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EDITORIAL ALAN GRIFFITHS
After Four Years
After four years as editor of Overload 
it is time for a change.
Changing times
Out of curiosity I looked up the first editorial I wrote
after taking over the editorship of Overload (the June
2004 issue). By a curious coincidence this editorial
started by discussing change: I was optimistic that

software development practices are evolving and new ideas are being put
into practice. By another coincidence, the previous editorial had – like the
one before this one – been written by a guest: Mark Radford, who observed
a (less positive) tendency for organisations to try techniques that are
known to be ineffective.
After four years one might hope that evidence would be mounting to
support my view of a changing industry. I do see wider adoption of good
practices – for example I rarely have to ‘sell’ unit tests or continuous
integration. But I also see some of the same bad ideas that have been
around since they were debunked in ‘The Mythical Man-Month’. (Adding
people to a late project? It still happens, and it still makes things harder!!)
Why is change so slow? Well we are talking about changes to human
behaviour – and that happens very slowly.
Over a long time-scale things definitely do change in the software
development world – although it has spent decades trying to model
development processes into a model that assumes that correcting errors is
so expensive that it justifies elaborate and costly precautions to avoid
them. This may have been partially true once – in the 1970s I can
remember working in environments where one got one or two attempts to
compile a program each day and hand checking for code syntax errors was
an essential part of making progress towards actually executing the code.
In these circumstances, checking in advance was necessary.
Since then the technology supporting software development has changed.
The discipline of hand checking the code became obsolete decades ago,
when it became possible to run a compile and get the results faster than
checking by hand. It became far more effective to throw the code at the
compiler and deal with any diagnostics it produced.
The changes have gone further than that. In a typical modern development
environment, syntax errors are highlighted as one types and when the file
is saved the code is automatically compiled and tested: the results appear
in a moment. This leads to a mode of working where the tests and code
are developed in parallel and to some developers making the
(unsurprising) observation that if one makes the tests easy to write the
corresponding code is easy to use.

Throughout the development cycle the costs of
automation have fallen: building and testing an entire
system to a point where it can be deployed can be

automated and run at intervals ranging from every

commit to every day. Automation of deployment is also feasible with a
consequent reduction in the cost of a release over extended manual
checking and deployment.
Given this, it is hardly surprising that in software-for-use projects there is
an increasing emphasis on delivering a partial solution as early as is
feasible and regularly making incremental corrections and improvements
based on user feedback. While these practices are not yet universal – and
are less applicable to software-for-sale projects – the reduction in overall
development costs and time to deliver are driving adoption.

Another sign of the times
In the early days of desktop computers a lot of effort went into moving
data from one system to another. Even though I was working for a
company whose main business was selling furniture, developing software
for it involved writing device drivers, file transfer utilities and translators
between different data formats and character encodings. I’m sure that
mine wasn’t the only company incurring costs when dealing with
EBCDIC, ASCII line termination, national currency symbols and the like
– not really part of the core business. And as the IBM PC became popular
there were also IBM’s ‘extended’ ASCII code pages to deal with too.
On the other hand, as PCs became popular file transfer and transformation
utilities became readily available. But similar problems popped up in
another area office applications (like word processing) – each supplier
created its own incompatible format – and the developers of these must
have expended considerable effort reverse-engineering each other’s
formats and writing import and export functions. These worked
inconsistently, and if you didn’t know what someone else used then the
only reliable format was plain text (although, as noted above, there were
still issues with the character encoding).
Eventually, one of these application suites (Microsoft Office) established
dominance and its developers at least could relax and let the others worry
about reverse engineering competitors’ products. Nice for them and an
extra effort for anyone else wanting to compete in the ‘office’ market. And
that has been the case for some years now.
However, a number of other parties have reason for wanting this to change:
other software developers who want to compete in this market; other OS
vendors that want to supply desktop systems; customers who want to use
alternative products; and organisations that have a need to ensure
continued access to documents.
This conflict of interest has been focussed around Microsoft’s attempts to
get ISO to ratify its ‘Office Open XML’ standard. Ms. Geraldine Fraser-
Moleketi the South Africa Minister of Public Service and Administration
recently described [Idlelo] the situation as follows:

Alan Griffiths is an independent software developer who has been using “Agile Methods” since 
before they were called “Agile”, has been using C++ since before there was a standard, has been 
using Java since before it went server-side and is still interested in learning new stuff. His homepage 
is http://www.octopull.demon.co.uk and he can be contacted at overload@accu.org
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EDITORIALALAN GRIFFITHS
...The adoption of open standards by governments is a critical factor in
building interoperable information systems which are open, accessible,
fair and which reinforce democratic culture and good governance
practices... ODF is an open standard developed by a technical
committee within the OASIS consortium. The committee represents
multiple vendors and Free Software community groups. OASIS
submitted the standard to the International Standards Organisation in
2005 and it was adopted as an ISO standard in 2006. South Africa is
amongst a growing number of National Governments who have
adopted ODF over the past year.

This past year has been marked by a raising in the tension between the
traditional incumbent monopoly software players and the rising
champions of the Free Software movement in Africa. The flashpoints
of conflict have been particularly marked around the development and
adoption of open standards and growing concerns about software
patents...

It is unfortunate that the leading vendor of office software, which enjoys
considerable dominance in the market, chose not to participate and
support ODF in its products, but rather to develop its own competing
document standard which is now also awaiting judgement in the ISO
process. If it is successful, it is difficult to see how consumers will benefit
from these two overlapping ISO standards. I would like to appeal to
vendors to listen to the demands of consumers as well as Free Software
developers. Please work together to produce interoperable document
standards. The proliferation of multiple standards in this space is
confusing and costly.... 

