoiding bothering your boss until you’ve tried
everything at your disposal and need outside help.
Low-level detail By this I mean being submerged in lots of low-level detail
and not being able to see the larger design-level decisions. This is why I
February 2007 | Overload | 17

FEATURE HUBERT MATTHEWS
advocate determining the recovery points early on in a design as it brings
complexity-relieving structure to an otherwise bald and unconvincing area
of programming. Knowing that help is only a throw away does much to
alleviate the angst of error handling.
Suspicion of exceptions This is a definite issue with some developers,
primarily those who are very concerned about performance and memory
size. In order to reason about this we need to examine a little how exception
handling is typically implemented and its associated costs.
There are two common implementation techniques: stack-based and table-
based. The table-based approach incurs zero execution-time cost if an
exception is not thrown but relies on a potentially large static table of
locations. This table is used to determine which destructors need to be
called based on the program counter when the exception is thrown. In
memory-constrained environments this table may be unacceptable.
In comparison a typical stack-based approach has a number of parts to it.
Catch handlers are required in the function where the catches are declared.
Unwind handlers are required in every function that allocates an object on
the stack that has a non-trivial destructor. This may seem heavy, but
compare this to doing the whole thing manually. You have to write the
error propagation mechanism yourself using return codes, if statements,
early returns, etc. The overall amount of code in the executable is probably
similar and the efficiency isn’t that different either – some stacking of
objects versus lots of return code creation and checking. So the run-time
efficiency (both speed and size) isn’t that different, I suspect.
Breaking the error process into stages, there are three separate parts:
detection, propagation and recovery. The speed and size of detection is the
same for both exceptions and return codes, as is recovery. It is only
propagation that differs and this is typically the smallest cost of the three
parts. Exceptions provide a built-in mechanism for this whereas with
return codes you have to write it all yourself every time afresh. As with
any other cut-and-paste type of code duplication, you now own that
mechanism so you have to test it, maintain it, and so on for the lifetime of
the code. Faced with this, a standard clean compiler-provided mechanism
seems like a good deal to me.
There are other forms of efficiency to consider, however. With return
codes there is always the chance that you will get it wrong by omitting to
test a return code, plus the fact that your application code is now intimately
entwined with error handling code which makes it more difficult to
understand and get right. On top of this, consider how difficult it is to test
your manual error handling code: you have to falsify all of the return codes
for all of the possible paths. This leads me to think that in terms of
programmer efficiency that exceptions win hands down.

Exceptions and error handling are afterthoughts
I often get the feeling that error handling is but an afterthought, something
that gets smeared on afterwards to bring an application back to a
superficially acceptable level of stability. I hope that encouraging
developers to think of recovery rather than termination by providing an
overall error-handling structure might encourage developers to avoid
concentrating on only the “happy day” scenario. Perhaps one day their
bosses might even give them time to do so too.

Exceptions guarantees and design
The modern C++ community has adopted Dave Abrahams’ three
exception guarantees: basic, strong and nothrow [Sutter99]. It is
instructive to see how these essentially technical-level guarantees relate to
higher-level design techniques such as statecharts. The basic guarantee
ensures that an object is in a usable state that satisfies its invariant after an
operation if an exception is thrown. In terms of a UML statechart this
means that if an exception is thrown then that particular state machine
instance can reappear in any of the states! The strong guarantee implies
that either a transition occurs or the state machine stays in the original state
(commit/rollback semantics), and the nothrow guarantee implies that the
transition will occur. The lack of precision of the basic guarantee is one of

the primary reasons for aiming for the strong guarantee whenever possible.
For instance, in an e-commerce application that implements only the basic
guarantee, an exception could empty your persistent shopping cart and log
you off. Even worse it could mark your order as complete! Caveat
guarantor.
If exceptions are used as user-visible recovery requests then the recovery
strategy can be designed as part of the same state machine as the normal
path. This may involve additional operations, compensating transactions
for rollback (as in two-phase commit), timeouts, etc. This reduces the
likelihood of error handling being left up to developers who will probably
choose the easiest option for them in the absence of clear requirements.
My personal hope is that software designed this way will be far less likely
to present me with a message box containing hexadecimal information
barely helpful even to a developer, leading to reasonable software that isn’t
brittle, software that I can trust.
An interesting side issue is the use of assertions in debug mode versus
production mode. The standard assert macro stops the program when
in debug mode but not in the release version. Tony Hoare [Hoare73]
commented that removing assertions in release mode is like wearing your
lifebelt when practising and removing it when venturing out for real. There
would appear to be a case for having run-time assertions raise exceptions
instead and then relying on the recovery mechanism to return the program
to a usable state in both modes. This path seems to steer a fine line between
asserts “stop the world” and “forget about assertions” modes, neither of
which seems useful in production software.

Conclusion
Using exceptions as recovery requests is a technique I have been using
successfully for a number of years in C++. The overall effect on the design
is that the mainline code is simpler and clearer than with return codes and
the exception handling provides a simple and stable structure that supports
the mainline code by removing and isolating complexity. Sophisticated
recovery strategies can be implemented, ones that involve a dialogue
between the recovery code and the underlying functions.
This approach is very simple, seeming almost trivial compared to some of
the anti-pattern approaches I have had the privilege to witness. I believe it
expresses the essence of the approach in a clear manner, one that steers
developers away from a historical technical viewpoint to a forward-
looking user-oriented view of error handling. Perhaps this is its greatest
strength, something only obvious in hindsight and something that grows
on you over time.

Acknowledgements
The reviewers, Ric Parkin and Roger Orr, pointed out not only where I had
stepped off the narrow path of fact and into the realms of rose-tinted
memory but also suggested a number of useful clarifications and
alternatives. My thanks to them both.

References
[Sutter99] H. Sutter, Exceptional C++, Addison-Wesley, 1999.
[Stroustrup00] B. Stroustrup, The C++ Programming Language (3rd

Edition), Addison-Wesley, 2000.
[Hoare73] C.A.R. Hoare, Hints on Programming Language Design,

Stanford University Artificial Intelligence memo AIM224/STAN-
CS-73-403. Reprinted in [Hoare89], 193-214.

[Hoare89] C.A.R. Hoare/C.B. Jones (Eds.), Essays in Computing Science
(reprints of Hoare's papers), Prentice Hall, 1989.

[STM06] http://research.microsoft.com/~simonpj/papers/stm/index.htm
[Cockburn00] A. Cockburn, Writing Effective Use Cases, Addison-

Wesley, 2000.
18 | Overload | February 2007

FEATURESEWERYN HABDANK-WOJEWÓDZKI
C++ Trivial Logger
When a fully functional logging subsystem isn’t
the answer what does one do?
Seweryn Habdank-Wojewódzki rolls his own.
Introduction
ometimes there is a need to track some results of the program, but
we do not want to put them in the output of the program – especially
when the program is working either as a server or if we want to

observe some results, but not show them in the GUI. There are times we
want to debug the program but there are a lot of iterations to perform (such
as work on huge data containers, or making many calculations and we
would like to observe all iterations).

Of course debuggers support conditional stops, but if we do not exactly
know what the conditions are or if there is a problem to set a “stop
condition” for the debugger, using a debugger can be problematic. The
solution is to equip the application with the logger.
For logging, there are specially designed libraries.
They are equipped with

sinks (appenders),
filters which need to be configured in runtime but they have to be
compiled as library.

These loggers are large (with a potential performance hit), because of
existence of parsers for configuration files e.g. written in XML or in the
style of UNIX configuration files.
As a simple case, let’s consider simple code shown in listing 1 and 2.
Why we do not sometimes need big loggers? What do we have to do if we
do not need all of that, but only need simple functionality like
Log (variable)? Do we need one logging stream? What if we do
not separate levels of logging? And even then sometimes the big loggers’
licences do not fit our project. If the code is simple then it has greater
possibility to be portable. The solution for this can be the usage of a
lightweight logger.
A typical and very rough solution for that problem is to write in every place
where we need logger/debugger functionality preprocessor directives such
as in listing 3:

S

Seweryn Habdank-Wojewódzki is a PhD student,
specialising in computational algorithms for data mining,
prediction, classification and pattern recognition. In his free
time he likes painting, writing poetry and reading philosophical
books. He can be contacted at habdank@gmail.com

Listing 3

std::string val_str = Editbox.get_text();

#if defined (DEBUG)
 std::cout << str << std::endl;
#elif defined (FILEDEBUG)
 file_stream << str <<std::endl;
#endif

currency value =
boost::lexical_cast<currency>(val_str);

#if defined (DEBUG)
 std::cout << value << std::endl;
#elif defined (FILEDEBUG)
 file_stream << value <<std::endl;
#endif

Listing 2

// Let assume that Editbox is a edit box widget
// where user can put value e.g. for currency like:
// 120 (by default e.g. in Euro), 120.11EUR,
// E120, 120.1E and so on.

