

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 DynamicAny, Part 1
Alex Fabijanic implements dynamic typing in C++.

10 Performitis, Part 2
Klaus Marquardt prescribes some treatments.

17 Globals, Singletons and Parameters
Bill Clare finds ways to parameterize code.

20Exceptions Make For Elegant Code
Anthony Williams compares error handling
techniques.

24 Divide and Conquer: Partition Trees and
Their Uses
Stuart Golodetz introduces a powerful data
structure.

29On Management
Allan Kelly starts a new series looking at software
management.

OVERLOAD 86

August 2008

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Richard Blundell
richard.blundell@gmail.com

Simon Farnsworth
simon@farnz.co.uk

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Paul Thomas
pthomas@spongelava.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@cthree.org

Copy deadlines
All articles intended for publication in
Overload 87 should be submitted to
the editor by 1st September 2008
and for Overload 88 by
1st November 2008.

EDITORIAL RIC PARKIN
It’s good to talk...
Writing code is only part of developing software.
Consider a typical work day – what interactions do you
have? Unless you only ever write software on your own
for your own needs exclusively, at some point you will
talk to someone. But what sort of interactions are they?
In other words, who, what, how, and how often?

For example, here are some of my own recent experiences. First thing on
Monday morning I chat with the person at the next desk about what we
did over the weekend, which morphs into a discussion about a bug we were
tackling at the end of the previous week. After a few code experiments,
we update bugzilla with what we have learned. I use skype to check with
the support team to find out how important a fix is to the customer, and
then talk with the project manager about the approaches we could use and
the risks involved. As a treat, I have a quick read of accu-general and the
newsgroups, which gets an answer to a tricky template question. After a
pub lunch with some new starters, I attend the daily stand-up team meeting
to see what everyone is up to, and update the white board with the release
schedule on it, after which I update the current branch diagram and publish
to a remote monitor so that everyone can see it. While getting a coffee I
bump into a firmware developer and check on a detail of a system we’ve
just finished that had been queried. Then it’s a scheduled code review,
where I go though my comments with the recipient, then email the details
to them. After checking my assigned bug list, I study some logs from a
customer’s machine and fix the bug, commenting in code why there had
been a problem. I get a quick review of the change before checking it in
and waiting for build server to mail everyone the build report. To round
off the day there’s a big company meeting involving Seattle ringing in and
Palo Alto on videophone to round up what’s happening in sales,
marketing, engineering, finance and HR.
The range of interactions can be remarkably diverse.
The frequency can go from constantly during an intensive pair
programming session, once a day at a team meeting, once a week at a
department or company meeting, every few months when people visit
from another office, to a one off client meeting.
The media range from a simple chat, a ‘second pair of eyes’ check of code,
a formally arranged meeting, email, newsgroups, blogs, phone call, instant
messaging, video conferencing, presentations, bug reports, debug logs,
design documents, whiteboards, code comments, check in reports.

The type of person varies too: programmers,
architects, project managers, product managers,

customer support , customers , external
contractors, sales, marketing. The immediate
usefulness of the information they have will vary

too, so the initial level of detail will often mirror the likelihood of it being
of interest, with the option of going into further detail if needed.
And there’s a time lag aspect too – a real time conversation is immediate;
email has a noticable roundtrip delay; a comment in code is often
communicating with a very important person – myself in six months time
when I’ve forgotten the details; and a debug log is a result of the
development team sending ‘help’ messages in a bottle to their future selves
trying to diagnose problems.
There’s a lot of talk going on.
I think this is for several reasons: almost always writing software is doing
something new (at least to you!), which requires generating ideas,
followed by implementing, checking, and backtracking as you try them
out; you have to find out what to do in the first place, and checking you’re
still doing the right thing as you learn; and letting people know how things
are going so that problems can be spotted and plans adjusted in a timely
manner.
Thus developing software is not so much a technical problem as a
communication one. To be succesful, all of it has to work well – you can
have the best development team in the world, deliver above spec, early,
and under budget, and yet it never gets used because despite it doing what
was asked for, that turned out to be not useful to the customer in practice.
I’ll go further – the best teams are the ones who can move information such
that the right level of detail gets to the right people at the right time. This
is a tough challenge: collecting the information, knowing who needs it, in
what form, and correctly prioritised. One of the real difficulties here is that
the answers to these questions will be different for the sender and the
recipient. Think of it as an economic problem – how to organise this
information-processing system so that the maximum value is extracted.
But things aren’t hopeless – we’ve been solving these sorts of organisation
problems since humans got together into groups, so we must have learnt
something along the way. Two key ideas are already implicit in my
commentary above – specialisation, and teams.
A good all-rounder is very useful, and essential for a successful small
company, but if you gather a group of people all of whom are experts in
their own area, they can be much more productive than the same number
of all-rounders. The downside is that a group of people now have to
cooperate to achieve a goal, and that requires coordination of aims and
delivery, and that requires communication between the members. But as
a group grows, you end up with a combinatorial problem – if everyone
talks to everyone else, the number of possible communication channels

Ric Parkin has been programming professionally for nearly 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him and is now organising the ACCU Cambridge local meetings. He can be
contacted at ric.parkin@gmail.com.
2 | Overload | August 2008

EDITORIALRIC PARKIN
explodes, so that you end up all your time talking to people and not actually
doing anything.
Some solutions are fairly natural: Organise people so they talk to the
people they need to easily, and it’s harder to talk to the others. The inputs
are from looking at the value generated from all possible interactions, and
finding which are most beneficial. This can usually be done quite
efficiently on an ad hoc basis, but a formal analysis could be an interesting
exercise. (I’m reminded of the book Notes On the Synthesis Of Form
[Alexander] which gives the mathematics of finding tractible design sub-
problems given a network of dependencies. This looks analogous to
finding the communication sub-networks of most value.)
For example, I can think of two very different ways that can work: organise
similar roles into teams then have representatives do the inter-team
communication; or do a vertical slice, where a team has representatives
from each role and they work as an almost self-contained unit. Which is
more appropriate depends on your situation, and can even be mixed.
Great, we’ve worked out our team structure, where shall we put them?
Think carefully, and compare your answer to your current structure and
locations.
I think a good rule of thumb is ‘physical proximity should reflect desired
communication intensity’. In English: be near the people you need to talk
to most. This is similar to Conway’s Law [Conway], in that the resulting
structure will reflect the relative communication channels, and that is
dominated by physical location.
As Churchill remarked, ‘First we shape our buildings and afterwards our
buildings shape us’ [Churchill43]. This was in the context of rebuilding
the Houses of Parliament, which had been damaged in a bombing raid. He
undestood that the government/opposition design of the chamber and its
inability to fit everyone in at once actively shaped the political process,
and should be retained.
New technologies warp this a little: from the telegraph to the phone to an
instant message chat, we can interact remotely, but it is a different sort of
communication to a face to face conversation. An example: in two minutes
talking to someone with a customer support issue who’d popped in to talk
to someone else, we cleared up more than the previous hour of back and
forth email.
Ah, a serendipitous ad hoc meeting! A strikingly effective communication
channel for those rare but valuable times you need to talk outside of your
normal day-to-day interactions. But these ‘chance’ meetings need some
way of being allowed to happen. A classic solution is a kitchen area with
(a good) coffee machine, water coolers, comfy seats, and whiteboards.
Steve Jobs apparently understood this, and put the Pixar bathrooms in what

initially seemed an awkward location in a central atrium so everyone could
bump into each other [Bird]. Stuart Brand also discusses building and
office design to make these things happen, and how bad buildings prevent
them [Brand94].
All these dynamics need to be understood in a successful organisation and
acted upon - the organisation should reflect the desired communication of
information value, and physical locations chosen to encourage it. And it
should be reviewed and adjusted as the world changes around you –
nothing stays the same.

Communication changes
And there are indeed changes happening in how we communicate with
you. Up till now CVu and Overload have been produced every two
months, and sent to you in one mailing. But from now on they will alternate
and you will be sent one magazine each month – the next Overload will
be delivered in October as normal, but will be followed
by CVu in November, then Overload in December etc.
While seemingly a small change, this will mean you’ll
get a magazine twice as often, but without the
information overload [sic] of two magazines to read all
at once.

References
[Alexander] Alexander, Christopher (1974) Notes on the Synthesis of

Form, Harvard University Press: USA (ISBN 0-674-62751-2).
[Bird] http://gigaom.com/2008/04/17/pixars-brad-bird-on-fostering-

innovation/
Lesson Six: Steve Jobs Says ‘Interaction = Innovation’

[Brand94] Brand, Stewart (1995) How Buildings Learn: What Happens
After They’re Built, Penguin Books (ISBN 978-0140139969).