An issue which poses a significant threat to the growth of an African
software development sector (both Free Software and proprietary) is
the recent pressure by certain multinational companies to file software
patents in our national and regional patent offices. Whereas open
standards and Free Software are intended to be inclusive and
encourage fair competition, patents are exclusive and anti-competitive
in their nature. Whereas there are some industries in which the
temporary monopoly granted by a patent may be justified on the
grounds of encouraging innovation, there is no reason to believe that
society benefits from such monopolies being granted for computer
program ‘inventions’. The continued growth in the quantity and quality
of Free Software illustrates that such protection is not required to drive
innovation in software. Indeed all of the current so-called developed
countries built up their considerable software industries in the absence
of patent protection for software. For those same countries to insist on
patent protection for software now is simply to place protectionist
barriers in front of new comers. As the economist, Ha-Joon Chang,
observed: having reached the top of the pile themselves they now wish
to kick away the ladder.

Between the time I’m writing this and the time you read it, the next round
in this conflict will be over: toward the end of March ISO will chose

whether to adopted Microsoft’s OOXML as a new standard by way of its
‘Fast Track’ process or not.
As you will know from past editorials, I’m of the opinion that OOXML
is not currently fit to be a standard – and my opinion hasn’t been changed
by the changes voted at the recent Ballot Resolution Meeting. As an
illustration of why I feel this way I refer you to Rob Wier’s study ‘How
many defects remain in OOXML?’ [Weir]. His conclusion (my emphasis):

That’s as far as I’ve gone. But this doesn’t look good, does it? Not only
am I finding numerous errors, these errors appear to be new ones, ones
not detected by the NB 5-month review, and as such were not
addressed in Geneva. Since I have not come across any error that
actually was fixed at the BRM, the current estimate of the defect removal
effectiveness of the Fast Track process is < 1/64 or 1.5%. That is the
upper bounds. (Confidence interval? I’ll need to check on this, but I’m
thinking this would be based on standard error of a proportion, where
SE=sqrt((p*(1-p))/N)), making our confidence interval 1.5% ± 3%) Of
course, this value will need to be adjusted as my study continues.
However, it is starting to look like the Fast Track review was very shallow
and that detected only a small percentage of the errors in the DIS.

The number of errors isn’t really surprising given the speed with which
this draft standard has been produced – we all know how hard it is to
produce accurate technical information. And a standard of this size (it is
bigger than SQL) needs a couple of years worth of review – not the few
months allowed by the Fast Track process.

Closer to home
The reason I was looking back to my first editorial during this term as
editor is that I’m giving up the role again. I’ve enjoyed my time with the
magazine, but I’m no longer moving it forward and it is time that someone
else has the opportunity to do something with it.
That someone is Ric Parkin who has been on the editorial team for some
time now and, while I disappeared on holiday, edited the October issue
last year (so he does know what he’s getting into). The team that has been
supporting me for the last year remains in place so I’m
sure that it is in good hands.
Good luck Ric!

References
[Idlelo] http://www.raffee.co.za/post/29079077
[Weir] http://www.robweir.com/blog/2008/03/how-many-defects-

remain-in-ooxml.html
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FEATURE STUART GOLODETZ
Watersheds and Waterfalls
(Part 2)
Stuart Golodetz continues his survey of algorithms 
for segmenting images into regions.
n my last article [Golodetz], I described a way of segmenting images
using the watershed transform and commented that the biggest problem
with the results was one of oversegmentation: the image gets divided

into too many regions because a region is generated for every regional
minimum in the image, regardless of whether it’s of any interest to us. The
waterfall algorithm [Marcotegui], the subject of this article, is a
hierarchical approach which attempts to solve this problem. (Readers may
wish to consult the original paper for a more detailed justification of some
of the methods involved.).

Gaussian blurring
Before we start looking at the algorithm in detail, though, it’s worth
observing that there are useful pre-processing steps we can take to reduce
the initial number of regional minima before even applying the watershed
transform. In particular, it’s well worth our time to apply a Gaussian blur
to the original image before taking its gradient. (There are other useful
things we should do here as well, but this is an area I’m still looking into.)
Gaussian blurring is essentially a form of weighted pixel averaging based
on a discrete approximation to the 2D version of the normal distribution.
Many of you will doubtless be familiar with the 1D Gaussian from
statistics:

Its 2D version can be obtained by multiplying a 1D Gaussian in the x
direction with one in the y direction:

In 1D, its graph is the familiar bell-shaped curve; in 2D, we get a bell-
shaped surface (see Figure 1).
To use this for image blurring, we form a symmetric mask (see Figure 2)
from the values of  at discrete points in a grid centred at the origin
(e.g. for a 3x3 mask, we calculate values at (-1,-1), (0,-1), (1,-1), …, (0,0),
…, (1,1)). We then normalize the mask by dividing by the sum of all the
values in it (this is done to ensure that regions of uniform intensity in the
image will be unaffected by smoothing). This procedure can be used to
generate masks of other sizes as well.
As an example (Figure 2), we’ll calculate a 3x3 mask for the 2D Gaussian

 (i.e. the Gaussian with standard deviation ). First we
calculate the values of  at the grid points (i.e. we calculate

, …,  to give us the unnormalized mask (left); then,
we normalize it by dividing through by the sum of all the values in the mask
to give the final result (right).
The actual blurring is done by what is known as convolving the image with
the mask. This basically means overlaying the mask on each pixel of the
image in turn, multiplying the value of each pixel in the mask by the value
of the pixel beneath it, summing the results and using the value thus
obtained as the value of the centre pixel in the blurred image. For the 3x3
mask with , this means that if  is the source image, 
is the mask and  is the blurred image, then:

  I'(x,y) = 0.0751 x (I(x-1,y-1) + I(x+1,y-1) + I(x-1,y+1) + I(x+1,y+1)) +
0.1238 x (I(x,y-1) + I(x,y+1) + I(x-1,y) + I(x+1,y)) +
0.2042 x I(x,y)

Introducing the Waterfall
Having talked about pre-processing, we can now turn our attentions to the
actual waterfall algorithm. The basic idea is to take the result of the
watershed transform on the gradient of the original image and use it to
produce a sequence of images by merging some adjacent regions (see
Figure 3). The waterfall algorithm produces a hierarchical sequence of
segmentations, starting from the original watershed result (far left). The
final image will eventually be a single region (not shown).
The algorithm described in [Marcotegui] works on the region adjacency
graph (RAG) of the watershed result. This is a graph with one vertex for
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the weights on the edges essentially
determine the order of region merging
each region in the watershed, and weighted edges joining adjacent regions
(see Figure 4). As we will see, the weights on the edges essentially
determine the order of region merging, and we have a number of different
options when calculating them. For now, we’ll assume that we already
have a suitably weighted graph, and focus on how to use it to iterate from
one stage in the waterfall sequence to the next.
Figure 4 shows a set of regions (left) and their region adjacency graph
(right) – note that edges to the surrounding region are not shown to make
things clearer.