// Let assume for simplification that we have
// a standard string as a result from Editbox.

std::string val_str = Editbox.get_text();

// we want to log what users put in the edit box
// to have an overview about typical
// errors in writing, or what is a preferable style,
// maybe string uses UTF-8, and we do NOT expect
// signs form extended set like “€”.

// let assume that currency is a class
// that contains information about currency
// and it has overloaded operator>> and operator<<

currency value =
boost::lexical_cast<currency>(val_str);

// and we want to observe what are the result
// from currency parser.

Listing 1

// cont is a huge container e.g. std::list<double>
// filled with values

for (std::list<double>::const_iterator
 pos = cont.begin();
 pos != cont.end(); ++pos)
{
 // operate on *pos
 // and we want to observe
 // if there are any somehow critical values
 // inside cont
}

February 2007 | Overload | 19

FEATURE SEWERYN HABDANK-WOJEWÓDZKI

the motivation for preparing ones own
logger is that licences of existent loggers
may not be suitable for the project
It can be seen that there are a lot of lines which are not needed; especially
all of the compiler directives. In this simple example, we have 5 lines of
code for 1 line of logging functionality. Even if we prepare macro to use
Log () instead of file_stream << str <<std::endl; there is
still a problem with compiler directives.
In this paper, the author will present a very easy to use logger which solves
the problem of compiler directives. The design is based on pointers to the
output streams e.g. to the file or to the standard output stream (generally
console output). There will be some examples of usage, and some possible
extensions. Also, the author compares such a simple construction with
other existing (free) logging libraries. In fact, the comparison is more a
presentation, because they have much larger functionality – however they
are really not lightweight.
In the end, the motivation for preparing ones own logger is that licences
of existent loggers may not be suitable for the project and we do not want
to extend too much our project.

Construction of the C++ Trivial Logger
We can describe some needs for such a logger.
Assumptions:

Activate the logger at compilation time by using a flag. If flag is not
set then logger has to be cleaned up from the code or set to the
stream which ignores all input;
Flag has to switch logger style;
Usage as simple as possible;
Debugger-like style for debugging purpose;
Implement some basic configuration procedure.

The proposed construction of the header file logger.hpp is as shown in
listing 4. We can observe that the usage of the std::auto_ptr helps
with destroying/closing a file stream and also other streams based on the
construction of the proper class [Josuttis99]. The definitions of the
Log(name) construct is a very useful function like macro.
Three flags are defined; FTLOG (File Trivial Logger), TLOG (standard
stream Trivial Logger) and ETLOG (standard Error stream Trivial Logger),
each with different functionality.

Listing 4 (cont’d)

class logger_t
{
public:
 static bool is_activated;
 static std::auto_ptr < std::ostream >
 outstream_helper_ptr;
 static std::ostream * outstream;
 logger_t ();private:
 logger_t (const logger_t &);
 logger_t & operator= (const logger_t &);
};
extern logger_t & logger();
#define LOG(name)do {if (logger().is_activated){\
 *logger().outstream << __FILE__ \
 << " [" << __LINE__ << "] : " << #name \
 << " = " << (name)
 << std::endl;} }while(false)
namespace logger_n {
 template < typename T1, typename T2, \
 typename T3, typename T4 >
 void put_debug_info (logger_t & log, \
 T1 const & t1, T2 const & t2, \
 T3 const & t3, T4 const & t4)
 {
 if (log.is_activated)
 {
 *(log.outstream) << t1 << " (" \
 << t2 << ") : ";
 *(log.outstream) << t3 << " = " \
 << t4 << std::endl;
 }
 }
}
#define LOG_FN(name) logger_n::put_debug_info (\
 logger(), __FILE__, __LINE__, #name, (name))
// place for user defined logger formating data
#define LOG_ON() do { \
 logger().is_activated = true; } while(false)
#define LOG_OFF() do { \
 logger().is_activated = false; } while(false)
#if defined(CLEANLOG)
#undef LOG
#undef LOG_ON
#undef LOG_OFF
#undef LOG_FN
#define LOG(name) do{}while(false)
#define LOG_FN(name) do{}while(false)
#define LOG_ON() do{}while(false)
#define LOG_OFF() do{}while(false)
#endif
#endif // LOGGER_HPP_INCLUDED

Listing 4

// Copyright (c) 2005, 2006
// Seweryn Habdank-Wojewodzki
// Distributed under the Boost Software License,
// Version 1.0.
// (copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef LOGGER_HPP_INCLUDED
#define LOGGER_HPP_INCLUDED

#include <ostream>
#include <memory>
20 | Overload | February 2007

FEATURESEWERYN HABDANK-WOJEWÓDZKI
FTLOG forces the logger to put information to the file logger stream (listing
5). TLOG indicates that the logger sends information to the standard output.
The logger will put information into the standard error stream if ETLOG is
enabled. An interesting event occurs when no flag is chosen, the stream is
set to a safe null stream. If a flag is set to CLEANLOG, then all macros are
cleaned up.
The code uses the NullStream class defined by Maciej Sobczak
[Sobczak (1)].
We can easily observe that such a construction of compiler directives leads
to usage that we do not need any more as the Log(name) macro is defined
every time. However it is empty do{}while(false) if CLEANLOG flag
is set. If there is none of ...TFLAG set, it leads to the creation of the null
output stream.
In every file where we need to use the functionality, we need to include
logger.hpp and add o the makefile, logger.cpp.
To highlight the problem with the creation of the pointer to the stream in
logger.cpp, a simple test case file is created (foo.cpp, listing 6),
which has to be included to the example project. In listing 6, the logger is
used before it starts in main(). This can lead to a problem when other cpp
files in the project use it before the pointer is constructed. The problem is
called “static initialization order fiasco”. Happily, a solution exists. It is
simple in concept, but tricky to perform and of course the author tries to
do his best to solve the problem in the code using remarks from the
Marshall Cline – Parashift.com website [Parashift].

Listing 5 (cont’d)

#endif
logger_t & logger()
{
 static logger_t * ans = new logger_t ();
 return *ans;
}

#endif // !CLEANLOG

Listing 5

// Copyright (c) 2005, 2006
// Seweryn Habdank-Wojewodzki
// Distributed under the Boost Software License,
// Version 1.0.
// (copy at http://www.boost.org/LICENSE_1_0.txt)
#include "logger.hpp"
#if !defined(CLEANLOG)

#if defined (FTLOG)
#include <fstream>
#else
#include <iostream>
// http://www.msobczak.com/prog/bin/nullstream.zip
#include "nullstream.h"
#endif
logger_t::logger_t()
{}
bool logger_t::is_activated = true;

#if defined(TLOG)
std::auto_ptr < std::ostream >
 logger_t::outstream_helper_ptr
 = std::auto_ptr < std::ostream > (
 new NullStream);
std::ostream * logger_t::outstream = &std::cout;

#elif defined (ETLOG)
std::auto_ptr < std::ostream >
 logger_t::outstream_helper_ptr
 = std::auto_ptr < std::ostream > (
 new NullStream);
std::ostream * logger_t::outstream = &std::cerr;

#elif defined (FTLOG)
std::auto_ptr < std::ostream >
 logger_t::outstream_helper_ptr
 = std::auto_ptr < std::ostream > (
 new std::ofstream ("_logger.out"));
std::ostream * logger_t::outstream
 = outstream_helper_ptr.get();

// here is a place for user defined output stream
// and compiler flag

#else
std::auto_ptr < std::ostream >
 logger_t::outstream_helper_ptr
 = std::auto_ptr < std::ostream > (
 new NullStream);
std::ostream * logger_t::outstream
 = outstream_helper_ptr.get();

Listing 6

#include "logger.hpp"
struct Foo
{
 Foo()
 {
 LOG ("Creation of the Foo object");
 }
 ~Foo()
 {
 LOG ("Destruction of the Foo object");
 }
};
Foo foo;
February 2007 | Overload | 21