[Churchill43] House of Commons (meeting in the House of Lords), 28
October 1943, http://www.winstonchurchill.org/i4a/pages/
index.cfm?pageid=388#Shape_our_Buildings

[Conway]: ‘Any piece of software reflects the organizational structure that
produced it.’
It was actually an observation on how committees work: http://
www.melconway.com/research/committees.html
And there’s some empirical evidence for it: http://www.hbs.edu/
research/pdf/08-039.pdf
August 2008 | Overload | 3

FEATURE ALEX FABIJANIC
DynamicAny, Part I
Alex Fabijanic presents a class hierarchy providing
dynamic typing in standard C++.

God created the integers, all the rest is the work of man.
Leopold Kronecker
ynamic and static typing are competing forces acting upon the
programming languages domain. The strong typing system, such as
the one in C++ can be a bulletproof vest or a straitjacket, depending

on the context. While C++ strong static typing is well-justified and useful,
sometimes it is convenient or even necessary to circumvent it. Over time,
various ways around it have been devised, on both high and low ends of
the abstraction spectrum1. Additionally, standard C++ offers dynamic and
static polymorphism.
Dynamic languages have no notion of variable type. Values have type,
while variables are type-agnostic. Hence, the type of a variable can change
during its lifetime, depending on the value assigned to it. Clearly, in
addition to static type-safety loss, there is also a performance penalty
associated with this convenience. There are, however, scenarios where a
relaxed, dynamic type system is a desirable feature, even in a statically
typed language like C++. An example that comes in mind first is a retrieval
of structured data from an external source. Typically, the data will arrive
in a variety of types. In a statically typed world, this implies the
requirement of knowing the exact data types at compilation time.
Additionally, every time the data types or layout changes, the code must
change as well. A way around this obstacle is through dynamic typing
support.
This article describes the approach taken by the C++ Portable Components
[POCOa] framework (‘POCO’ in further text) to implement safe and
efficient dynamic typing capabilities within the confines of standard C++.

Any
Boost Libraries [Boost] contain multiple classes meant to alleviate the
pains associated with static typing. Our focus here is on boost::any and
a solution building on its design. Through clever construction and type
erasure, boost::any is capable of storing any type. Both built-in and
user-defined types are supported. A code example of boost::any usage
is shown in Listing 1.
However, boost::any is implemented in the type-safe spirit of C++.
Run-time efficiency and strong typing are the constraints behind its design.
Although it provides a mechanism for dynamic type discovery (Listing 2.),
boost::any does not itself get involved into such activity, nor is it
willing to cooperate in implicit conversions between values of different
types. Moreover, an attempt to extract a type other than the one held, results
in either an exception being thrown or a null pointer returned (in the
manner of standard C++ dynamic_cast).
A boost::any object is really convenient when one wants to pass around
a variable of arbitrary type without having to worry about what type it
actually is. The most common use is storing diverse types in an STL

container. However, the true nature of boost::any is static and, at the
actual value extraction place, it is necessary to know precisely what type
is held inside the any. While very ‘soft’ on the assignment side, on the
extraction side boost::any is even more rigid than built-in C++ types
– it is only possible to cast it back to its original type. The boost::any
class has been ported to POCO (with some additions2), where it is known
as Poco::Any. The design of this class has served as a foundation for
development of its dynamic cousin, Poco::DynamicAny, which is the
main theme of this article.

DynamicAny
As mentioned above, Poco::Any is a handy class for storing variety of
types behind a common interface offering strongly typed cast mechanism
and support for querying the held data type. Poco::DynamicAny
extends Any functionality by providing full-blown runtime dynamic
typing functionality within an ANSI/ISO C++ compliant framework.
DynamicAny builds on the heritage of Any by adding the following
features:

runtime checked value conversion and retrieval
non-initialized state support
implicit conversion to target type when possible and safe
seamless cooperation with POD types
seamless cooperation with std::string
std::map wrapper (a.k.a. DynamicStruct)
std::vector specialization (array-like semantics support)
date/time specializations
binary large object specialization
basic JSON support.

D

Aleksandar Fabijanic Alex is a C++ and POCO enthusiast.
He is using POCO at work for industrial automation and
process control software development. Alex spends a lot of his
free time contributing, supporting and managing the project.
Contact him at alex@appinf.us

1 unions, void pointers, Microsoft COM Variant,
boost::variant, boost::any, boost::lexical_cast

2 Added RefAnyCast operators returning reference and const
reference to stored value.

Listing 1

std::list<boost::any> al;
int i = 0;
std::string s = "1";

al.push_back(i);
al.push_back(s);

Listing 2

bool isInt(const boost::any& a) {
 return a.type() == typeid(int);
}

4 | Overload | August 2008

FEATUREALEX FABIJANIC

deciding what is true or false seems like an
easy task until it is actually attempted
The class goes a long way to provide intuitive and reasonable conversion
semantics and prevent unexpected data loss, particularly when performing
narrowing or signedness conversions of numeric data types. One of the
challenges during the design process was to come up with a set of intuitive
conversion and behaviour rules. Of course, many conversions attempts
will throw an exception because they make no sense (e.g. converting
"abc" to a numeric type). Additionally, deciding what is true or false
seems like an easy task until it is actually attempted. The final verdict was
that anything resembling either explicit falsehood (string "false", bool
false) or ‘nothingness’ (empty string, integer zero, min. float value ...)
shall be false, everything else is true. This decision is compatible with
C and C++, where zero integer is false and everything else is true. Also,
"false" and "true" strings behave as expected in a case-insensitive
manner.
The rules governing the behavior of DynamicAny are3:

An attempt to convert or extract from a non-initialized (‘empty’)
DynamicAny variable shall result in an exception being thrown
Loss of signedness is not permitted for numeric values. An attempt
to convert a negative signed integer value to an unsigned integer
type storage results in an exception being thrown.
Overflow is prohibited; attempt to assign a value larger than the
target numeric type size can accommodate results in an exception
being thrown.
Precision loss, such as in conversion from floating-point types to
integers or from double to float on platforms where they differ in
size (provided double value fits in float min/max range), is
permitted.
String truncation is allowed – it is possible to convert between string
and character when string length is greater than 1. An empty string
gets converted to the char '\0', a non-empty string is truncated to
the first character.

Boolean conversions are performed as follows:
A string value "false" (not case sensitive), "0" or "" (empty
string) evaluates to false; any string not evaluating to false
evaluates to true (e.g. "hi" → true).
All integer zero values are false, everything else is true.
Floating point values equal to the minimal floating point
representation on a given platform are false, everything else is
true.

The added value and benefit of DynamicAny is in relieving the
programmer from type-related worries for all the fundamental C++ types
and some POCO framework objects. DynamicAny allows storage of
different data types and transparent conversion between them in the
fashion of dynamic languages.4

Some DynamicAny usage examples are shown in listings 3–6.
There are some conversions that require ‘workarounds’ with some
compilers as illustrated in the code snippet in Listing 65.

3 Some of the features are scheduled for the next release and are
currently available from the development code repository
[POCOb]

4 For conversion from type T1 to type T2 to be possible, a
DynamicAnyHolderImpl<T1>::convert(T2&) must be
defined.

5 The commented line does not compile with g++ (MSVC++ and
Sun Studio compile it successfully).

Listing 3

// Values are interchangeable between
// different types in a safe way
DynamicAny any("42");
int i = any; // i == 42
any = 65536;
std::string s = any; // s == "65536"
char c = any; // too big, throws RangeException

Listing 4

// Conversion operators for
// basic types are available
DynamicAny any = 10;
int i = any - 5; // i == 5
i += any; // i == 15
i = 30 / any; // i == 3
bool b = 10 == any; // b == true

Listing 5

// DynamicAny can be incremented or
// decremented when holding integral value
DynamicAny any = 10;
any++; // any == 11
--any; // any == 10
any = 1.2f; // make it float
++any; // throws InvalidArgumentException

Listing 6

// Workaround for std::string
DynamicAny any("42");
std::string s1 = any; //OK
// std::string s2(any); //g++ compile error
std::string s3(any.convert<std::string>()); //OK
August 2008 | Overload | 5