The basic idea of a waterfall iteration involves doing something very like
a watershed algorithm on the RAG. First of all, we have to find the regional
minima of the graph, which in this case means its regional minimum edges
(we’ll define what we mean by this shortly). We then mark each such edge
with a different label and carefully propagate the labels to the rest of the
edges of the graph (this is an implementation of the watershed-from-
markers algorithm, where the regional minimum edges are the markers).
This induces a new labelling of the various regions, resulting in some of
the adjacent regions being merged.
In practice, we don’t run the algorithm on the RAG itself; for reasons that
are fully explained in the referenced paper, the minimum spanning tree
(MST) of the graph contains sufficient information that we can simply run
the algorithm on that, with a corresponding gain in efficiency. To briefly
recap for those who are unfamiliar with MSTs, they can be defined as
follows.

Given a graph G = (V,E,w) with vertex set V, edge set E and weight function
, the set of spanning trees ST(G) of G is the set of subgraphs of

G which are both trees (i.e. they’re acyclic) and which span G (i.e. they
contain every vertex in V): see Figure 5 for an example, which shows a
graph and one possible spanning tree for it.
A minimum spanning tree is then simply one with a minimum total cost,
i.e. a spanning tree  such that

Constructing a minimum spanning tree can be done straightforwardly
using Kruskal’s algorithm. This involves sorting the edges in the graph into
ascending order by weight, then adding the edges in ascending order to the
minimum spanning tree provided they wouldn't create a cycle and
invalidate the tree.

Data structures
To implement the waterfall efficiently, we’re going to have to learn a bit
about data structures. One of the key things we need to know about is
Tarjan’s data structure for disjoint set forests (I mentioned this briefly last
time). This structure, designed for maintaining a collection of (mutually)
disjoint sets that change over time, is widely useful and not merely
restricted to our current purposes. Indeed it’s the sort of thing that crops
up in Computer Science degree courses [Worrell]! In the previous article
and this one alone, this structure gets used during the fletching stage of the
watershed algorithm and as part of Kruskal’s algorithm, and that’s before
we’ve even mentioned its usage in maintaining the regions for the actual
waterfall algorithm itself.
The idea, then, is to represent each disjoint set as a rooted tree. Finding
which set an element is in is as simple as walking up the tree to the root.
Unioning two sets involves finding the roots of two separate trees, and
making one tree root a child of the other. For efficiency reasons, it makes
sense to keep the paths to the roots of the trees as small as possible. Two
tricks used to accomplish this are union-by-rank and path compression.
Without dwelling on the details, the first of these tries to ensure that we're
making the root of the smaller tree a child of that of the larger one, and the
second changes all the parent pointers on a path to the root to point directly

w:E Z+→

T V E′ w, ,( )= ST G( )∈

V E″ w, ,( )∀ ST G( )° w e′( ) w e″( )
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Figure 4

Figure 3

Figure 5
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In the waterfall algorithm, we use such a 
disjoint set forest to store which regions are 
connected to each other
to the root when a ‘find root’ call is made: this ensures that subsequent calls
on any element on the path will be constant time. The code to implement
all this is shown in Listing 1, which shows Tarjan’s Disjoint Set Forest.
In the waterfall algorithm, we use such a disjoint set forest to store which
regions are connected to each other. Initially, we have a tree for each region
in the watershed result; as we merge regions (see Edge Elision below), we
then union their respective trees. This makes region merging a very fast
process, since we don’t have to update the region indices for all the
individual pixels in the regions. Instead, each pixel maintains the label it

was originally given by the watershed transform: this can then be used to
look up the correct region value in the disjoint set forest associated with
any given level of the waterfall. The space savings are also noticeable:
instead of storing a full image of labels for each waterfall iteration, we need
only store the results of the watershed and a disjoint set forest for each level
of the hierarchy.
The other data structures we’ll use are for maintaining edges. The layout
is as shown in Figure 6. We maintain an array (in practice, a
std::vector) which stores all the edges we’ll be referring to (these can
either be all the edges in the RAG, or all the edges in the initial MST if we
want to be particularly space-efficient). The MST is represented as a list
of edge pointers sorted in ascending order of edge weight. Finally, we store
an edge adjacency table, which stores lists of pointers to edges which are
adjacent to each of the various regions.
Figure 6 shows the data structures used for the waterfall algorithm: some
of the pointers aren’t shown for reasons of clarity.

Step 1: Finding the Regional Minimum Edges
A regional minimum edge (RME) of a graph G is a connected subgraph
of G whose own edges have equal weight and whose adjacent edges in G
have strictly higher weights (see Figure 7).
Figure 7 shows an example graph and its RMEs (drawn as triple edges).
Note that the two edges with a weight of 1 are part of the same RME.
To find all the regional edges in the MST, we run through all the edges in
the MST and flood outwards from each one to determine (a) whether it’s
part of an RME and (b) the extent of the RME if so (see Listing 2, the
flooding algorithm for finding RMEs). We do this by maintaining two
things: an equal edges list, which holds all the edges that may form part
of the current hypothetical RME, and an adjacent edges queue, which holds

Listing 1

MAKE-SET(x)
    parent[x] ? x
    rank[x] ? 0

FIND-SET(x)
    if x ? parent[x] then
        parent[x] ? FIND-SET(parent[x])
    return parent[x]

LINK(x,y)
    if rank[x] > rank[y] then
        parent[y] ? x
    else
        parent[x] ? y
        if rank[x] = rank[y] then
            rank[y] = rank[y] + 1

UNION(x,y)
    LINK(FIND-SET(x), FIND-SET(y))

Figure 6 Figure 7
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FEATURESTUART GOLODETZ
all unprocessed edges which are adjacent to one of the aforementioned
equal edges. We process all adjacent edges one at a time. If we see a lower
edge, this isn’t an RME. If we see an equal edge, we add it to the list of
edges which may be in the RME and add its adjacent edges to the queue.
If we see a higher edge, we ignore it. If we empty the adjacent edges queue
without seeing a lower edge, we’ve found an RME, so we add it to the list,
mark all the edges in it as being part of an existing minimum (to avoid later
duplication) and continue from the top with the next MST edge.