FEATURE SEWERYN HABDANK-WOJEWÓDZKI
Usage and results
So, what functionality do we have thanks to the Trivial Logger?
The first observation of the code is that we can easily write Log (var);
to log values of the variable which has name var. The result in the logger
stream are the contents of __FILE__ [__LINE__] and the actual value
stored in var (var = value) – in other words:
__FILE__ [__LINE__] : var = value

The code uses a natively defined operator << for the considered type,
so dependent on that, the operator logs can change. A complete example
of usage is shown in listing 6 and 7.
After running the example program with the flag FTLOG, new file
_logger.out is created and it contains:
foo.cpp [7] : "Creation of the Foo object"
 = Creation of the Foo object
main.cpp [20] : "Trivial logger in main()!"
 = Trivial logger in main()!
main.cpp [21] : a = 1
main.cpp [22] : str = test
main.cpp [23] : p = (PI, 3.1415)
main.cpp [24] : q = (10, EUR)
main.cpp (30) : "Trivial logger in main()!"
 = Trivial logger in main()!
foo.cpp [12] : "Destruction of the Foo object"
 = Destruction of the Foo object

If TLOG is set, the same content is written in the console output,
respectively for ETLOG flag, standard error output is chosen.
As we can see, we have information stored in the logger output even if the
object foo is created before main(). What is very important for
debugging and logging static is the construction of the objects. A similar
method is presented for the destruction of the foo object.
Also in log file is the highlighted effect of the switching on and off the
logger by using LOG_OFF() and switching on by using LOG_ON() – in
main() the function LOG() is seen twice; one is put into the logger
results.
At the very end of the main.cpp file is the macro LOG_FN() which is
more less equivalent to the LOG() macro, but the difference is presented
as a change of brackets. This macro also shows how to prepare other
formatting functions and macros for Trivial Logger.

Configuration and simple code changes
There is not much configuration opportunity at this stage of the Trivial
Logger construction. However, for the user there is available the pointer
to the stream instead of the static variable. The pointer gives the
opportunity to be changed at runtime. It is also possible to switch off and
then switch on the logger, and also it’s possible to change formatting style.
In the construction of the logger_t class static fields are used; the class
can be redesigned not to use static variables. There has to be some small
changes in logger.hpp file – mostly remove the static keywords.
There is a larger change to be done in logger.cpp file – the construction
of the fields has to be moved to the constructor of the logger_t class –
of course with respect to the creation of non static fields of the class. The
basic functionality of the logger remains similar – extended functionality
in that we can define many different loggers (see in the Further extensions
section).

Further extensions
There are many extensions possible. The first one is that the logger is
somehow a singleton, so the code can be redesigned to use a singleton
design pattern, but it will not be “trivial” [Alexandrescu01].
Other propositions can be to define different streams for different purposes
e.g. one for logger other for debugging purpose, another for collecting data
from UI to prepare some statistics about usage of the UI. This can be solved

by defining in parallel similar macros (with different names) or by using
this functionality in the more general concept, what will be not trivial at
all if we consider native system logging mechanisms, threads and so on.
Static pointers have to be changed to the normal ones.
An interesting extension is that, in fact, Trivial Logger defines pointer to
the stream and we could implement other streams to use with a user-
defined compiling flag. Interesting examples of such a stream objects are
implemented in streamed socket implementation [Sobczak (2)], also
FASTreams [Sobczak (3)] and the Boost iostreams Library [Boost].
The last extension concerns the used file name which is fixed as
_logger.out. Another possibility is to use function std::tmpnam
from the C standard library to generate a temporary file for logging
[Dinkumware]. This approach can be useful if we combine the
functionality of Trivial Logger and use it in a multi-threaded application
but with the separation of the log files for every critical thread. This
approach can be treated as second extension, too.
With respect to multi-threaded and or Real-Time systems, logging
information can be extended by using time stamps, which informs about
a time of the logged value.
Also very simple is EzLogger [Axter]. It is a set of seven (in fact six)
headers which are easy to include to the project. It supports levels of
verbosity and works on streams, but the overhead is quite heavy for such
a simple logger. It also supports changing formatting policy, but it seems
to force the user to generate their own policy classes. There is no way to
clean up its functionality, so it can not be used just only for debugging
purpose.

Some not trivial loggers
More or less all extensions will lead to the construction of a really big
logger. As examples of design we can compare: log4cxx, log4cpp and

Listing 6

#include <string>
#include <utility>

#include "logger.hpp"

template < typename T, typename U >
std::ostream & operator<< (std::ostream & os,
 std::pair < T, U > const & p)
{
 os << "(" << p.first << ", "
 << p.second << ")";
 return os;
}

int main ()
{
 double const a = 1.0;
 std::string const str = "test";
 std::pair < std::string, double > p (
 "PI", 3.1415);
 std::pair < unsigned long, std::string > q (
 10, "EUR");

 LOG ("Trivial logger in main()!");
 LOG (a);
 LOG (str);
 LOG (p);
 if (1) LOG (q); else LOG(str);

 LOG_OFF();
 LOG ("Trivial logger in main()!");

 LOG_ON();
 LOG_FN ("Trivial logger in main()!");
}

22 | Overload | February 2007

FEATURESEWERYN HABDANK-WOJEWÓDZKI
log4cplus [Apache (1)] [Sourceforge (1)] [Sourceforge (2)]. As we can
read, all of them are based on Java Log4j project design [Apache (2)].

log4cxx is equipped with loggers and they give possible different
levels of logging such as (shown with the relation): DEBUG <
INFO < WARN < ERROR < FATAL. Additionally, it has different
appenders, so the programmer can chose: console output, files, GUI
components, remote socket servers, NT Event Loggers, and remote
UNIX Syslog daemons.
The usage is very simple e.g.:

 LOG4CXX_INFO(logger, "Exiting application.");
log4cxx is distributed under the Apache Software License.
log4cpp is smaller than log4cxx. However it has extended levels of
logging: NOTSET < DEBUG < INFO < NOTICE < WARN <
ERROR < CRIT < ALERT < FATAL = EMERG. Unfortunately the
documentation is not good enough, so we need to look to the
programmers documentation to recognize that appenders are: files,
files with set maximal size (logs will rotation of the file contents),
standard streams, strings (logging into memory), remote and local
Syslog and the default system debugger on Win32 systems.
The usage is different:

 file_appender.log(log4cpp::Priority::WARN,
 "This will be a logged warning");

log4cpp is released under the GNU Lesser General Public License
(LGPL).
log4cplus is even smaller than log4cpp. It has some levels: TRACE
< DEBUG < INFO < WARN, ERROR < FATAL. Possible append-
ers are: console output, file, file with set maximal size (similar to
log4cpp), file with set time of rotation (file is rolled over at a user
chosen frequency), socket, Syslog and NT Event Log and at last
NULL.
The usage of log4cplus is as simply as in log4cxx:

 LOG4CPLUS_WARN(logger, "Hello, World!")
log4cplus is released under the Apache Software License.

To summarize. All of none trivial loggers are: multi-threaded, equipped
with many appenders, and they separate logging levels. They contain

hierarchical loggers and filters. All support NDC (Nested Diagnostic
Context), which is a design technique for loggers in multi-clients and
multi-threaded applications to separate events from clients. They can be
configured from pure text and/or XML files. They can change
configuration in runtime.
The design is copied from Java design style which is very good kind of
OO programming, but it is far from modern C++ design. The best
documentation is prepared for log4cxx library, other libraries have only
documentation of the API, and simple examples of usage.

Acknowledgement
Author would like to give thanks, in alphabetical order, to: Wiktor
Adamski, Jedrzej Dudkiewicz, Alan Griffiths, Paul Johnson, Mateusz
Loskot, Roger Orr, Ric Parkin and Piotr Wyderski for all remarks which
helped improve the code and clarify all problems.

Reference
[Josuttis99] N. M. Josuttis, The C++ Standard Library: A Tutorial and

Reference, Addison Wesley Professional, 1999.
[Sobczak (1)] http://www.msobczak.com/prog/bin/nullstream.zip
[Parashift] http://www.parashift.com/c++-faq-lite/ctors.html#faq-10.12
[Alexandrescu01] A. Alexandrescu, Modern C++ Design: Generic

Programming and Design Patterns Applied, Addison Wesley
Professional, 2001.