FEATURE ALEX FABIJANIC

storage and extraction of an arbitrary user-
defined type are supported out-of-the-box
DynamicAny implementation
In the manner of boost::any, storage and extraction of an arbitrary user-
defined type are supported out-of-the-box. In addition to that,
DynamicAny’s conversions are fully extensible. In order to provide the
support for conversion to other types, the DynamicAnyHolder<Type>
must be specialized for the Type with appropriate convert() function
overloads being defined.
The structure outline of the DynamicAny and DynamicAnyHolder
class hierarchy is shown in Listing 7. DynamicAny owns a pointer to

Listing 7 (cont’d)

template <typename T>
class DynamicAnyHolderImpl: public
DynamicAnyHolder
/// template for arbitrary user-defined types
{
public:
DynamicAnyHolderImpl(const T& val): _val(val) {
}~DynamicAnyHolderImpl() { }

const std::type_info& type() const
{ return typeid(T); }

DynamicAnyHolder* clone() const
{ return new DynamicAnyHolderImpl(_val); }

const T& value() const
{ return _val; }

private:
DynamicAnyHolderImpl();
// ...
T _val;
}

template <>
class DynamicAnyHolderImpl<Int8>:
public DynamicAnyHolder
/// Int8 specialization
{
public:
DynamicAnyHolderImpl(Int8 val): _val(val) { }

// ...

void convert(Int8& val) const
{ val = _val; }

void convert(Int16& val) const
{ val = _val; }

// ...

void convert(std::string& val) const
{ val = NumberFormatter::format(_val); }

// ...

private:
DynamicAnyHolderImpl();
Int8 _val;
};

Listing 7

class DynamicAny
{
public:
DynamicAny();
 /// Creates an empty DynamicAny.

template <typename T> DynamicAny(const T &val):
 _pHolder(new DynamicAnyHolderImpl<T>(val))
 /// Creates the DynamicAny from the given value.
{ }

// ...

DynamicAnyHolder* _pHolder;
};

class DynamicAnyHolder
{
public:
virtual ~DynamicAnyHolder();
// ...
virtual void convert(Int8& val) const
{ throw BadCastException(
 "Can not convert to Int8"); }

virtual void convert(Int16& val) const
{ throw BadCastException(
 "Can not convert to Int16"); }

// ...

virtual void convert(std::string& val) const
{ throw BadCastException(
 "Can not convert to string"); }

// ...
protected:
DynamicAnyHolder();
// ...
};
6 | Overload | August 2008

FEATUREALEX FABIJANIC

 it took several iterations of safe conversion
check versions to reconcile with all
supported compilers and platforms
DynamicAnyHolder. The default zero pointer indicates that variable has
not been initialized yet. In the non-initialized state, attempt for extraction
or conversion triggers an exception. At assignment time, the
DynamicAnyHolder storage is allocated on the heap and the address
stored in the pointer. The storage is automatically released at destruction
time by virtue of the C++ RAII mechanism.
Support for various data types is achieved through polymorphism –
DynamicAnyHolderImpl is a template class inheriting from
DynamicAnyHolder and only specializations of this class do the
conversion work. The direct extraction of the original data type depends
on the template and specializations having value() member function
returning the held value. Although it may be viewed as a questionable
design decision, for efficiency sake value() has intentionally not been
made virtual. This decision has provided the value extraction performance
comparable to that of boost::any.
The most commonly used data types (all fundamental data types,
std::string , std::vector<DynamicAny> , DateTime ,
Timestamp, BLOB) are specialized within the POCO framework and
ready for immediate use. The mentioned set of data types covers the
majority of cases where automatic conversion is frequently needed. All
o t h e r d a t a t yp e s a re co v e re d by t he g e n e r i c
DynamicAnyholderImpl<T> template and, like boost::any, allow
only extraction of the held type, while an attempt to convert the value
results in exception. When needed, a specialization for user-defined types
is possible. A definition of sample UDT (a social security number
formatter), with specialization and usage example code is shown in
Listing 8.
As seen in the example, DynamicAny readily holds SSN and smoothly
converts it to supported values. Assignment from DynamicAny to SSN is
also possible. DynamicAnyHolder provides the dynamic behaviour
through polymorphism by virtue of its descendant specializations – the
actual value resides in DynamicAnyHolderImpl specialization. This
value is converted through the overloaded convert() virtual function
call for the appropriate data type. Were the specializon not present, only
extraction of the original type (in the fashion of boost::any’s
any_cast functionality) would have been possible.
The main challenges encountered during the design were making
DynamicAny coexist in harmony with built-in types and compilers as well
as implementing specializations and safe conversions for most commonly
used types. The first attempt for operator overloading was template-based,
but that has proved to be painting with too broad a brush, resulting in
obscure compile errors on some platforms. To fix the problem, operators
on both sides (member and non-member ones) have been re-implemented
as overloaded functions. Also, it took several iterations of safe conversion
check versions to reconcile with all supported compilers and platforms.
The POCO community contribution in the process was instrumental.

DynamicAny in real world
Surely, all this is not without meaning [Melville51]. The code sample
shown may be a clever data formatter, but was it worth going through such

Listing 8

class SSN
 /// a user-defined type
{
public:
SSN(const SSN& ssn): _ssn(ssn._ssn) { }

SSN(const DynamicAny& da): _ssn(da) { }

operator SSN ()
{ return *this; }

std::string sSSN() const
{ return format(); }

int nSSN() const
{ return _ssn; }

private:
std::string format() const
 /// format integer as SSN
{
 std::string tmp;
 std::string str =
 NumberFormatter::format(_ssn);
 tmp.clear();
 tmp.append(str, 0, 3);
 tmp += '-';
 tmp.append(str, 3, 2);
 tmp += '-';
 tmp.append(str, 5, 4);
 return tmp;
}

int _ssn;
};

// Sample usage:

SSN udt1(123456789);
DynamicAny da = udt1;
std::string ssn = da;
std::cout << ssn << std::endl;
SSN udt2 = da;
std::cout << udt2.nSSN() << std::endl;

// Output:

123-45-6789
123456789
August 2008 | Overload | 7

FEATURE ALEX FABIJANIC

Static and dynamic data typing are
contrasting solutions, each with its own
advantages and drawbacks
effort only to provide conversion and formatting between numbers and
strings? A code snippet using DynamicAny in a realistic scenario is shown
in Listing 9. The added value that DynamicAny brings in this case is:

shield against the compile-time data type and layout knowledge
requirement
 shield against conversion data loss

To achieve the desired RecordSet capabilities, class Row was
introduced. By utilizing DynamicAny’s dynamic typing facilities, Row
conveniently wraps a row of data and, through RowIterator, works
seamlessly in conjunction with STL algorithms to provide functionality for
a flexible RecordSet class, as shown in Listing 10. The details are
outside of the scope of this article, but suffice it to say that the code shown
works for any given SQL statement (i.e. any given column count/datatype
combination) thanks to dynamic typing provided by DynamicAny.
As demonstrated in Listings 9 and 10, DynamicAny comes handy as a
‘mediator’ between type aware data storage (e.g. database) and a type

relaxed representation (e.g. web page). Displaying data from database is
easy by simply converting all the values to string and embedding them into
HTML, for example. However, the data coming back from the web page
shall all be strings. In a scenario proposed by a POCO contributor,
DynamicAny had been extended having two callback functions being
called before and after a value assignment or change. The callbacks allow
changes in the value to be instantly reflected in a XML structure and then
transformed to any representation on demand. String value coming from
a response XML could be put in a DynamicAny then bound to database
query without explicit type conversion. Full details are beyond the scope
of this article, but the basic outline is laid out in Listing 11. Currently, this
is not a part of mainstream code base and a discussion is going on about
whether and how to integrate this functionality into the framework.

Conclusion
Static and dynamic data typing are contrasting solutions, each with its own
advantages and drawbacks. While dynamic typing affects runtime
performance, in certain scenarios (e.g. fetching data from a remote
database) the performance hit is dwarfed by the time spent on other
operations.
As illustrated in the examples, DynamicAny is useful whenever
performance requirements are loose and/or data types involved are
unknown at compile time. However, as will be shown in part II of the
article, performance concern was not a design afterthought. DynamicAny
class is part of C++ Portable Components framework Foundation library
with extensive use in the Data library. Additionally, some experimenting
is underway with DynamicAny used as a ‘bridge’ between C++ and
scripting languages [POCOc].
In the next installment of this article, more details about internal
implementation of DynamicAny will be given, as well as some
comparison tests between different C++ data type conversion mechanisms
and classes.