Edge elision
In my implementation of the waterfall, no actual relabelling of the regions
is done. Instead, the same effect is achieved by merging regions via the

mechanism of eliding (i.e. removing) edges in the RAG. The process of
edge elision is slightly intricate because all the relevant data structures
need to be updated. We need to union the disjoint set forest trees associated
with the regions at either end of the edge, we need to splice the edge
adjacency lists together (thus adding the list of all the edges adjacent to
one of the regions to that of the other) and we need to do various bits of
additional housekeeping (see Listing 3, edge elision). One important step
is to mark the edge as elided, so that it can be removed from the MST in
Step 4 of the algorithm (see below).

Step 2: Eliding the RMEs
Having found the RMEs in Step 1 (above), the next part of the actual
algorithm is to elide them. This is done as an alternative to assigning them
all the same label (as per the original waterfall description).

Step 3: Marker propagation
Once we’ve ‘labelled’ the marker regions by eliding all the RMEs
connecting them, the next step is to propagate the markers to the rest of
the MST using a flooding process, at each stage processing an adjacent
edge with lowest cost. The ideal data structure for this is a priority queue.
The algorithm (see Listing 4, marker propagation) works as follows: we
initialise the queue with any edges which are adjacent to RMEs and mark
the regions joined by the RMEs as already processed. We then repeatedly
pop the lowest cost edge from the queue, merging the regions it connects
if one of them is unmarked, and ignoring it otherwise. If an edge is elided,
its own adjacent edges are also added to the queue.

Listing 2

Vector<EdgeList> rmeArray;

foreach(Edge startEdge   mst)
  // The edge is already part of a regional
  // minimum edge. If we processed it, we'd
  // end up duplicating that minimum edge,
  // so skip over it.
  if(startEdge->minimum) continue;

  // Maintain a list of equally-valued edges
  // which may form part of the same RME.
  EdgeList equalEdges;
  EdgeQueue adjacentEdges;

  // Maintain a queue of pending edges so they
  // can be unmarked again later.
  EdgeQueue pendingEdges;

  // Mark the initial edge to ensure it isn't
  // wrongly identified as being adjacent to
  // itself.
  startEdge->pending = true;
  pendingEdges.push(startEdge);

  add_adjacent_edges(startEdge,
                     adjacentEdges,
                     pendingEdges);

  bool isMinimum = true;
  while(!adjacentEdges.empty())
    Edge adjacent = adjacentEdges.pop();
    if(adjacent->value < startEdge->value)
      // If its value is less than the start
      // edge, then the start edge is not a
      // minimum.
      isMinimum = false;
      break;
    elseif(adjacent->value == startEdge->value)
      equalEdges.push_back(adjacent);
      add_adjacent_edges(adjacent,
                         adjacentEdges,
                         pendingEdges);

  // Unmark all the pending edges.
  while(!pendingEdges.empty())
    Edge e = pendingEdges.pop();
    e->pending = false;

  if(isMinimum)
    // Add the start edge to the list now that
    // we know we've found a minimum.
    equalEdges.push_front(startEdge);
    for(Edge e   equalEdges)
      e->minimum = true;
    rmeArray.push_back(equalEdges);

Listing 3

ELIDE-EDGE(e)

unsigned int u = e->u;
unsigned int v = e->v;

unsigned int setU = forest.find_set(u);
unsigned int setV = forest.find_set(v);

forest.union_nodes(u, v);

// Mark the edge as elided for when we come to
// later rebuild the MST.
e->value = -1;

// forest.find_set(u) == forest.find_set(v)
unsigned int parent = forest.find_set(u);

// Add all the edges adjacent to the child
// regions to the parent region in the
// adjacency table.
EdgeList parentList = adjacencyTable[parent];
if(setU != parent)
  parentList.splice(parentList.end(),
                    adjacencyTable[setU]);
if(setV != parent)
  parentList.splice(parentList.end(),
                    adjacencyTable[setV]);

// Remove the elided edge from the parent list.
parentList.remove(e);

// Update the region values.
Value parentValue = forest.value_of(parent);
Value uValue = forest.value_of(setU);
Value vValue = forest.value_of(setV);
if(uValue > parentValue) parentValue = uValue;
if(vValue > parentValue) parentValue = vValue;
April 2008 | Overload | 7



FEATURE STUART GOLODETZ
Step 4: Rebuilding the MST
The final step of the algorithm is to rebuild the MST so that it’s ready for
the next waterfall iteration. This turns out to be an almost trivial process,
since we just have to remove any elided edges from the tree. Since we
carefully marked them all with a value of -1 when they were elided, all we
have to do is run through the list representing the MST and remove any
edges whose value is -1 (in C++, this can be handled extremely simply
using a remove_if call).