[Sobczak (2)] http://www.msobczak.com/prog/bin/sockets.zip
[Sobczak (3)] http://www.msobczak.com/prog/fastreams/
[Boost] http://www.boost.org/libs/iostreams/doc/index.html
[Dinkumware] http://www.dinkumware.com/manuals/

?manual=compleat&page=stdio.html#tmpnam
[Axter] http://axter.com/ezlogger/
[Apache (1)] .http://logging.apache.org/log4cxx/
[Sourceforge (1)] http://log4cpp.sourceforge.net/
[Sourceforge (2)] http://log4cplus.sourceforge.net/
[Apache (2)] http://logging.apache.org/log4j/docs/index.html
February 2007 | Overload | 23

FEATUREANDREW MARLOW
FRUCTOSE
 – a C++ Unit Test Framework
Andrew Marlow describes the developmentof FRUCTOSE
and how it is different from other unit test frameworks.
Introduction
RUCTOSE is designed to be much smaller and simpler than
frameworks such as CppUnit. It offers the ability to quickly create
small standalone programs that produce output on standard out and

that can be driven by the command line. The idea is that by using command
line options to control which tests are run, the level of verbosity and
whether or not the first error is fatal, it will be easier to develop classes in
conjunction with their test harness. This makes FRUCTOSE an aid to Test
Driven Development (TDD). This is a slightly different way of
approaching unit test frameworks. Most other frameworks seem to assume
the class has already been designed and coded and that the test framework
is to be used to run some tests as part of the overnight build regime. Whilst
FRUCTOSE can be used in this way, it is hoped that the class and its tests
will be developed at the same time.
A simple unit test framework should be concerned with just the functions
being tested (they do not have to be class member functions although they
typically will be) and the collection of functions the developer has to write
to get those tests done. These latter functions can be grouped into a testing
class. This article shows by example how this testing class is typically
written and what facilities are available.
There are certain kinds of assertion tests that are useful for any unit test
framework to offer. This article discusses those and how they are offered
by FRUCTOSE. In particular, FRUCTOSE offers loop assertion macros.
These are designed to be used in tests that use static tables for their test
data. An assertion failure from test data needs to report not only the line
of code that contains the assertion but also the line from the test data table.
FRUCTOSE has been developed as free software [FSF]. This meant
chosing an appropriate licence for it. The intent is to have a licence that is
non-product specific with an element of copyleft but that still allows
FRUCTOSE to be used in proprietary software. The licence chosen was
the LGPL license (Lesser General Public License). The weaker copyleft
provision of the LGPL allows FRUCTOSE to be used in proprietary
software because the LGPL allows a program to be linked with non-free
modules. A proprietary project can use FRUCTOSE to unit test its
proprietary classes and does not have to release those classes under the
GPL or LGPL. However, if such a project releases a modified version of
FRUCTOSE then it must do so under the terms of LGPL. In the search for
a suitable license the LGPL was the winner by default. It is the only licence
listed on the Free Software Foundation’s web site that is non-product
specific and a GPL-compatible free software licence that has some
copyleft provision.

Why another C++ unit test framework?
When I first started to look seriously at C++ unit testing, I looked at
CppUnit. Conventional wisdom said to build on the work of others rather
than reinvent a framework, and here was an established one which was
itself built on the work of JUnit. The feature list is impressive and it looked
like it would be mature enough to give a trouble-free build and be usable
right away. Unfortunately, this proved not to be the case. A quick search
of sourceforge reveals that there are a few products for C++ unit testing.

These also turn out to have issues of their own (discussed later). In
October’s issue of Overload, there is an article by Peter Sommerlad on a
C++ unit testing framework called CUTE [CUTE]. This article also
mentions that there are issues with using CppUnit and that some
developers want something else that is smaller and simpler. However, at
the time I started this article CUTE was not available online and Peter was
too busy to work on a collaboration. This provided the motivation for me
to write something that is driven by the same need expressed in the CUTE
article (smaller and simpler than CppUnit). There are some important
differences between FRUCTOSE and CUTE. FRUCTOSE avoids two
significant dependencies; one on Boost and the other on platform-specfic
RTTI.

The FRUCTOSE approach
FRUCTOSE has a simple objective: provide enough functionality such
that the developer can produce one standalone command line driven
program per implementation file (usually one class per file). This means
that most FRUCTOSE programs will use only two classes; the test class
and the class being tested. This means that, unlike other test frameworks,
FRUCTOSE is not designed to be extensible. It was felt that the flexibility
of other frameworks comes at the cost of increased size and complexity.
Most other frameworks expect the developer to derive other classes from
the framework ones to modify or specialise behavour in some way, e.g. to
provide HTML output instead of simple TTY output. They also provide
the ability to run multiple suites. FRUCTOSE does not offer this. The test
harness is expected to simply consist of a test class with its test functions
defined inline, then a brief main function to register those functions with
test names and run them with any command line options.

The Curiously Recurring Template Pattern (CRTP)
Having said that FRUCTOSE is smaller and simpler than other
frameworks, I have to confess that when one writes a test class that is to
be used with FRUCTOSE, the the test class needs to inherit from a
FRUCTOSE base class. Not all test frameworks require inheritance to be
used but FRUCTOSE does. Also the style of inheritance employs a pattern
that some people may not have seen before. It is known as the Curiously
Recurring Template Pattern (CRTP) [Vandevoorde and Josuttis]. CRTP
is where one inherits from a template base class whose template parameter
is the derived class. This section explains why.
There is a need for machinery that can add tests to a test suite and run the
tests. This is all done by the test class inheriting from the FRUCTOSE base
class, test_base. This base class provides, amongst other things, the
function add_test, which takes the name of a test and a function that runs
that test. The functions that comprise the tests are members of the test class.

F

Andrew Marlow has been in software development for over
twenty years, placing him firmly in the category of "Grumpy
Old Programmer". He started with OS development but is now
involved in financial data feeds in the City. Contact him
through his website: http://www.andrewpetermarlow.co.uk.
February 2007 | Overload | 24

FEATUREANDREW MARLOW

The authors of some test frameworks feel
that the requirement for a test class to have

to inherit from anything is unreasonable
So test_base needs to define a function that takes a member function
pointer for the test class. CRTP is used so that the base class can specify
a function signature that uses the derived class.
Suppose our test class is called simpletest. Its declaration would start
like this:
 struct simpletest :
 public fructose::test_base<simpletest> {
 :
 :

Let’s see how this works: test_base names its template parameter
test_container (it is the class that contains the tests). test_base
dec l a r e s t he t ypede f test_case exp re s se d i n t e rms o f
test_container:
 typedef void (test_container::*test_case)
 (const std::string&);

This enables it to declare add_test to take a parameter of type
test_case. test_base maintains a map of test case function pointers,
keyed by test name. The declaration for this map is:
 std::map<std::string, test_case> m_tests;

The declaration of the add_test fuction is:
 void add_test(const std::string& name,
 test_case the_test);

Listing 1 is an example of a complete test harness, showing how the use
of CRTP means the test cases are defined in the test class and registered
using add_test.

Named tests and command line options
The example in the previous section shows that tests are named when they
are registered but the example does not actually make any practical use of

this. Using the run() function above, all registered tests are run.
FRUCTOSE does provide a way to select which tests are run via command
line options. Basically, the names of the tests are given on the command
line. This is done by using the overloaded function int run(int argc,
char* argv[]);.
The Open Source library TCLAP is used to parse the command line
[TCLAP]. The command line is considered to consist of optional
parameters followed by an optional list of test names. During parsing,
TCLAP sets various private data members according to the flags seen on
the command line. These flags are available via accessors such as
verbose(). This is another reason why the test class has to inherit from
a base class. It provides access to these flags.