Listing 11

// retrieve from a database
RecordSet rs(session, "SELECT Name,
 Age FROM Simpsons");
// type is known here
DynamicAny age = rs[1];
// output as string (eg. in some html)
// ...
// assign from a string (e.g. from some html form)
age = "14";
// bind, implicitly casting age to int
session <<
 "INSERT INTO Simpsons VALUES('Bart', ?)",
 use(age), now;

Listing 10

Session session("SQLite", "sample.db");
std::cout << RecordSet(session, "SELECT * FROM
Person");

// This is how streaming is achieved under
// the hood:
// copy(begin(), end(),
// ostream_iterator<Row>(cout));

Listing 9

using namespace Poco::Data::Keywords;
using Poco::Data::Session;
using Poco::Data::Statement;
using Poco::Data::RecordSet;

// create a session
Session session("SQLite", "sample.db");

// a simple query
Statement stmt(session);
stmt << "INSERT INTO Person VALUES ('Bart', 12)",
 now;

// create a RecordSet
RecordSet rs(session, "SELECT Name,
 Age FROM Person");

int i = rs[1]; // OK
std::string s = rs[1]; // OK, too
i = rs[0]; // throws, can't convert 'Bart' to int
8 | Overload | August 2008

FEATUREALEX FABIJANIC

One of the challenges during the design
process was to come up with a set of

intuitive conversion and behaviour rules
Acknowledgements
Kevlin Henney is the originator of the idea and author of the boost::any
class. Kevlin has provided valuable comments on the article.
Peter Schojer has ported boost::any to POCO, implemented major
portions of DynamicAny and provided valuable comments on the article.
Günter Obiltschnig has written majority of the POCO framework and
provided valuable comments on the article.
Laszlo Keresztfalvi has provided valuable development and testing
feedback, sample usage code as well as valuable comments on the article.

References
[Boost] Boost any library: http://www.boost.org/doc/html/any.html
[Henney00] Henney, Kevlin (2000) ‘Valued Conversions’, C++ Report,

July–August 2000.
[Melville51] Melville, Herman (1851) Moby Dick, Harper & Brothers

Publishers
[POCOa] C++ Portable Components: http://poco.sourceforge.net
[POCOb] C++ Portable Components development repository:

 http://poco.svn.sourceforge.net/viewvc/poco/
[POCOc] Poco::Script: http://poco.svn.sourceforge.net/viewvc/

poco/sandbox/Script/
[Stroustrup97] Stroustrup, Bjarne (1997) The C++ Programming

Language, Addison-Wesley.
[Sutter07] Sutter, Herb (2007) ‘Modern C++ Libraries’, Proceedings, SD

West.
August 2008 | Overload | 9

FEATURE KLAUS MARQUARDT
Performitis – Part 2
Software problems have much in common with
diseases. Klaus Marquardt has a diagnosis and
offers some treatments.
o recap, what is PERFORMITIS, or performance bloat?
Every part of the system is directly influenced by local performance
tuning measures. There is either no global performance strategy, or
it ignores other qualities of the system such as testability and
maintainability

In the first part of this article we learned about a project one would never
like to be associated with. Certainly it is more fun to read about a doomed
project than to live within one. However, PERFORMITIS is not doom, it is
a disease that can be cured.
The worst thing about PERFORMITIS is that many colleagues probably
consider it a solution rather than a problem. Performance is a key issue of
the system, and it is being cared for. Thus, when the evaluation of the
symptoms indicate that the project suffers from PERFORMITIS, it may be
wise not to spread the news bluntly. Even without naming it or any of its
non-technical implications, there are many things to do that resonate with
sound engineering practices. PERFORMITIS infected projects normally do
not follow these – but the developers should be reasonably familiar with
them, or able to understand them, so that the suffering is limited.
Does that help? Well, yes. It reduces the immediate risk: not being able to
ship at all. However, the next project likely faces similar problems. In
terms of the medical metaphor, we have then soothed the pain and treated
some symptoms, but we have not cured the disease.
While PERFORMITIS appears to be a technical diagnosis at first, its real
causes are with people and their socialization. The technical symptoms can
be attacked by some therapeutic measures or suppressed by extensive
processes. These require continued effort and can at best maintain a state
of remission. Curative therapies need to address the pathogen.

The first set of therapeutic measures addresses the technical symptoms:
MEASUREMENT-BASED TUNING can become a relief from thinking
too much about tuning up-front and in the least relevant places. Plus,
it goes together nicely with tuning attempts in later stages of
development.
Selecting the most efficient places for performance tuning is the
topic of ARCHITECTURE TUNING.
Separating the PERFORMANCE-CRITICAL COMPONENTS is the basic
architectural technique to avoid performance bloat – spreading
mediocre performance optimization techniques all over the code.

PERFORMITIS has root causes in the team culture and value system.
Looking at the techniques to apply, PERFORMITIS-infected teams may not
be willing to tackle them without intense discussion. These therapies help
to establish a broader view on technical measures:

The effort expended on performance can be limited and controlled
by explicitly assigning room for performance in the development
process. VISIBLE QUALITIES allows making a case for performance,
but opens room for other qualities as well.
In teams and organizations that do not define or assign an architect's
role, DEDICATED ARCHITECT is a prerequisite

Both therapies change the way the team cooperates and communicates.
Discussions about roles and responsibilities, and finally the way to ensure
performance and other intrinsic qualities will arise. Speaking in the tongue
of the medical metaphor, these changes cause a fever. Like an infection in
a living organism, new ideas introduced become attacked. Hot discussions
cause friction, like a fever – and finally result in a learning process that
helps to improve the balance between different system qualities.
The feverish therapies can and need to be combined with any other therapy
of choice. Apart from the stated overdose effects, no combination of the
suggested therapies can be harmful to the project. They have mutually
increasing effect. However, too many therapeutic changes at the same time
might break morale and the team structure. It is worth taking the time to
introduce one after another, and anticipate which one brings the most effect
in the current situation.

Therapy overview
Table 1, overleaf, gives an overview on the applicability of the individual
therapies, and how they can best be combined. Some medical terms are
used:

preventive – keep a disease from happening;
palliative – reducing the violence of a disease, soothing the
symptoms so that the quality of life is maximized;
remission – relief from suffering, while the disease is still present;
curative – healing from a disease.

Before treating a system with some proposed therapy, due diligence
includes learning about its mechanism, and its overdose and side effects.
The education of doctors is taken seriously.

T

There are rare systems where the absolute dominance of performance
is not pathological but a conscious and justifiable decision. Hold on a
minute – in all likelihood this is not your situation. To find out, make your
priorities of different qualities explicit as in the VISIBLE QUALITIES
therapy. Even if you are there, these technical therapies offer some
suggestions for improvement: PERFORMANCE-CRITICAL COMPONENTS,
ARCHITECTURE TUNING and MEASUREMENT-BASED TUNING.

Caveat
Klaus Marquardt is a technical manager and system architect with
Dräger Medical in Lübeck, Germany. His experience includes life
support systems and large international projects. Klaus is particularly
interested in the relations between technology, organization, people
and process. He has contributed sessions to many conferences
including OOP, JAOO, ACCU, SPA and OOPSLA. Klaus can be
contacted at pattern@kmarquardt.de
10 | Overload | August 2008

FEATUREKLAUS MARQUARDT

Whenever you think there is a problem, turn
your assumption into knowledge
Both diagnoses and therapies follow their own forms, including sections
that contribute to the medical metaphor.

With each diagnosis, symptoms and examination are discussed and
concluded by a checklist. A description of possible pathogens and the
etiology closes the diagnosis.

Each diagnosis comes with a brief explanation of applicable therapies.
This includes possible therapy combinations and treatment schemes that
combine several therapies. These are suggested starting points for a
successful treatment of the actual situation.

Therapies are measures, processes or other medications applicable to
one or several diagnoses. Their description includes problem, forces,
solution, implementation hints and an example or project report. Their
initial context is kept rather broad since most can be applied for different
diagnoses.

In addition to the common pattern elements, therapeutic measures
contain additional, optional sections of pharmaceutical information.
These are introduced by symbols:

the mechanisms of a therapy and how it works;

the involved roles and related costs;

counter indications, side and overdose effects;

cross effects when combined with other therapies.

Pattern form and approach MEASUREMENT-BASED TUNING
Applies to projects in domains that require a high system
responsiveness, especially when the team is only vaguely familiar
with the domain and its specific requirements.