Edge valuations
One issue we haven’t yet touched on is how to generate suitable weights
for the edges of the region adjacency graph. Since these weights determine
the order of region merging, they have a substantial effect on the output
of the whole algorithm, so it’s important to choose them carefully.
There are a number of different options available. The simplest approach,
known as lowest pass, valuates each edge with the height of the lowest pass
point on the border between the regions it joins. One advantage of this
method is that it’s easy to calculate: you just run through all the pixels in
the watershed result, find any border pixels (pixels which have at least one
neighbour with a different label) and update the lowest pass between any
two regions as necessary.
Lowest pass isn’t always the best method to use, however, and several
other sensible valuations have been proposed. These generally focus on the
idea of dynamics, which involves thinking about either the height (contrast
dynamics), the surface area (area dynamics) or the volume (volume
dynamics) of the water in the catchment basins of the adjacent regions at
the point when they would meet during the flooding process (i.e. the point
where a watershed is built to keep them apart). These all produce different
results and some experimentation is needed to see which may be the most
appropriate in a given situation. Another interesting valuation can be found
in [Climent], where the authors use some knowledge about the human
perception of shapes to define a dynamic which (on their test images at
any rate) produces more visually-pleasing results than (in particular) the
volume dynamic, with which they contrast it.
My own work is currently using lowest pass, but I plan to experiment
further with the other valuations in due course.

Conclusion
From my own experiments with the waterfall algorithm, I can attest to the
fact that the results of waterfall segmentation seem to be much more useful
than the original watershed result. It’s not that any particular image in the
waterfall sequence gives us the ideal segmentation: that would be far too
easy. What the waterfall does give us is a lot of connected regions (in the
various different images in the sequence) to work with further. With these
results, we can go on to use region analysis and classification strategies to
identify which regions in the various waterfall iterations correspond to
features of interest in our original image. Waterfall thus takes us one step
closer to our original goal of automatic segmentation. How to do the actual
region analysis and classification is still a research problem, but one I hope
to continue working on in the near future.
Till next time... 
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Listing 4

// Flags indicating whether a region has been
// marked or not.
Vector<char> markedRegion(forest.node_count());

PriorityQueue<Edge> pq;
EdgeQueue pendingEdges;

// Add all the edges adjacent to RMEs to the
// priority queue.
foreach(EdgeList rme   rmeArray)
  foreach(Edge e   rme)
    add_adjacent_edges(e, pq, pendingEdges);
    int setU = forest.find_set(e->u);
    int setV = forest.find_set(e->v);
    markedRegion[setU] = 1;
    markedRegion[setV] = 1;

// Process each edge in ascending order of
// value, adding adjacent edges to the priority
// queue each time.
while(!pq.empty())
  Edge e = pq.pop();

  int setU = forest.find_set(e->u);
  int setV = forest.find_set(e->v);

  // If this region connects a marked region to
  // an unmarked one, it needs processing.
  // Otherwise it should be ignored. Note that
  // because of the way the propagation works,
  // any edge will either connect a marked
  // region to an unmarked one, or it will
  // connect two marked regions.
  if(!markedRegion[setU] || !markedRegion[setV])
    ELIDE-EDGE(e);
    markedRegion[setU] = 1;
    markedRegion[setV] = 1;
    add_adjacent_edges(e, pq, pendingEdges);

// Unmark all the pending edges.
while(!pendingEdges.empty())
  Edge e = pendingEdges.pop();
  e->pending = false;
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FEATURERICHARD HARRIS
The Model Student:
A Knotty Problem, Part 1
Richard Harris explores more of the mathematics 
of modelling problems with computers.
f there’s one thing that’s guaranteed to irritate me, it’s headphones. I
don’t mean the continual tinny noise pollution that thoughtless public
transport patrons inevitably inflict upon their unfortunate fellow

passengers; I’m far too busy inflicting my own tinny noise pollution on
them to pay it any heed. No, I refer instead to their annoying tendency to
tie themselves up in knots at every conceivable opportunity. As foolish as
it is to anthropomorphise, I can’t help but suspect that they are possessed
of a demonic nature; that they will not rest until they have damned all of
humanity to an eternal tortured state of minor inconvenience.
It’s not just headphones either. If anything, fairy lights are even more
belligerent. It seems that no matter how carefully I pack them away with
the other Christmas decorations they will, 11 months or so later, have
contrived to rearrange themselves into a tangle of Gordian complexity.
Thus far I have resisted the temptation to assume the mantle of Alexander
and take a pair of scissors to the blasted things; I suppose that it’s only a
matter of time before I succumb.
I am not alone in my frustration. Jerome K. Jerome [Jerome89] made the
same observation of tow-lines as long ago as 1889:

There may be tow-lines that are a credit to their profession –
conscientious, respectable tow-lines – tow-lines that do not imagine
that they are crotchet-work, and try to knit themselves up into
antimacassars the instant they are left to themselves. I say there
may be such tow-lines; I sincerely hope there are. But I have not
met with them.

So are I and my illustrious forebears suffering from an overactive
imagination or do we really live in a universe in which strings and cables
spontaneously tie themselves into knots?
Believe it or not, there is an entire field of mathematics dedicated to the
study and classification of knots that does, in fact, have something to say
on the matter (Brian Hayes [Hayes] has an interesting discussion on the
subject of random closed knots). Unfortunately, it’s an extremely difficult
subject. So much so that even determining whether or not two knots are
equivalent is still an unsolved problem.
Whilst knot theory would certainly shed a great deal of light upon the
subject, I’m afraid I might sprain something trying to understand it.
Instead, I shall propose a simpler model which, with luck, won’t cause me
any permanent injury.
That model is a random walk.
Generally speaking, a random walk is a sequence generated by a series of
random steps from some given starting position. In this case, we will model
a string as a chain of finitely sized inflexible links. We can divide the two
dimensional surface onto which we lower it, a table for example, into a
discrete grid. We can then hypothesise that each link will occupy the
location of the previous link or of one of its eight neighbours with equal
probability, as illustrated in figure 1 (which shows the candidate steps in
a two dimensional random walk). Figure 2 illustrates one such walk (a 9-
step random walk).
The properties of random walks have been studied for a great many years
since they are, in the continuous limit, the mathematical model for

Brownian motion. This is the random motion of tiny particles suspended
in liquid or gas named after Robert Brown who observed it for pollen grains
floating in water in 1827 [Brown28]. Some fifty years later, the
mathematics of Brownian motion was described by Thorvald Thiele
[Thiele80]. Since then it has been a subject of great interest to
mathematicians and physicists, and more recently financiers. The latter has
grown into a lucrative field since there are strong theoretical arguments
that share prices exhibit a form of Brownian motion [Bachelier00, Hull05].
The relationship between random walks and knots has not escaped the
attention of mathematicians. Nechaev [Nechaev98] provides a thorough
review of the current state of the art, a state which I must admit is
sufficiently advanced that I am reticent to tackle it.