To inherit or not to inherit
The authors of some test frameworks feel that the requirement for a test
class to have to inherit from anything is unreasonable. It it said that such
a requirement makes the test framework hard to use and causes undesirable
coupling between the test class and the framework. FRUCTOSE has
several things to say in response to this:

Some test frameworks that employ inheritance may be hard to use
(e.g. CppUnit) but it does not follow that inheritance is the cause.
Some frameworks have just become large and complex during their
evolution, and offer the developer and bewildering number of
choices for the design of their test classes.
CRTP can seem slightly daunting to those that have not seen it
before. Howver, the use of CRTP by FRUCTOSE is quite simple
and is there simply to enforce that the code that does the tests is in
functions of the test class. If anyone knows of any other way to
enforce this, I would be most interested to hear from them.
FRUCTOSE applications are intended to be run as command line
programs with the ability to use various command line options that
come as part of FRUCTOSE. The test class gets this capability by
inheritance. If anyone knows of a better way to do, this I would be
most interested to hear from them.
FRUCTOSE only makes a handful of functions available. There are
add_test to register the tests and run to run them. The assertion
testing macros (discussed later) rely on a function in the base class
but that is an implementation detail that is of no concern to the
programmer. Other FRUCTOSE functionality such as the command
line options accessors is optional. Hence, the amount of coupling
between the test class and the FRUCTOSE base class is actually
quite low.
The FRUCTOSE assert macros include the test name in any
assertion failure message because the function get_test_name()
is available to any class that inherits from test_base. This is part
of what enables FRUCTOSE to have named tests. Without using
this technique it is hard to see how user-friendly test names can be
registered and used by the framework. This was a difficulty
mentioned in the CUTE article. CUTE overcame the problem byListing 1

#include "fructose/test_base.h"
const int neighbour_of_the_beast = 668;
struct simpletest :
 public fructose::test_base<simpletest> {
 void beast(const std::string& test_name) {
 fructose_assert(
 neighbour_of_the_beast == 668)
 }
};
int main(int argc, char* argv[]) {
 simpletest tests;
 tests.add_test("beast", &simpletest::beast);
 return tests.run();
}

February 2007 | Overload | 25

FEATURE ANDREW MARLOW

an assertion failure does not abort the
function from which it was invoked
using a compiler-specific demangle routine. Other frameworks just
don’t allow the user to name the tests at all.
Some of the test frameworks I have examined avoid the need for the
test class to inherit from a base class by their assert macros
expanding to a large volume of code. The sort of code these macros
expand to is the kind that FRUCTOSE places in the base class.
FRUCTOSE takes the view that in general macros should be
avoided in C++. However, FRUCTOSE does use macros for its
asserts. It does this for two reasons: first it needs to get the assertion
expression as a complete string much as the C assert facility does;
and second, it uses the __FILE__ and __LINE__ macros to report
the filename and line number at which the assert occurs. The macro
definitions are small.
Because the test class inherits from a base class to get all the
functionality required, the writer of the test harness only needs to
worry about two classes; the one being tested and the one doing the
testing. This is felt to be a great simplication compared to other
frameworks.

FRUCTOSE actually has two classes, test_base and test_root. The
user sees the former since it must be inherited from but does not see the
latter (it is an implementation detail). test_base inherits from
test_root. This is a division of labour; test_base contains code that
uses the template argument. test_root contains code that is not required
to be in a template class. The reason for this is largely historical; during
the early stages of FRUCTOSE design it came as a library that had to be
built, then linked with. test_root was in the library whilst the template
code was all in the headers and instantied at compile time. When
FRUCTOSE changed to be implemented entirely in header files (inspired
by the same approach in TCLAP), the separation of classes was retained.
It still provides a distinction between code that is required to be template
code and that which does not.
test_root contains the following:

private data members and associated accessors for the flags read
from the command line.
A private data member and associated accessor for the name of the
current test.
A count of the number of assertion errors, plus an associated
accessor and mutator.
Functions that implement most of the assertion code.
Default setup and teardown functions.

The assert macros
The FRUCTOSE assert macros are compared with the classic C assert and
the assert macros of other unit test frameworks.
First, there are a couple of minor style points about the naming of the
FRUCTOSE macros.

1. FRUCTOSE uses the namespace fructose to scope all its
externally visible symbols. Macros have global scope so they are

prepended with fructose_. This makes the naming and scoping as
consistent as possible. Too many unit test frameworks call their
main assert macro ASSERT.

2. Generally one chooses uppercase for macros in order to tip the
reader off that the token is a macro. However, where the macro is
intended to look and feel like a function call macros are sometimes
in lowercase. Well known examples include assert and
get_char. Also, toupper and tolower are sometimes
implemented as macros. The FRUCTOSE macros are expected to be
used in a similar way to the standard C assert macros and are
designed to look and behave as function calls. Hence they are in
lowercase.

The fructose_assert macro expands to a call to a function,
test_assert, which takes the boolean result of the assertion expression,
the test name (obtained via the function call get_test_name()), the
assertion expression as a string, the source filename and line number. Here
is the definition:

#define fructose_assert(X) \
 { fructose::test_root::test_assert((X), \
 get_test_name(), #X, __FILE__, __LINE__);}

The test_assert function takes no action if the condition evaluates to
true. However, when the condition is false it reports the name of the test
that failed, the filename and line number and the assertion expression. It
also increments the error report (for a final report at the end of all tests)
and optionally halts (depends on whether or not the command line option
has been specified to halt on first failure).
Note, unlike some other test frameworks, an assertion failure does not
abort the function from which it was invoked. This is deliberate. Other test
frameworks take the view that when a test fails all bets are off and the safest
thing to do is to abort. FRUCTOSE takes a different view. FRUCTOSE
assumes it is being used as part of a TDD effort where the developer will
typically be developing the class and its test harness at the same time. This
means that the developer will want to execute as many tests as possible so
he can see which pass and which fail. It also means that the developer needs
to be aware that code immediately after a FRUCTOSE assert will still be
executed so it should not rely on the previous lines having worked. One
style of writing test cases that is in keeping with this is to use a table of
test data. Each row in the table contains the input and the expected output.
This allows the test code to loop over the table performing lots of tests
without a test having to rely on successful execution of the previous test.

The FRUCTOSE command line
The following command line options come as standard for every unit test
built using FRUCTOSE:

-h[elp] provides built-in help. Not only does it produce help on
all the options here but also it names the tests available so they can
be run selectively.
26 | Overload | February 2007

FEATUREANDREW MARLOW

the user of the framework does not have to
worry about the existence of any classes

other than the one he is testing and the test
class he is testing it with
-a[ssert_fatal] causes the test harness to exit upon the first
failure. Normally the harness would continue through any assertion
failures and produce a report on the number of failed tests at the end.
The developer needs to be aware of this when coding the tests and
ensure that in a given test function that has a number of assertions,
the correct working of the tests does not depend on the assertions
passing. If the developer finds there are such dependencies these
tests should be rearranged into separately named tests. Sometimes
this is awkward to do so the flag is provided for these cases. When
this flag is enabled, the first assertion failure results in an exception
being thrown, which is caught and reported by the run function.
-v[erbose] this sets a flag which can be tested in each test
function. This allows test functions to output diagnostic trace when
the option has been enabled. This is of particular use during TDD.
The developer may find it useful to leave a certain amount of this
trace in, even when all the tests pass, in case there is a regression, as
a debugging aid.
-r[everse] reserve the sense of all assertion tests. This is
primarly of use when testing the framework itself.
The remaining command line options are taken to be test names. All
supplied test names are checked against the registered test names.
Only registered test names are allowed.

When the example program above is run with the -help option, the
following output is produced:

USAGE:

 ./example [-h] [-r] [-a] [-v] [--]
 <testNameString> ...

Where:

 -h, --help
 -h[elp]

 -r, --reverse
 -r[everse]

 -a, --assert_fatal
 -a[ssert_fatal]

 -v, --verbose
 -v[erbose]

 --, --ignore_rest
 Ignores the rest of the labeled arguments
 following this flag.

 <testNameString> (accepted multiple times)
 test names

 -verbose turns on extra trace for those tests
 that have made use of it.

 -assert_fatal is used to make the first test
 failure fatal.

 -help produces this help.

 -reverse reverses the sense of test assertions.

 It is only used to test the test framework
 itself.

 Any number of test names may be supplied on the
 command line. If the name 'all' is included then
 all tests will be run.

 Supported test names are:
 beast

The above test should pass, so to see the kind of report that is given when
a test fails, run the harness with the -reverse option. It produces the
following output:

Error: beast in ex3.cpp(6): neighbour_of_the_beast
== 668 failed.

Test driver failed: 1 error

How FRUCTOSE works
Consider the simpletest example above. The simpletest class is
referred to as the test class. This provides all the functions that do the
testing. It must inherit from test_base using the curiously recurring
template pattern (CRTP). It does this for several reasons.

1. FRUCTOSE maintains a map of function pointers for when it has to
invoke those functions. The function pointer type needs to be
declared which means establishing a calling convention.
FRUCTOSE takes the view that the function should be a member
function of the test class whose return type is void and that takes the
test name as a const std::string reference. This is enforced at
compile time by use of CRTP, which allows test_base to declare
the function pointer type using the name of the test class.