Every developer knows that tuning the system for performance is
necessary. The key decisions are when to take measures, and which tuning
measures to initiate.

Measures taken early are typically most effective,
… but measures taken on assumptions instead of proper knowledge
are often inefficient and compromise other system qualities.
Being afraid is always bad advice,
… but being aware of possible problems is wise.

Therefore, measure where the actual performance bottlenecks are, and start
tuning measures there. Do not take preventive measures against assumed
performance problems. Spend your performance tuning effort where you
know it is most effective.
Whenever you think there is a problem, turn your assumption into
knowledge. Critical architectural issues can be clarified by spike solution
projects [Beck99] or prototypes [Cockburn98] with the sole purpose of
identifying the actual performance issues. These spikes are most useful
when you have established load profile scenarios or performance budgets.
Where you cannot gain knowledge for some reason, follow sound practices
and ‘proactively wait’1 [Marquardt99]. Resist the temptation to begin with
micro tuning. Instead, focus on other qualities, especially on testability and
maintainability. Most performance tuning measures on architecture or

Table 1

Applicability Effect Related therapies

MEASUREMENT-BASED TUNING Any time during the project. Palliative. Preventive when
applied early.

Works best with a DEDICATED
ARCHITECT.

ARCHITECTURE TUNING Any time during the project. Remission possible. Most successful with PERFORMANCE-
CRITICAL COMPONENTS already in place.

PERFORMANCE-CRITICAL
COMPONENTS

Early in the project. Preventive; remission possible. Works best with a DEDICATED
ARCHITECT.

VISIBLE QUALITIES Preferably early in the project. Preventive; remission possible. Works best with a DEDICATED
ARCHITECT.

DEDICATED ARCHITECT Preferably early in the project. Remission possible. Boosts the application of other therapies.

1 To apply the right amount of waiting is an important virtue of a
medical doctor. While the symptoms are not severe and the
patient does not suffer, a lot of diseases are left to mere
observation until a significant change occurs.
August 2008 | Overload | 11

FEATURE KLAUS MARQUARDT

make sure that the architecture itself helps
the system responsiveness
design level require a clear distribution of responsibilities anyway, and you
can spend the structure clean-up effort now, when it hurts least.

To ‘proactively wait’ is an important, but difficult virtue. Key to this
technique is not to miss the time when decisive action is necessary. This
requires self-consciousness and constant observation. At some time the
performance problems become noticeable, and then it is necessary to dig
deeper. The threshold of when to take action is typically subject to personal
taste and working style and requires significant experience. However,
discussing them openly with colleagues helps not to miss important
indications, and the rarely absent lack of time prevents from being overly
responsive.

When we first used an object oriented database, we put all data in
it that needed to be shared between different clients. This design
led to a highly consistent system. Unfortunately, it was also horribly
slow. We lived with that fact for some time, hoping that increasing
our knowledge about the OODBMS would provide us with counter
measures. After a handful of iterations, the GUI team decided to
stub the database and leave the process of continuous integration.
This was a severe warning, and we immediately checked the
database performance.

It turned out that the most expensive data the OODBMS was
occupied with was transient data; it was distributed among different
clients but did not require persistency. We had naively not separated
these aspects, hoping the OODBMS would be sufficiently fast.

Two concrete actions were initiated. First, the distribution
mechanism became separated from the database access. Second,
for the sake of consistent class interfaces, the classes meant to
become persistent were no longer derived from the OODBMS base
class. Instead we provided a distinct persistence service that we
passed the objects to, and maintained the database schema by
generating the persistent classes from the application’s class
model.

ARCHITECTURE TUNING
Applies to projects that need performance tuning.

A development team experiences severe performance problems, and needs
to decide how to tackle them.

Local tuning efforts based on profiling help to improve the system's
responsiveness,
… but you’d need to have a lot of local improvements to push the
overall performance by orders of magnitude.
Performance can be attacked on every level of development,
… but initiatives on architectural level likely have the most impact.

Therefore, tune the system at the architectural level. Before you initiate any
other improvement efforts, make sure that the architecture itself helps the
system responsiveness, and exhibits no obvious flaws or ‘black holes’ in
which processing power vanishes.
Ignoring the architecture level might get you lost in an endless sequence
of severe battles, each saving in the sub-percent range of CPU load or other
system resources. Your actual goal is not only to win the performance war
but to win your peace with performance.
Looking at the scope of the architecture, performance is mostly decreased
due to one or more of the following mechanisms:

Random and inefficient use of system resources or infrastructure.
Inappropriate locking of shared resources, or inappropriate
transaction granularity.
Multiple executions of identical calls without functionality gain.
Network or inter process communication in many small messages,
and amongst many different components.
Blocking operations in tasks supposed to be responsive.
Inappropriate distribution of responsibilities among clients and
servers, for example how query result sets are transported and kept.
Inappropriate database schemas, or example inadequate data types,
or too little or too much normalization.
Extensive error checking, tracing and logging.
Error handling strategies that pollute the standard flow of operation.
Interfaces requiring multiple data copying or data format
conversion.
Doing everything doable as soon as possible, or as late as possible.

MEASUREMENT-BASED TUNING is not directly effective in a
curative way, but frees attention and effort to be put on relevant
topics of the project.

All development team members and technical management
needs to be involved with MEASUREMENT-BASED TUNING.
Interestingly, the costs of MEASUREMENT-BASED TUNING are
often negative. It prevents effort being put into misled
measures, and enables you to proceed faster during initial
development as well as during performance tuning phases. The
costs spent on convincing other stakeholders of the validity of
this approach, and of constant observation are typically low.

There are no counter indications to MEASUREMENT-BASED
TUNING. The side effects are desired: the team does not
inefficiently start tuning, and potentially pays more attention to
other qualities. Measures are taken in an informed manner.
Overdose effects would be to ignore the obvious common sense
in your technical domain, or to wait too long before you take
corrective action.

MEASUREMENT-BASED TUNING has the highest chances to
succeed if the architecture has prepared for separation of
concerns. One of the key practices to prepare for late tuning
measures i s to separa te P E R F O R M A N C E -CR I T I C A L
COMPONENTS.
12 | Overload | August 2008

FEATUREKLAUS MARQUARDT

factor out the Performance-Critical
Components, and limit preventive tuning

measures to these
A few changes to the architecture or top-level design can increase the
performance by orders of magnitude. Performance tuning typically
follows a few fundamental principles [Marquardt02a].

If your system does not allow you to implement the changes you have
identified being necessary, you need to refactor it in advance. Typical
refactorings for tuning the architecture are the introduction of shared
technical components, separation of resource maintenance from resource
usage, and separation of performance critical tasks into distinct
components.
While the system is developed, it is good practice to make these late
changes as convenient as possible. As PERFORMANCE-CRITICAL
COMPONENTS explains, this is most efficiently done by maintaining a
design with a clear separation of responsibilities, and a dependency
structure with few (if any) compromises. Such a structure also helps during
development with respect to testing and task assignment, and to
maintenance in later project phases.

A contractor had managed to become the mind monopole at one of
my customers. He motivated his queer data model with reasons
such as ‘using DB/2, comparing integers shows higher performance
than comparing strings’. The effect exists, but can be neglected
compared to the costs of disk access or joins.

When the system went productive, it needed 1.7 seconds per
transaction, which would have caused annual operation costs of
several 100,000 €. Tuning measures saved around 10–20%, but to
reach a performance comparable to similar systems a factor of 100
would have been necessary. I was asked to evaluate the
architecture for optimisation possibilities, and found sufficient
opportunities to save a factor of 1000 – starting from simple
measures like skipping consistency checks of large data structures
with every internal call (the much too large structures contained

several 100 sets of data), up to fundamental changes to the
architecture.

PERFORMANCE-CRITICAL COMPONENTS
Applies to projects in domains that require high system
responsiveness.

A development team that is aware of performance tuning needs to prepare
for tuning measures before they are actually done.

It is hard to foresee where changed will become necessary later in
the project,
…but preparation early in development saves restructuring effort
and time later.
Performance can be attacked on every level of development,
…but initiatives at the architectural level likely have the most
impact.
Incremental development can proceed fastest when the user-visible
functions are developed independently,
…but shared libraries and common infrastructure can become more
mature and efficient than dispersed items all over the system.