I

Richard Harris  has been a professional programmer since 
1996. He has a background in Artificial Intelligence and 
numerical computing and is currently employed writing 
software for financial regulation.

Figure 1

Figure 2
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each time the cable crosses itself it is 
presented with an opportunity to tangle
So how should an amateur like me relate random walks to the question at
hand? Well, each time the cable crosses itself it is presented with an
opportunity to tangle. In my experience cables are loathe to pass up such
opportunities lightly, so the number of self crossings should hopefully give
some insight into their tendency to become knotted. 
The obvious way to measure the number of self crossings is to generate
every possible walk of a given length and simply count the number of times
each of them crossed itself, or other words returns to a point it has already
visited. Equally obvious is that this will be extremely computationally
expensive. Since each step has nine possible outcomes, a walk of n steps
will have a total of 9n distinct outcomes.
Nevertheless, it’s worth pursuing since it leads to some interesting C++.
Before we start we’ll need some classes to manage the random walks and
keep track of the number of crossings. Let’s start with a class to represent
a position on the planar grid. Listing 1 shows a class to represent a position
in a random walk.
The important features of this class are that it supports moving from one
position to another with the move member function and that it defines a
strict weak ordering with operator<, making it possible to use it as a key
in a std::set or std::map.

Their implementation is fairly simple, the only trap being ensuring that
operator< is a strict weak ordering. We can ensure this by making it a
lexicographical comparison. Note that this has no real mathematical
meaning and serves only to make position compatible with associative
containers. Listing 2 shows an implementation of move and comparison.
Once again, we’ll need a histogram to keep track of the number of self
crossings of the random walks. The histogram shall assume that every self
crossing results in a knot, thus measuring the worst possible outcome.
Apart from some of the names, this is pretty much identical to the one we
used for the travelling salesman problem.
Listing 3 shows a class to maintain a histogram of knots. Again, most of
the member functions are straightforward. The constructors are amongst

Listing 1

namespace knots
{
  class position
  {
  public:
    position();
    position(long x, long y);
    position move(long dx, long dy) const;
    bool     operator<(const position &rhs) const;
    bool     operator==(const position &rhs) const;
  private:
    long x_;
    long y_;
  };
}

Listing 2

knots::position
knots::position::move(long dx, long dy) const
{
  return position(x_+dx, y_+dy);
}
bool
knots::position::operator<(
   const position &rhs) const
{
  return x_<rhs.x_ || (x_==rhs.x_ && y_<rhs.y_);
}

Listing 3

namespace knots
{
  class knot_histogram
  {
    public:
    struct value_type
    {
      double knots;
      size_t count;
      value_type();
      value_type(double k, size_t c);
    };
    typedef std::vector<value_type>
       histogram_type;
    typedef histogram_type::const_iterator
       const_iterator;
    typedef const value_type &
       const_reference;
    typedef histogram_type::size_type
       size_type;
    knot_histogram();
    explicit knot_histogram(size_t length);
    knot_histogram(size_type buckets,
                   size_t knots_per_bucket);
    bool      empty() const;
    size_type size() const;
    size_type walk_length() const;
    const_iterator begin() const;
    const_iterator end() const;
    const_reference operator[](size_type i) const;
    const_reference at(size_type i) const;
    void add(size_t knots);
  private:
    void init();
    size_type      knots_per_bucket_;
    histogram_type histogram_;
  };
}
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We need only divide the number of knots
by the knots per bucket to identify the

correct bucket
those that require some care. Listing 4 shows construction of the knot
histogram.
By default we use one bucket per step of the walk since we know that the
maximum possible number of self crossings results from every step staying
in the same cell. As before, the init member function initialises the
buckets (Listing 5).
This time it’s slightly simpler since we’ve forced the user to pass in the
number of knots per bucket in the histogram. Note that we’re using the
proportion of the walk that’s knotted, rather than the absolute number of

knots, as the value for the bucket. The value represents the upper bound
for the bucket in question, with the lower bound being the value of the
previous bucket, or zero for the first.
Once again we’ll be exploiting the fact that the buckets are evenly
distributed over the unit range to simplify adding a knot count to the
histogram. We need only divide the number of knots by the knots per
bucket to identify the correct bucket.
If we were to do this alone, however, we would have a problem with the
walk in which each of the n steps is to remain in the same location. This
would have n crossings which would lead us to attempt to access the bucket
after the last in the histogram. We therefore make a slight approximation
and ignore that walk. Naturally this introduces an error, but since it is but
one walk out of 9n it shouldn’t have a significant impact on the results.
Listing 6 shows adding a walk to the histogram. Note that we can recover
the length of the walk by simply multiplying the number of buckets by the
number of knots per bucket: 
  knots::knot_histogram::size_type
  knots::knot_histogram::walk_length() const
  {
    return size() * knots_per_bucket_;
  }

Finally, we need a way to represent a random walk and to count the number
of self crossings. Observing that each step has nine possible outcomes of
equal  probabil i ty,  we can tr ivial ly represent  a walk with a
std::vector<unsigned char> element of which contains a value in
the range zero up to and including eight.
In addition to a typedef formalising this definition of a random walk,
the following includes the declaration for a function to count the number
of crossings:
  namespace knots
  {
    typedef std::vector<unsigned char> walk;
    size_t crossings(const walk &w);
  }

The implementation of crossings needs to iterate through each
position in the walk and check whether or not it has already been
visited. Since we went out of our way to make position compatible with
std::set, it seems to be a natural choice to keep track of the visited
positions.