2. test_base makes the function bool verbose() const
available, which returns true if the verbose flag was given on the
command line.

3. FRUCTOSE avoids users having to know about several classes by
providing the test registration function add_test and the test
runner function, run, via the base class. It also provides an
overloaded run function that parses the command line and runs the
tests specified. These functions are not only convenient, they ensure
that the user of the framework does not have to worry about the
February 2007 | Overload | 27

FEATURE ANDREW MARLOW

FRUCTOSE is designed to work in
commercial environments as well as open
source environments
existence of any classes other than the one he is testing and the test
class he is testing it with.

It is felt by some that when a framework forces the test class to inherit from
anything this is an unreasonable requirement.
The argument says that because inheritance is very strong coupling
between classes this arrangement couples the test case too tightly to the
framework. The trouble is, there has to be some coupling between the test
class and the machinery that invokes its functions. If nothing else, the
invoking machinery must establish a call convention for the functions that
it calls.
FRUCTOSE uses a convention of the test function having the void return
type and taking a const std::string reference to the test name, which
must be called test_name (this is required by the FRUCTOSE test
macros). As another example, CUTE requires that the test function have
the void return type and have no function arguments in order that a boost
functor may be implicitly created when a test function is passed to the
CUTE macro. The CUTE approach does eliminate the coupling by
inheritance but does so at the cost of not being able to explicitly name the
test. Also, there is no particular advantage in allowing the test functions
to be unrelated. In fact one could argue that they should be all grouped in
the same test class on the principle of grouping related things together.
FRUCTOSE has the idea that tests are registered by name. The name has
to be explicitly given in the add_test function. It is not deduced from
the names or functions or the use of RTTI. This allows the test to be referred
to from the command line. The test_case class provides the registration
and command line parsing functions.

FRUCTOSE coding techniques
FRUCTOSE is designed to work in commercial environments as well as
open source environments. Commercial environments place some
constraints on the C++ coding techniques that can be used. In the
commercial world ancient compilers are still very much alive and well (for
various reasons). Also, multiple operating systems have to be supported
(Microsoft Windows and Solaris are probably the most important). This
means that the lowest common denominator approach has to be taken for
the dialect of C++ chosen. Platform-dependent RTTI, use of complex
template meta-programming, and other advanced C++ techniques were
avoided. So were dependencies upon packages that use such techniques.
FRUCTOSE achieves what it needs by simple inheritance. True, it uses
CRTP, but the main reason for this is so the function pointers it maintains
have to be functions that belong to the test class.
The STL is also used. Usage is kept very simple. Strings are always of type
std::string. The function pointers to run are held in a std::map,
keyed by test name string. The list of named tests to run is held in a
std::vector. The exception handling macros also use the standard
exception header stdexcept for things such as catching exceptions by
the standard base class, std::exception. The headers required for
these uses of the STL and standard exceptions are automatically included
by FRUCTOSE so there is no need for the test harness to include them

again. All the functions are inlined, so there is no library to link against;
just use the header files.

Assertions
Although FRUCTOSE uses words such as ‘assert’ and ‘assertions’, one
must bear in mind that these are not C-style assert statements. They do
not cause core dumps. They produce diagnostic output and increment an
error count in the event that a tested condition returns false (i.e. they are
asserting that the supplied condition should be true). They are macros and
use the __FILE__ and __LINE__ macros to show which file and line the
error occurred on. The simple case is the fructose_assert macro,
which produces an error if the supplied condition is false.
A number of other assertion macros are provided:

fructose_assert_eq(X,Y) Assert that X equals Y. If they are
not than the names of X and Y and their values are reported. This
level of detail would not be present if the developer used
fructose_assert(X == Y) instead.
fructose_assert_double_eq(X,Y) A familiy of floating
point assertions is provided. Substitute lt, gt, le, or ge for eq to
check for less than, greater than, less than or equal to and greater
than or equal to. Floating point assertions are a special case for two
reasons: first, floating point compares need to be done with
configurable relative tolerance and or absolute tolerance levels.
Second, the default left shift operator is insufficient to show enough
precision when a floating point compare has failed. The macro
family mentioned does floating point compares using default
tolerances. The macro family

 fructose_assert_double_<test>_rel_abs(
 X,Y,rel_tol,abs_tol)

provides the same tests but with the tolerances specified explicitly.
Loop assertions. Macros are provided that help the developer track
down the reason for assertion failures for data held in static tables.
What is needed in these cases in addition to the file and line number
of the assertion is the line number of the data that was tested in the
assert and the loop index. There is a family of macros for this named
fructose_loop<n>_assert, where <n> is the of looping
subscripts. For example, when the array has one subscript the macro
is fructose_loop1_assert(LN,I,X) where X is the
condition, LN is the line number of the data in the static table and I
is the loop counter. fructose_loop2_assert(LN,I,J,X)
tests condition X with loop counters I and J.
Exception assertions.The test harness may assert that a condition
should result in the throwing of an exception of a specified type. If
it does not then the assertion fails. Similarly, a harness may assert
that no exception is to be thrown upon the evaluation of a condition;
if one is then the assertion fails.
fructose_assert_exception(X,E) asserts that when the
condition X is evaluated, an exception of type E is thrown.
28 | Overload | February 2007

FEATUREANDREW MARLOW
Floating point assertions
Comparing floating point numbers for exact equality is not always reliable,
given the limitations of precision and the fact that there are some real
numbers that can be expressed precisely in decimal but not precisely in
binary. The common way around this is to compare floating point numbers
with a degree of fuzziness. If the numbers are “close enough” then they
are judged to be equal.
A common mistake that is made in fuzzy floating point comparisons is for
closeness check to be done using an absolute value for the allowed
difference between the two values. The perils of doing this are explained
in great detail in section 4.2 of The Art of Computer Programming [Knuth],
where Knuth explains how to use relative tolerances to overcome
problems. Very few unit test harnesses seem to provide much to help here.
See Listing 2 for a simple floating point compare assertion with default
tolerances.
Since PI is equal to four times arctan(1), this assertion will pass. Using
the -reverse option shows the kind of output that is produced when such
a test fails:

Error: float in ex3.cpp(8):
 M_PI == mypi (3.141592653589793e+00 ==
 3.141592653589793e+00) failed floating
point compare.

Test driver failed: 1 error

Note that the numbers are output in scientific format with the maximum
number of significant figures available in most implementations of
doubles.

Loop assertions
Consider the class multiplication which provides a function times
that returns the constructor arguments x and y multiplied together.

class multiplication {
 double m_x, m_y;
public:
 multiplication(double x, double y)
 : m_x(x), m_y(y) {};
 double times() const {return m_x * m_y; };
};

A FRUCTOSE unit test can use a table of test data of values for x and y
and the expected result: One could use the fructose_assert macro to
test that the expected value is equal to the computed value (see Listing 3).
However, this is not very useful when there is an assertion failure because
it doesn’t tell you which assertion has failed. One way is to add verbose
tracing that gives all the detail, as shown in Listing 4.

However, another way which does not rely on the verbose flag is to use
the loop assert macro family. These macros take the source line number
of the test data and loop indexes as macro parameters. The code below
shows the test modified to indicate the line of data and the loop index value.
This makes the use of the verbose flag unnecessary.

 for (unsigned int i = 0;
 i < sizeof(data)/sizeof(data[0]); ++i) {
 multiplication m(data[i].x, data[i].y);
 double result = m.times();
 fructose_loop1_assert(
 data[i].line_number, i,
 result == data[i].expected);
 }

If the code code employed an array with two dimensions and thus had
nested loops, one would use the macro:
 fructose_loop2_assert(lineNumber, i, j, assertion

Listing 3

#include "fructose/test_base.h"

struct timestest :
 public fructose::test_base<timestest> {
 void loops(const std::string& test_name) {
 static const struct {
 int line_number;
 double x, y, expected;
 } data[] = {
 { __LINE__, 3, 4, 12}
 , { __LINE__, 5.2, 6.8, 35.36}
 , { __LINE__, -8.1, -9.2, 74.52}
 , { __LINE__, 0.1, 90, 9}
 };
 for (unsigned int i = 0;
 i < sizeof(data)/sizeof(data[0]); ++i) {
 multiplication m(data[i].x,
data[i].y);
 double result = m.times();
 fructose_assert(
 result == data[i].expected);
 }
 }
};

int main(int argc, char* argv[]) {
 timestest tests;
 tests.add_test("loops",
 ×test::loops);
 return tests.run(argc, argv);
}