Therefore, factor out the performance critical components, and limit
preventive tuning measures to these. Start by dividing them in a way that
business logic, display, distribution and technical infrastructure are
independent of each other and can be tuned individually. Ensure that all
applications use the same infrastructure so that central tuning measures
become possible.
In systems that have been found to waste performance, these areas were
good candidates where a responsiveness gain by an order of magnitude was
possible:

Inefficient use of system resources or infrastructure.
Multiple repetitions of identical calls without functionality gain.
Badly designed or agreed interfaces requiring multiple data copying
or data format conversion.
Extensive tracing and logging; error handling strategies that pollute
the standard flow of operation.

To avoid these pitfalls, your system needs to be prepared to change internal
access strategies and rearrange call sequences. Make sure that you can start
with ARCHITECTURE TUNING whenever you need to. Once you start tuning,
refactor to the degree that the planned tuning related changes can be made
easily [Fowl99]. To avoid large and late refactoring efforts, start with a
piece-meal growth approach and a ‘clean desk’ policy that includes
refactoring in the daily work.
Within each of the components above, again distinguish between
published and internal functionality. Factor everything specific to your
particular environment into distinct components, like services, calls to
technical services, database queries, and handle acquisition. Make sure
that the responsibilities among all components are clear and concise.

ARCHITECTURE TUNING is a process to find curative technical
solutions to technical symptoms. If the related diagnosis
indicates that the pathogen is beyond the technical scope, it can
lead to remission.

ARCHITECTURE TUNING involves the architect and every
developer assisting in analysis and implementation of the
performance tuning. Its cost are hardly predictable, they depend
on the necessary refactoring effort and the actual implemented
changes to the architecture. However, in large projects they are
lower than the costs of numerous attempts for local
optimizations, and it is more likely to be effective.

There are no counter indications to ARCHITECTURE TUNING –
given that you do not consider abandoning tuning effort, or the
project at all. The side effect is a well-structured system. No
overdose effect is currently known.

ARCHITECTURE TUNING comes with the least cost when you
separate the PERFORMANCE-CRITICAL COMPONENTS early in
the project.
August 2008 | Overload | 13

FEATURE KLAUS MARQUARDT

Separate the logical contents from the
physical execution, with few explicit
linkage points
Separate the logical contents from the physical execution, with few explicit
linkage points.

Start with a useful separation that is most likely to support your actual
needs. Keep the performance critical components as small as possible by
iteratively repeating the division.
From the experience the team has gathered in the domain, both application
and technology domain, you already know which parts of the system are
likely to become the bottlenecks. Run a retrospective to uncover which
areas have been performance relevant in previous projects. You will
experience a fair amount of support when you separate these from the
remainder of the system, and apply EXPLICIT DEPENDENCY MANAGEMENT
[Marquardt02b].

In a real time patient information system, all transient data was
stored in shared memory. This was hidden from the clients to this
data; some opaque access classes provided an interface
independent of implementation issues. Tuning the performance of
data access and locking granularity was located within the access
layer classes.

VISIBLE QUALITIES
Applies to projects whose team focuses all work and thoughts on a
few essential ideas, but ignores all other issues that might also be
or become important to the project’s success.

In a development team that focuses on a particular quality of the product,
you need to address further important system qualities that are essential to
adequately manage the system architecture.

Neglecting internal qualities can cause a large system to break under
its own weight,
…but the value they add to the software is hidden and becomes
visible only in the long term.
Internal qualities can be crafted intentionally into the software,
…but they are hardly visible from a bird’s eye perspective.

Therefore, make your system’s internal qualities visible. Similar to sound
risk management practice, maintain a list of your top five qualities. Define
measures to achieve them, and determine frequently to what extend you
have reached your goal.
The key issue is to raise awareness for the existence of these qualities and
their relative importance in the team and in management. Especially when
the internal system qualities are unbalanced, ask the team for a list of
possible qualities and discuss their value and advantages. The team should
order them according to their priority. Do not mind if your favourites are
not the topmost – you will go through the list every week or two and re-
evaluate.
Do the same process with management, and make both lists visible. While
it is often not possible to resolve any conflict and come to consensus, the
fact that all qualities are there and considered important leads to awareness,
a more careful balancing and to an architecture and design that addresses
different qualities explicitly.
You need to maintain the lists, find criteria how to evaluate whether a
specific quality has been achieved, and define appropriate actions
[Weinberg92]. This could become a part of a periodically scheduled team
meeting. Especially the evaluation criteria would be a tough job, as most
qualities show only indirect effects. Try to define goals that appear
reasonable to the project. If you or the team fails to define criteria, leave
that quality at the end of the list for the time being.

PERFORMANCE-CRITICAL COMPONENTS is a preventive therapy
that increases the system's adaptivity to further therapies such
as ARCHITECTURE TUNING. It fosters many qualities, but does
not directly affect performance in and by itself.

The entire development team and technical management need
to be involved. PERFORMANCE-CRITICAL COMPONENTS
increase the costs you would spend on architectural
decomposition. Though the initial costs will pay off if you really
run into performance problems, consider PERFORMANCE-
CRITICAL COMPONENTS as a risk reduction strategy.

Do not apply PERFORMANCE-CRITICAL COMPONENTS when
your system is very small, or applies standard technology only.
Though you gain valuable experience, the costs hardly pay off
in these cases. Another counter indication is a weak position of
the architect in the project. Side effects include an improved
logical structure of your system. Overdose effects would be
DESIGN BY SPLINTER [Marquardt01] if you drive the separation
to an unbalanced extreme, or a micro-architecture similar to
micro-management violating your DEFINED NEGLECTION
LEVEL. [Marquardt02b].

PERFORMANCE-CRITICAL COMPONENTS is the preventive
strategy to later ARCHITECTURE TUNING. It can be one of your
risk reduction measures applied with VISIBLE QUALITIES.

VISIBLE QUALITIES is effective through creating attention and
a positive attitude. The attention achieved by the top-five list
causes second thoughts, awareness, and potentially actions,
while the measurable achievement fosters a positive attitude
that in itself already could improve the quality of work.

The work and initial costs are with the architect, but VISIBLE
QUALITIES requires involvement of the entire team. In the mid
term, the effort required is comparable to mentoring or
coaching, while in the long term it pays off through improved
development practices.
14 | Overload | August 2008

FEATUREKLAUS MARQUARDT

The architect becomes responsible for
creating a common vision of the system
For motivation of the team and management, the testability quality often
is a good starter. Its benefits towards risk reduction and customer
satisfaction are obvious, and it can be verified with concrete actions,
namely implementing the tests. For testability, the achievement criterion
could be ‘all classes are accompanied by at least one unit test’ or, if you
introduce unit tests late in the project, ‘every fixed defect has to be
accompanied by at least one new test case’. If for some reason the unit
testability is hard to achieve, this is a potential hint for a design fault. To
get away with a rule violation, a developer should need to convince the
architect. There are situations e.g. in GUI development that are hard to unit
test, but improvement suggestions may enable to test at least parts of the
functionality, e.g. after a class has been split into distinct parts.
It is not important to maintain the list for a long time. If you introduce it,
and hold it up often enough so that the developers know that you are serious
about it, you might neglect the list and only check it at the start of a new
iteration or release period. The check to what degree you have reached the
internal qualities never becomes obsolete, but can be reduced to one check
with each iteration or release.
Some qualities are hard to measure by numbers, but for others there are
commercial tools available. As an example, the software tomograph
[Roock06] supports a quantitative evaluation of the internal software
structure.

The team was new to object-oriented design, so we discussed a lot
about the promised qualities it should deliver. We started to do joint
design at the white board, and explored some examples how a high
extensibility could be reached, how testability could be increased,
and what amount of decoupling required what effort.

When the team size increased, design reviews became an essential
part of the project. Initially I participated in most, and we established
an ordered catalogue of criteria to check. With this catalogue, the
process was accepted and carried by the team. Closer to the end
of the project, the team decided to focus on other issues and reduce
the formality of the design reviews. By that time, the project lasted
for more than two years; all team members had significant expertise
and shared a common sense.

DEDICATED ARCHITECT
Applies to projects that have no dedicated architect and experience
trouble with their architecture, either in quality of the architecture
itself, in incoherent visions, or in uncovered effort.

In a development team that has an informal design and architecture process
without a dedicated role assignment, the lack of a dedicated architect can
cause one or more of the following problems:

The development focus is on management goals only. A technical
focus is not present, or is randomly selected by individual
developers or managers.
Important internal system qualities that are essential to adequately
manage the system are not addressed.
Developers who take over significant parts of the architectural tasks
fall behind their schedule.
Different people address different expert developers for technical
issues.
Questions concerning the architecture are not consistently
answered.