Listing 4

knots::knot_histogram::knot_histogram()
{
}

knots::knot_histogram::knot_histogram(
   size_t length) : knots_per_bucket_(1),
                    histogram_(length)
{
  init();
}
knots::knot_histogram::knot_histogram(
   size_type buckets, size_t knots_per_bucket) :
   knots_per_bucket_(knots_per_bucket),
                     histogram_(buckets)
{
  init();
}

Listing 5

void
knots::knot_histogram::init()
{
  if(empty()) throw std::invalid_argument("");

  histogram_type::iterator first =
     histogram_.begin();
  histogram_type::iterator last  =
     histogram_.end();
  size_t knots = 0;
  --last;

  while(first!=last)
  {
    knots += knots_per_bucket_;
    *first++ = value_type(
       double(knots)/double(walk_length()), 0);
  }

  *first = value_type(1.0, 0);
}

Listing 6

void
knots::knot_histogram::add(size_t knots)
{
  knots /= knots_per_bucket_;
  if(knots<size())   histogram_[knots].count += 1;
}
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Whilst recursion can greatly simplify the 
expression of these kinds of operations, it 
can, in some situations at least, be less 
efficient than iteration
Listing 7 shows counting the self crossings. 
The principal trick we’re exploiting to update the position as we iterate
through the walk is the use of integer division and modulus to generate
the nine distinct steps. At the risk of labouring the point, figure 3 (mapping
the step id to the offsets) illustrates how this works.

Ideally, instead of throwing an exception when a step in a walk is too large
we should create a class to represent a limited range integer and use it
instead of unsigned char. That would be a little too much work for this
article however, so I’m not going to bother.
So now we’re ready to start generating random walks and taking some
measurements. The temptation to use a recursive algorithm to generate the
full set of walks of a given length is strong; the approach is a natural fit
for this kind of problem. At each step we can iterate over every possible
move and then recursively generate the remainder of the walk. Each time
we reach the end of a walk we add the number of crossings to the histogram
to record the results. Listing 8, which calculates the histogram of self
crossings, illustrates how we might implement this.
Whilst recursion can greatly simplify the expression of these kinds of
operations, it can, in some situations at least, be less efficient than iteration.
Is it possible to express this operation succinctly with an iterative
approach?
Well, std::next_permutation provides us with a clue as to how to
go about it. It takes an iterator range and transforms it to the
lexicographically next greatest permutation of the contained values. What
we need is a next_state function that transforms the values in an iterator
range to the lexicographically next greatest set of values.
To make it as general as possible, we shouldn’t assume that the values are
integer types. We must assume a method for transforming a value to the
next greatest, however. We have a likely candidate in operator++; it

Listing 7

size_t
knots::crossings(const walk &w)
{
  size_t knots = 0;
  position p(0, 0);
  std::set<position> visited;

  walk::const_iterator first = w.begin();
  walk::const_iterator last  = w.end();

  visited.insert(p);

  while(first!=last)
  {
    if(*first>8) throw std::invalid_argument("");

    long dx = long(*first)%3 - 1;
    long dy = long(*first)/3 - 1;

    p = p.move(dx, dy);
    if(!visited.insert(p).second) ++knots;
    ++first;
  }

  return knots;
}

Figure 3

step step%3-1 step/3-1

0 -1 -1

1 0 -1

2 1 -1

3 -1 0

4 0 0

5 1 0

6 -1 1

7 0 1

8 1 1

Listing 8

void
knots::full_crossings(
   walk &w, knot_histogram &h, size_t n)
{
  if(n==w.size())
  {
    h.add(crossings(w));
  }
  else
  {
    for(size_t i=0;i!=9;++i)
    {
      w[n] = i;
      full_crossings(w, h, n+1);
    }
  }
}

void
knots::full_crossings(knot_histogram &h)
{
  walk w(h.walk_length());
  full_crossings(w, h, 0);
}
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the complexity arises from setting up the
digits and printing out the states rather than

from iterating through them
already does what we need for integer types and can be overloaded for user
defined classes. If overloading is not appropriate, perhaps the state
transformation is too computationally expensive or our state is formed
from classes that we cannot modify, we could instead use iterators into a
container of states.
So how should the algorithm operate? Well, we need simply observe that
iterating through a set of states is equivalent to counting through a set of
integers. Each time a digit takes its maximum value, or upper bound, we
set it to its minimum value, or lower bound, and perform a carry; i.e.
increment the next most significant digit.
We begin with a helper function to increment a digit and indicate whether
or not we need to carry. Listing 9 shows rotating a digit of the state.
Given this we need only take care that the carry operation ripples through
the iterator range correctly. Listing 10 shows generating the next state.
All of the work is done in the while statement. We iterate backwards
through the range, rotating the state for as long as we need to carry. If we
have reached the first digit and it has been rotated back to the lower bound,

we have reached the state in which every digit has the
minimum value. Assuming that this was the starting
state, have exhausted all possible states and return
false to indicate this.
Note that we pass in the lower and upper bounds in
decreasing order. This is because there is a reasonable
value for the lower bound, namely the default
constructed value. Note that built in types will be zero
initialised which is very likely to be what we want for
integer valued states.
Listing 11 illustrates the use of next_state for states with integer valued
digits and Figure 4 illustrates the output from this code snippet.

Listing 12 illustrates the more complex task of iterating
through states with a compound type for its digits, in this
case std::string. As discussed earlier, if we store the
set of digits in a container we can use iterators to
represent the current value of a digit. The output of
Listing 12 is shown in Figure 5.
As can be seen, the complexity arises from setting up the
digits and printing out the states rather than from iterating
through them, which remains as simple as it was in the
integer case.
Rewriting full_crossings to exploit next_state
is relatively straightforward. If anything, it’s even
simpler now than it was with a recursive implementation.