Listing 4

 for (unsigned int i = 0;
 i < sizeof(data)/sizeof(data[0]); ++i) {
 multiplication m(data[i].x, data[i].y);
 double result = m.times();
 if (verbose()) {
 std::cout << data[i].x
 << " * " << data[i].y
 << " got " << result
 << " expected "
 << data[i].expected
 << std::endl;
 }
 fructose_assert(
 result == data[i].expected);
 }

Listing 2

#include "fructose/test_base.h"
#include <cmath>

struct simpletest :
 public fructose::test_base<simpletest> {
 void floating(const std::string& test_name) {
 double mypi = 4.0 * std::atan(1.0);
 fructose_assert_double_eq(M_PI, mypi);
 }
};
int main(int argc, char* argv[]) {
 simpletest tests;
 tests.add_test("float", &simpletest::floating);
 return tests.run(tests.get_suite(argc, argv));
}

February 2007 | Overload | 29

FEATURE ANDREW MARLOW
No other unit test framework that was examined provides loop asserts.
These are very useful because they encourage the developer to to do
systematic testing by covering more cases more conveniently.
The convenience of loop assert testing does not mean the developer can
provide large volumes of test data just for the sake of appearing to do large
amounts of tests. It is hoped that the loop asserts will lead to an increased
use of a technique used in testing known as equivalence partitioning
[Pressman]. This is a method that divides the input domain into classes of
data from which test cases can be derived. All the data for the individual
cases in all these data classes for a given FRUCTOSE test would be in static
data table such as the one shown above. The classes would be grouped in
the table with comments to show the grouping of classes of errors. An ideal
test case uncovers a whole class of errors on its own that might otherwise
require many cases to be executed. There is another technique called
Boundary Value Analysis [Pressman], which loop asserts are well suited
to.

Exception handling
FRUCTOSE only uses exceptions to deal with errors if the
-assert_fatal flag is given on the command line. But FRUCTOSE
realises that a class being tested may throw an exception which the
developer did not expect to occur during the run of the unit test. This is
treated as a fatal error. It is caught and reported and causes the unit test to
terminate.
The developer may wish to test that certain exceptions are thrown when
they are meant to be (Listing 5). The macro
 fructose_assert_exception(X,E)
is provided for this. It asserts that during the evaluation of the condition
X, an exception of type E is thrown. If exception of a different type is
thrown, or no exception is thrown, then the assertion fails.

Setup and teardown
When FRUCTOSE was first developed it was felt that the setup and
teardown machinery offered by other frameworks would not be required.
However, it was later discovered that on relatively rare occasions it is
useful. Most of the time if any setup and teardown procedure is required
at all it is needed once at the start and finish of the program. In these cases
it can be done in the constructor and destructor of the test class. But there
will be cases where the setup and teardown need to be done for each test.
Hence, setup and teardown functions are provided as virtual functions
with an empty default implelementation in test_root. If the test class
needs to override these then it can do so by providing its own setup and

teardown functions. These get called by the run function of
test_base before and after each test invocation.

The problems with CppUnit
When I first looked into providing a unit test environment for a commercial
project I was working on, I was advised to look at Cppunit, so I did. I found
that it would not build on the Solaris development environment we had
(Forte 6.0). A port was in progress at the time but we needed something
immediately. It was too much work to do a port ourselves when we were
supposed to be using something off the shelf. We were also using a non-
standard version of the STL and had to ensure that everything we built
would build with that STL. The build procedure for CppUnit made this
awkward. These problems are very specific to the development
environment I was in. I made the recommendation that CppUnit not be
used. Some of the reasons I gave were these environment-specific reasons
but I also quoted the following reasons, which it seems have been the
experience of others:

Other people also find it hard to build. There is even a manual on the
Wiki pages explaining how to build for various platforms. It should
not be that complicated!
CppUnit is very large for a unit test framework. The tarball is over
3MB once uncompressed. Admittedly, quite a bit of this is
documentation and examples but no other C++ unit test framework
I looked at was anywhere near this size. It takes quite a while to
build it too (over four minutes on my dedicated Linux machine).
It is hard to use. That’s why there are lots of tutorials, lots of
documentation and even a cookbook, discussion forums and an
FAQ.
CppUnit is too large and complex for many people’s needs: I am
sure that the reason for this volume of documentation is that
CppUnit has a lot of functionality to offer. However, in my opinion
it does so at the cost of frightening off the developer who only needs
something simple. The number of C++ unit test frameworks that
have sprung up, all with the goal of providing something smaller,
cutdown and simpler, are a testimony to the size and complexity of
CppUnit.
Even in the simple cases, CppUnit places too many complex
requirements on the developer, particularly regarding new classes to
be written and which base classes they are supposed to inherit from.
In most of the alternatives to CppUnit, there is only one class to
inherit from (in the case of CUTE there is no need even for that). In
CppUnit there is a choice of inheriting from TestCase or
TestFixture. There are also TestRunners, TestCallers and
TestSuites to worry about.

The problems with other frameworks
My search of sourceforge revealed several C++ unit test frameworks.
However, the problem was usually that it was either for a specific
environment or it did not allow the test selection and verbose flag setting
via the command line that are so useful when doing TDD. The packages
considered include the following:

unit---- [Unit]. The Unit test aid for C++. Judging from the examples
and in the opinion of this author, unit---- is too cut-down, not
providing much of the basic functionality provided by the other
packages.
csUnit [csUnit]. It is for managed C++.
Symbian OS C++ Unit Testing Framework [Symbian]. It is only for
the Symbian operating system,
RapidoTest [Rapido]. It is for Unix only with particular emphasis on
Linux.
Mock Objects for C++ [MockObject]. It is a framework that builds
on a framework; it provides mock objects by building on either
CppUnit or cxxunit.

Listing 5

#include "fructose/test_base.h"
#include <stdexcept>
#include <vector>

struct timestest :
 public fructose::test_base<timestest> {
 void array_bounds(
 const std::string& test_name) {
 std::vector<int> v;
 v.push_back(1234);
 fructose_assert_exception(v.at(2),
 std::out_of_range);
 };
};

int main(int argc, char* argv[]) {
 timestest tests;
 tests.add_test("array_bounds",
 ×test::array_bounds);
 return tests.run(tests.run(argc, argv);
}

30 | Overload | February 2007

FEATUREANDREW MARLOW
UnitTest++ [UnitTest++]. This actually comes quite close. It is
much smaller and simpler than CppUnit and I did not encounter any
build problems. It is multi-platform. However, there is no built-in
control over which tests to run, neither can the test be identified
during the run. This is fine for overnight regression testing but is not
so good for TDD.
QuickTest [QuickTest]. This was discovered after FRUCTOSE was
released. QuickTest only consists of one very small header file with
no documentation and no examples. It’s approach has alot in
common but FRUCTOSE is slightly richer in functionality,
particularly with the test assertions than can be made and the
command line and named test features. Again, this makes it more
suitable for TDD. FRUCTOSE also comes with documentation and
a couple of examples.
CppTest [CppTest]. A slight wrinkle was found in the build
procedure – doxygen is mandory otherwise the configure script will
not produce a Makefile. Apart from that this package looked to be
quite good, more mature and than QuickTest, also with better
documentation. However, in common with QuickTest and
UnitTest++ there does not seem to be a mechanism for selecting
which tests to run, controlling verbosity and so on.
Boost test. This was avoided because of the direct dependency on
Boost. The test library has to be built in a similar way to Boost,
which is well known for having a complex Unix-centric build
procedure. Like other frameworks, Boost test has separate classes
for tests and the ability to runs the tests. It lacks the ability to name
the tests and run them selectively.

The advantages of FRUCTOSE
The main strength of FRUCTOSE compared to the packages above, is its
emphasis on its use during code development. This is via its features for
reporting in detail the test that failed, the ability to supplement this trace
with diagnostics controlled by the verbose flag on the command line, and
the ability to select tests by name and optionally fail at the first test failure.
None of the other packages provide this; their focus seems to be on running
batches of testing in an overnight run to detect regressions. FRUCTOSE
will also do that but provides the command line flexibility as well.
Another strength of FRUCTOSE is that it only has one external package
dependency. It uses TCLAP [TCLAP] for command line argument
handling. This is a very small dependency, since TCLAP is quite small and
is implemented entirely in header files. Some other frameworks have a
larger set of dependency requirements and some of these dependencies are
non-trivial. For example, some depend on Boost. Whilst Boost is
recognised to be a fine set of high-quality libraries, some projects,
particularly those in some commercial environments, do not want to
depend on it. This is for several reasons:

1. Boost does not yet build out of the box in some commercial
environments. This is the fault of the compilers, not the fault of
Boost. But sometimes a commercial project has little choice of
which compiler to use. This can be dictated by company policy, use
of other closed-source third-party C++ libraries, and/or customer
support obligations where the customer has an old compiler
environment.