These forces are present in the situation:
An acknowledged architect has less time available for real
programming, and is potentially expensive,
…but dealing with inconsistencies and the subsequent system
failures is even more expensive,
Small projects can come along without much effort on architecture,
…but building a large or reuseable system requires attention to
issues that hardly matter in smaller systems; neglecting internal
qualities can cause a system to break under its own weight.
Any architect’s experience and view on the software world is
limited,
…but an architect has the broadest view of the developers, and he
can still delegate.
Newly assigning an architect within a given team might cause
personal conflicts,
…but each such conflict would be present anyway, and would
otherwise express itself in technical inconsistencies.

Therefore, ensure that an architect’s role becomes defined and assigned to
a key developer. The architect becomes responsible for creating a common
vision of the system, ensuring technical consistency, broadening the
architectural view, re-balancing the different forces on the architecture,
and coaching the development team on the internal qualities (the ‘~ilities’)
that are essential to crafting large software systems. In turn, all developers,
managers and technical leads pass their decision competency in these areas
to the dedicated architect, and provide sufficient resources – namely the
working time of the architect.

There are no real counter indications to VISIBLE QUALITIES, but
if your team is resilient to learning other therapies might be
more cost effective for your project at hand. You might
experience negative side effects if you fail to explain the
importance of different qualities, and a continuous neglect of
specific qualities might finally break a large system. Prevent
this by establishing a veto right on certain priorities. An
overdose could be injected if the team does not get the idea at
all, or is disgusted by the somewhat formal process. Use the
drive for discussion to come to an adequate dosage.

Bringing a mentor to the project could reduce the ceremony
level introduced by VISIBLE QUALITIES. Otherwise, they are
successfully accompanied by ARCHITECT ALSO IMPLEMENTS
[CoHa04].
August 2008 | Overload | 15

FEATURE KLAUS MARQUARDT

this means that the team creates the
architecture by consensus or accident,
though with the best of intentions
An architect that is expected to initiate significant change will need
dedication, explicit empowerment, and time to become accepted among
his peers. Much less time can be devoted to ‘real work’ such as coding,
and this needs to be reflected in the project schedule and the performance
review criteria. While most project situations can live with one or more
developer informally taking parts of the architect’s role, as advocated by
agile development methods [Beck99, Agile01], architectural tasks may
require significant effort and time. You can compromise on how the role
is called, but an architect needs to be able to spend significant effort
without troubling his boss or his career.
The obvious candidate for the assignment is the informal architect.
Convince your manager to establish the architect’s role by indicating the
risk reduction it could bring to the project, and by comparing the
consequences of not having a consistent architecture against the costs of
having an architect. This process will likely take some time since the
problem needs to be perceivable to management. Try to get support from
other developers in advance, including external contractors in case they
join the project team. Their opinions might be considered more significant
than those of employees.
When the team has several informal architects, the one of them who is most
frequently asked is the right candidate. A team of architects can also work
when each member has a distinct key area. However, one person must have
the final decision.
If there is no informal architect, this means that the team creates the
architecture by consensus or accident, though with the best of intentions.
In this case you should consider asking for an outsider to join. The same
applies if there are too many architects in the team, and picking one of them
would break the project.

The doctor wants to see you again
For a system suffering from Performitis, the major engineering practices
have been introduced. They should reduce the problems to an acceptable
level, and can be applied after considering their effects and costs. Other
therapies, VISIBLE QUALITIES and DEDICATED ARCHITECT, facilitate the
introduction of technical practices.
While this is sound practice and probably useful advice, it doesn’t address
the heart of the problem. Your team is likely to fall back into Performitis
as soon as these therapies are no longer applied strictly. And poor
compliance with prescribed therapies is something that all doctors suspect
of their patients...
By next time, the therapies should have become effective. We will then
reflect on the successes and see what we can do about the non-technical
issues. We can then avoid Performitis in your next project.

References
[Agile01] http://www.agilemanifesto.org
[Beck99] Beck, Kent (1999) Extreme Programming Explained: Embrace

Change, Addison-Wesley.
[Cockburn98] Cockburn, Alistair (1998) Surviving Object-Oriented

Projects, Addison-Wesley.
[Coplien04] Coplien, James and Harrison, Neil (2004) Organizational

Patterns of Agile Software Development, Prentice-Hall.
[Fowler99] Fowler, Martin (1999) Refactoring, Addison-Wesley.
[Marquardt99] Marquardt, Dr. Kerstin (1999) private communication.
[Marquardt01] Marquardt, Klaus (2001) ‘Dependency Structures.

Architectural Diagnoses and Therapies’ in Proceedings of
EuroPLoP 2001.

[Marquardt02a] Marquardt, Klaus (2002) ‘Principles of Performance
Tuning’ in Proceedings of EuroPLoP 2002.
See http://www.kmarquardt.de/performance for this and other
papers.

[Marquardt02b] Marquardt, Klaus (2002) ‘Patterns for the Practicing
Software Architect’ in Proceedings of VikingPLoP 2002.

[Roock06] Roock, Stefan and Lippert, Martin (2006) Refactorings in
Large Software Projects: Performing Complex Restructurings
Successfully, Wiley.

[Weinberg92] Weinberg, Jerry (1992) Software Quality Management
Series: First-Order Measurement, Dorset House.

The mechanism behind DE D I CA T E D AR C H I T E C T i s
acknowledgement by management. Only an acknowledged
architect is able to devote sufficient time, and receive sufficient
respect from the team.

DEDICATED ARCHITECT involves management, the architect,
and potentially all team members. The costs can become
significant because you need to dedicate time to architectural
issues as well as to establishing the new role in the first place.
Contracted architects are even more expensive than internal
ones. However, the costs for a good architect will reduce the
project risk and likely pay off several times, while the costs for
a bad one will lead to further cost explosion.

DEDICATED ARCHITECT has one counter indication: when the
team would not accept any architect. Its side effects are on the
workload that the team can manage. It will decrease in the short
term, but eventually increase in the mid to long term. Another
side effect is the positive influence on the career of the assigned
architect.

The trust in the architect is likely fostered by ARCHITECT ALSO
IMPLEMENTS [Coplien04], when the developers perceive that
the architect still knows how to express ideas in code.
16 | Overload | August 2008

FEATUREBILL CLARE
Globals, Singletons and
Parameters
One size rarely fits all. Bill Clare considers
different approaches to parameterization.
he purpose of this article is to outline a design approach for allowing
data to be shared where needed and to not be visible elsewhere. The
issue becomes particularly interesting when not all users who have

visibility of a shared capability are actually provided with the same
implementation of that capability.

Background
Kevlin Henney [Henney07] has recently written a series of articles (‘The
PfA Papers: Context Matters’ et al.) about the history and advantages of
a pattern termed PFA or PARAMETERIZE FROM ABOVE. The pattern
involves passing environment variables to applications as parameters
rather than through use of globals or singletons.
Allan Kelly [Kelly04] addressed many of the same issues by developing
a Pattern for a shared context ‘The Encapsulated Context Pattern’. A
spirited set of responses was later given (Overload 65, February 2005).
Many have written about the use and misuse of singletons.

Problem to be addressed
Before addressing approaches to this, it is well to state carefully the issues
involved.
OO methodology provides strong support for encapsulation of the
behaviour of a single or a related set of concepts. By itself, though, it
provides little guidance about how these concepts interact and
communicate. Various language features, patterns and approaches address
this issue.
Here we consider approaches where:

There are multiple users or clients that share data from multiple
external capabilities.
Clients can include components, services, threads, algorithms,
objects or functions.
Capabilities can include services, characteristics, resources, error
and exception handlers, and values.
Also capabilities can be clients of higher level capabilities, which in
turn are external to them.
Different users, under different circumstances may need a different
version or implementation of a particular capability or service.
Here we can partition uses by nested scopes in the function
invocation hierarchy, where invocation includes both function calls
and routing of work to different servers.

This provides a separation of capabilities, that are dependent on their
environment, from the base functionality of the clients, which are
environment independent. The approach is to allow clients to be adapted
to a rich set of environment based capabilities without code change to the
client. However, it is worth noting that this notion of an ‘environment’
boundary can be somewhat flexible for many applications.
This notion also supports some of the concepts of Aspect Oriented
programming, where common capabilities are ‘woven’ into client users.

The emphasis there is on compile-time binding, while here it is on runtime
binding.