Listing 9

template<class BidIt, class T>
bool
rotate_state(BidIt it, const T &lb, const T &ub)
{
  bool last = ++*it==ub;
  if(last) *it=lb;
  return last;
}

Listing 10

template<class BidIt, class T>
bool
next_state(BidIt first, BidIt last,
           const T &ub, const T &lb = T())

  BidIt it = last;
  while(it!=first && rotate_state(--it, lb, ub));
  return first!=last && (it!=first || *it!=lb);
}

Listing 11

std::vector<int> state(3, 0);
std::ostream_iterator<int> out(std::cout);

do
{
  std::copy(state.begin(), state.end(), out);
  std::cout << std::endl;
}
while(next_state(state.begin(), state.end(), 2));

Figure 4

000
001
010
011
100
101
110
111

Listing 12

typedef std::vector<std::string> digits_type;
typedef std::vector<
   digits_type::const_iterator> state_type;

digits_type digits(3);
digits[0] = " ";
digits[1] = "o";
digits[2] = "x";

state_type state(2, digits.begin());
std::cout << "12" << std::endl;

do
{
  state_type::const_iterator first = 
state.begin();
  state_type::const_iterator last  = state.end();

  while(first!=last) std::cout << **first++;
  std::cout << std::endl;
}
while(next_state(state.begin(), state.end(),
                 digits.end(), digits.begin()));

Figure 5

12

 o
 x
o
oo
ox
x
xo
xx
April 2008 | Overload | 13



FEATURE RICHARD HARRIS

I shall continue to use the iterative 
approach because of the surprising fact 
that it actually simplifies the code
Listing 13 shows calculating the histogram of self crossings.
But is it any more efficient?
Sadly, not very much so, as Figure 6, which shows the computational
expense of generating knot histograms, clearly illustrates.
So why not? Could it be that the cost of counting the number of self
crossings vastly outweighs the cost of recursively constructing the walk;
the use of std::set to keep track of the visited locations results in
O(n ln n) complexity for n crossings. Or perhaps that my compiler and the
hardware I’m using are able to mitigate the cost of recursion that I recall
from my youth.
Actually, no.
Had I profiled the code in the first place as did one of the reviewers (thanks
Roger), I’d have noticed that most of the time is spent inserting and erasing
elements from std::set. Unfortunately I’ve not given myself enough
time to replace std::set with something more efficient.
However, I shall continue to use the iterative approach because of the
surprising fact that it actually simplifies the code.
So what do the histograms look like? Figure 7 shows the results for
exhaustive enumeration of walks of lengths from six to nine steps. Before
looking at them, it’s worth pointing out again that our histogram records

the number of knots as a proportion of the length of the walk, so the
histograms will record counts from 0.0 to 1.0.
So how are the knots distributed? Is there a standard statistical distribution
that describes them? Well, I have my suspicions, but before we can check
them we need to know the average, or mean, number of knots for a walk
of a given length.
We can calculate the observed mean number of crossings directly from
these histograms. Firstly we should note that the walks recorded in each
bucket are those with lengths less than the label, but greater than or equal
to that of the previous bucket. For these short walks, we have one knot
count per bucket, so the number of knots must be the previous bucket’s
value and zero for the first bucket.
To calculate the mean, we simply add up the proportion of the walks in
each bucket multiplied by the number of knots it represents. Recall that
the mean is defined as the expected number of knots and that we use E(x)
to denote the expected value of x.

As pointed out above, we’re ignoring the walk with the maximum number
of knots, so there are only 9n-1 walks.
The results of this calculation are given in Figure 8, which shows the
expected proportional number of knots for walks of length 6, 7, 8 and 9.
So can we deduce an explicit, or closed form, formula for the expected
number of knots? Well, we shall have a go at it next time. 
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Listing 13

void
knots::full_crossings(knot_histogram &h)
{
  if(h.walk_length())
  {
    walk w(h.walk_length(), 0);
    h.add(crossings(w));

    while(next_state(w.begin(), w.end(), 9))
    {
      h.add(crossings(w));
    }
  }
}

Figure 6

n recursed time (seconds iterated time (seconds)

5 0.17 0.17

6 1.80 1.69

7 17.80 16.89

8 175.56 167.51

9 1701.56 1650.41
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.

n E(knots)/n

6 0.2492

7 0.2623

8 0.2737

9 0.2837

Figure 7
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The Way of the Consultant
Effective communication is a challenging reponsibility of 
the communicator – Teedy Deigh offers some 
observations on how consultants can meet this challenge.
s with many other skills in life, there are different levels of mastery
and achievement in reviewing things such as code, architecture or
development process. At the pinnacle of achievement is the master

level of consultant, where the meaning of any statement is shrouded in deep
mystery, opportunistic ambiguity, tenebrous circumlocution and
consultancy fees.
But how can one distinguish between the different levels? Consider the
following response to a questionable system implementation:

What do I think? This code sucks!

Although brief and honest, it is clearly the response of someone who has
not even been initiated on the path. The following, however, shows some
promise, but no more than that of an infant Padawan:

What do I think? Well... it’s not all bad! Nothing that some
aggressive, merciless and inconsiderate refactoring couldn’t solve.

By contrast the following response demonstrates a superior command of
the panoply of techniques involved in consultancy:

What do I think? Although there are aspects of the system’s design
that are sound, the solution as a whole may be better aligned with
the needs of the business by leveraging the synergies of
complementary solution paths. The resulting amelioration of quality

will be further enhanced by the displacement of vestigial solution
components extant from the status quo.

Only when the other person looks completely perplexed, appears
hypnotised, has fallen asleep or has wandered off, can one know that they
have ascended to an introductory level of mastery. The principal
consultant, however, is one who has passed through the gate without even
bothering to shut it once through. A true Jedi master of consultancy is able
to present a dazzling array of possibilities with the swiftness of a light
sabre, the sharpness of an Overload reviewer’s feedback and the simplicity
of a US President:

What do I think? It depends.

Here ends the lessen (sic). 

A

Following the valuable insights and success of her April 2007 
article, A Practical Form of OO Layering, Teedy Deigh has 
found herself increasingly involved in the rarefied atmosphere 
of software development consultancy. She is only too happy to 
pass off her subjective whims as sound advice, and her 
opinions as grounded in objective reality. It is almost as much 
fun as programming Singletons!
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