2. Boost is huge and complex. This turns off many projects/companies
from looking at it and using it, even though there are many benefits.

3. If a project is already using Boost (and many are) then a unit test
framework that also uses it is not a problem. But given the
buildability issues with Boost and its size and complexity, some
projects/companies would be reluctant to be forced to use it just
because the unit test framework requires it.

Possible future work
FRUCTOSE deliberately does not provide any machinery for producing
HTML test summaries, reports, or ways of running multiple test suites. Yet
anything but the smallest projects will probably want this facility as part
of the overnight build and test regime. One way to do this would be for
FRUCTOSE to provide scripts, say in perl or python, that used some
convention for naming and grouping the test harnesses so they can be run
and the results organised into groups.
FRUCTOSE may provide some facility in the future to augment the
command line options with additional options that a developer needs for
their particular needs. For example, a harness that uses a database may
wish to pass in the database parameters (database name, machine name,
username, password). At the moment a FRUCTOSE harness would have
to find some other way to receive these parameters.
FRUCTOSE does not provide any means to assess code coverage in its
tests. There are separate tools to do this. For example, a FRUCTOSE test
harness could be run with PureCoverage to assess how much code was
exercised. Such tools do not often provide output or reports in way that
lend themselves to brief reporting via such things as an overnight build and
test run. One possible enhancement of FRUCTOSE would be to develop
scripts that work with tools like PureCoverage to give a brief summary of
which functions were called and which were not, and what the percentage
code coverage was of the functions that were called.

Conclusion
It is hoped that FRUCTOSE provides enough unit test machinery to enable
projects to develop unit tests that can be used both in overnight regression
tests and to help TDD. I welcome any feedback on the usefulness(or
otherwise) of FRUCTOSE in other projects.
FRUCTOSE’s simple implementation and cutdown approach mean that
providing anything more complex will probably be permanently outside
of the project’s scope. However, this does not mean that FRUCTOSE is
not open to changes. Any suggestions on how FRUCTOSE can be further
simplified without reducing functionality will be gratefully received. It
may be downloaded from sourceforge [FRUCTOSE].

References
[Unit] Unit---- at https://sourceforge.net/projects/unitmm
[csUnit] csUnit at https://sourceforge.net/projects/csunit
[Symbian] Symbian OS C++ Unit Testing Framework at https://

sourceforge.net/projects/symbianosunit
[Rapido] Rapido test at https://sourceforge.net/projects/rapidotest
[MockObject] Mock Objects for C++ at https://sourceforge.net/projects/

mockpp
[UnitTest++] UnitTest++ at https://sourceforge.net/projects/unittest-cpp
[QuickTest] QuickTest at https://sourceforge.net/projects/quicktest
[CppTest] CppTest at https://sourceforge.net/projects/cpptest
[TCLAP] TCLAP Templatised C++ Command Line Parser Library at

http://tclap.sourceforge.net.
[Knuth] The Art of Computer Programming, Volume 2, by Professor Don

Knuth.
[Pressman] Software Engineering; a practioners approach, by Roger

Pressman (4th Edition). Section 16.6.2.
[FRUCTOSE] FRUCTOSE at https://sourceforge.net/projects/fructose.
[CUTE] Overload 75, October 2006, CUTE.
[Vandevoorde and Josuttis] C++ Templates, The Complete Guide,

section 16.3, by Vandevoorde and Josuttis.
[FSF] The Free Software Foundation, http://www.fsf.org
February 2007 | Overload | 31

LETTERS
Letter to the Editor
Alexander Nasonov writes more on singleton.
i Alan,
I posted a reference to the Overload 76 to the C++ forum of Russian
Software Developer Network (http://www.rsdn.ru) and I have had a

few replies regarding my article. Since the article has not been reviewed,
these comments can be considered as postmortem peer reviews.
An anonymous reader replied (translated from Russian):

Why did you say nothing about the most popular Meyers singleton
where the LOCAL static variable is being used? You showed 2
most awful realizations, which nobody uses (I hope!) and it makes
little sense to speak about them. I do not see any advantages of
your realization over the Meyers singleton.

I agree that I should have discussed the Meyers singleton in the article.
Single-threaded implementation is very simple and it manages
dependencies automatically:
 Singleton& instance()
 {
 static Singleton inst;
 return inst;
 }

But it is not so simple in a multithreaded program. Although the C++
standard does not define the term ‘thread’, my experience says that, if
main() is already entered, a thread safety is often guaranteed for static
objects at namespace scope but not for local static variables. As a result,
the inst object may be initialized more than once if two threads call the
instance() simultaneously.
A naive modification of the code above:
 mutex mtx;
 Singleton& intance()
 {
 lock l(mtx); // lock mtx now, unlock in dtor
 static Singleton inst;
 return inst;
 }

would break a dependency tracking because now the instance() can’t
be called before the mtx is initialized. On POSIX platforms, it can be fixed
by using PTHREAD_MUTEX_INITIALIZER to initialize the mtx object
at static phase:
 pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
 Singleton& intance()
 {
 lock l(mtx); // lock mtx now, unlock in dtor
 static Singleton inst;
 return inst;
 }

Unfortunately, a static initializer for CRITICAL_SECTION is not
available on Windows. One has to write a wrapper but it’s not a trivial task.
This code can be optimized further using double locking technique but you
should be very careful. Refer to [DCLocking] from the references section
of the article.
Another anonymous reader wrote a test program to check a thread safety
of the Meyers singleton:
 template <typename T>
 class singleton_meyers
 {
 public:
 static T& instance()

 {
 static T obj;
 std::cout << "instance finished\n" ;;
 return obj;
 }
 };
 struct sleep_in_ctor
 {
 sleep_in_ctor()
 {
 std::cout << "ctor started\n";
 ; sleep(5);
 std::cout << "ctor finished\n";
 }
 };
 void stupid_func()
 {
 std::cout << "stupid func\n";
 singleton_meyers<sleep_in_ctor> tmp;
 tmp.instance();
 }
 int main()
 {
 boost::thread thrd1(stupid_func);
 boost::thread thrd2(stupid_func);
 thrd1.join();
 thrd2.join();
 }

Before doing thread-safety analysis, I’d like to note that this program uses
I/O (cout) and process scheduling calls (sleep). In general, these calls
should be avoided in tests that try to detect race conditions. The output is
differ depending on the version of gcc it is compiled with.

As you see, gcc 4.1 correctly initializes the instance while gcc 3.4
incorrectly initializes two instances. Starting from version 4.0, gcc
supports one-time construction API: http://www.codesourcery.com/cxx-
abi/abi.html#once-ctor.
It is on by default but you can disable it with -fno-threadsafe-
statics option. Note that it’s not a portable extension and you shouldn’t
rely on it, though it’s worth trying it out to detect recursive initialization
(refer to 6.7 [stmt.dcl], bullet 4: If control re-enters the declaration
(recursively) while the object is being initialized, the behaviour is
undefined).
To summarize the reviews, I missed one important case which can be used
in multithreaded programs if code is written properly, though it may be
slower than a solution presented in the article because synchronization is
required.

Alexander Nasonov (alexander.nasonov@gmail.com)
http://nasonov.blogspot.com, http://alnsn.livejournal.com

H

Compiled with gcc 4.1 Compiled with gcc 3.4

stupid func
 ctor started
 stupid func
 <<< 5 sec pause >>>
 ctor finished
 instance finished
 instance finished

 stupid func
 ctor started
 stupid func
 ctor started
 <<< 5 sec pause >>>
 ctor finished
 instance finished
 ctor finished
 instance finished
32 | Overload | February 2007

	The Power of Inertia
	Managing Technical Debt
	Programming - Abstraction by Design
	Exceptional Design
	C++ Trivial Logger
	FRUCTOSE - a C++ Unit Test Framework
	Letter to the Editor