Objectives
The basic objectives here are to suggest a framework where:

Sharing of a common capability does not create dependencies
among the clients.
Implementations for capabilities can be specified globally to meet
overall system requirements and adapted locally to meet specific
internal scope requirements.
New capabilities can be introduced without impacting existing code.
New implementations of a capability can be introduced without
impact to existing code.
New scopes can be introduced and modified without impacting
existing code.
Code to access capabilities is independent of their implementation
or of their tailoring to a scope.

General approach
An approach to this can be based on considerations of an overall
environment with particular implementations of shared capabilities to be
used within certain scopes. Also there are related considerations for
capabilities that have interdependencies, for resource control, for
establishing concurrent processing, for data sharing, for establishing
controls externally and for testing.

Environment
An environment is specified through a set of function or function object
pointers that provide client access to capabilities.

Capability implementations
Capability implementations can be maintained and specified:

globally and accessed through maps indexed by scope;
locally to the scope that uses them; or
in some combination of these.

Roles
Ordinarily the external capabilities are orthogonal not only to their clients
but also to each other. Where there are interdependencies among the

T

Bill Clare Bill Clare has retired from a 40 year career with IBM
and Lockheed Martin, which focused largely on software
engineering, architecture and design. This work included both
product development and support, as well as development of
large software systems for U.S. Government agencies.
August 2008 | Overload | 17

FEATURE BILL CLARE

If it is not known how many objects will be
needed within the scope, then an empty
container, with possibly a factory, can be set up
capabilities, it is useful to view them as satisfying a common role.
Examples of role based capabilities include:

A set of mathematical and physical constants that are needed to
provide consistent values and precision for a particular algorithm.
A logging capability which collects, filters, formats, routes and
records data.
Here different clients may need different versions of some of these
particular functions.

Scopes
Values of a capability access pointer are stacked by scopes within the
execution hierarchy. This can occur in two phases:

Before the scope is invoked.
This is useful to establish external consistency and to meet external
requirements.
Within scope initialization.
This is useful to establish internal consistency and to meet internal
requirements.

In both cases, resources may be obtained and setup, and appropriate
configurations initialized when the scope is entered. When the scope is
exited, finalization routines release resources, and restore the previous
external state.
Access to other capabilities, that do not need to be adapted to the scope,
are left untouched and thus are directly inherited.

Resource allocation and management
Data and other resources for shared capabilities needs to be actually
created at some time and within some scope. The scope concept suggests
a framework for management of resource instances. In many cases, this
can provide more structured support for data sharing and control than
through use of so called smart pointers.
Alternatives here include:

Resources instances are created as needed, and released after use.
Resources instances are created when first needed, and then cached
and reinitialized as needed.
Actual release of the resource can occur at some higher level of
scope, based on tradeoffs of memory and processor usage.
Resources can simply be initialized in advance of use, possibly at
startup, and never explicitly released.
If it is not known at the scope level if data or a resource will be
needed, then a Singleton can be set up or the Singleton can register
with the scope manager. The resource is released if necessary at the
scope end.
If it is not known how many objects will be needed within the scope,
then an empty container, with possibly a factory, can be set up and
the resources released, if necessary, at the scope end.

Implementation instances can be specified globally through maps indexed
by a scope ID to appropriate functions or objects. Alternatively,
implementations can be specified through local scopes where they are
needed. This is based on design trade-offs between a co-ordinated global
environment and configuration management on the one hand, and
independent support for lower level functions on the other.

Concurrent processing
For concurrently executing threads or processes and for remote executions,
the current environment is copied to initialize the new thread, process or
remote execution environment.
For applications that queue requests to a separate thread or process, the
queue manager can propagate access pointer references to the execution
environment or environments of the request processing.

Data sharing
Where data needs to be shared for both read and update, the usual issues
of data sharing remain, independently of scope management. These issues
can be addressed with the usual techniques of:

Providing separate data instances, possibly using copy-on-write
techniques.
Use of locking.
Queuing requests to a data owner thread or process.

External environment parameters
Parameters for adaptation can be supplied in environment variables and
files that are accessed by initialization routines. With this, adaptation and
tailoring of services for particular environments can be accomplished
without code modification.

Test requirements
Testing occurs at several levels.

Capabilities can be tested independently of clients.
Clients can be unit tested with adapted versions of the capabilities
they invoke.
As always, integration testing is needed to verify interactions among
separate capabilities.

Accessing capabilities
Actual access to capabilities needs to be consider from two perspectives:

Scope managers to setup client access to particular capability
implementations.
Client access to actually make use of the capability.

Scope setup
Scope managers set up client access to particular capability
implementations. They have visibility to implementations only to create
18 | Overload | August 2008

FEATUREBILL CLARE

Scopes have internal and external capabilities
with many of the external capabilities shared to

differing degrees with other components
and locate them, and then to set pointers. There are several mechanisms
possible for this access.

The most direct is through global variables for the pointers.
In particular, these globals could be isolated in an Environment
Namespace.
Singletons are sometimes advocated as an alternative to the use of
globals.
Singletons combine concepts of global access and creation when
needed. This creation on the fly, when and if the object is needed, is
the advantage of a Singleton. However, it is also its disadvantage, in
that it leaves open the issue of when the resource should be deleted,
if ever.
Here two approaches are possible:

A single Singleton could provide the basis for access to all
implementation instances.
Singletons could be used to create shared data resources as
needed. Again scope management could be used to release the
resources at appropriate times.

Ultimately however, the Singleton creator itself must be global, and
unless there is some reason to postpone this creation, it does not
appear to provide added value.
An alternative is for scope managers to pass parameters, or
parameter blocks, to their immediate functions, which then pass
these down the call hierarchy.
This can provide some encapsulation by combining the internal and
external capabilities within a single function, but it introduces its
own complexity.

None of these techniques is exclusive of the others, and they are
independent of the requirements of scope management. Thus, they can be
combined as needed, especially for code obtained from different sources.

Client access
Actual use of a capability within client code can be much simpler. Here,
the actual base application code can look like:

 pi(); // retrieve value with
 // consistent precision for
 // this scope

or perhaps:

 math().pi(); // retrieve role and property

The implementation mechanism at the client level can determine if these
routines that access pi or math are:

set up as globals

defined within the local scope
functions or properties of the local class.

In particular, this is independent of whether the actual values are derived
from globals, singletons or passed parameters.

Logging example
Turning back to the logging example above, particular scopes may need
specific logging capabilities, and so may substitute their own or just add
to a global capability. Logging within a particular scope can in turn have
specific functions for filtering, formatting, or routing. For test
environments, or even as deployed, logging needs may vary considerably
for individual scopes and circumstances.
Applications can be instrumented with a considerable amount of internal
trace calls. Such code usually has considerable overhead, so it is desirable
to be able to dynamically adjust the amount of detailed logging within
separate scopes. Each trace call can provide parameters that specify a level
of detail at which output should be recorded. The amount of output for
specific tests, or to debug specific problems, can then be adjusted through
external parameters that specify trace levels for different scopes. With
appropriate templates, some of this tailoring can occur at compile time,
with calls being completely eliminated through redefinition of the call
templates.

Summary
A program’s environment consists of a set of nested scopes which can be
more or less global. Scopes have internal and external capabilities with
many of the external capabilities shared to differing degrees with other
components. A capability may have different implementations for use in
different scopes under different conditions.
Judicious use of scope concepts allows common capabilities to:

be global where needed, but limited otherwise
support managed resources
allow controlled data sharing
be flexible, in terms of adaptation and of being introduced into an
evolving code base.

Within this framework, applications can, without code impact, use
capabilities derived from globals, singletons or parameters or, where
necessary, combinations of such techniques.

References
[Henney07] Henney, Kevlin (2007) ‘The PfA Papers: Context Matters’ in

Overload 82, December 2007 (and other articles in the same series in
subsequent volumes).

[Kelly04] Kelly, Allan (2004) ‘The Encapsulated Context Pattern’ in
Overload 63, October 2004.
August 2008 | Overload | 19

FEATURE ANTHONY WILLIAMS
Exceptions Make for
Elegant Code
Anything that can go wrong, will go wrong. Anthony Williams
compares ways of dealing with errors.
n episode 8 of the Stack Overflow podcast that he does with Jeff
Atwood [Spolsky], Joel Spolsky comes out quite strongly against
exceptions, on the basis that they are hidden flow paths. Whilst I can

sympathise with the idea of making every possible control path in a routine
explicitly visible, coming back to writing C code for a recent project after
many years of coding in C++ has driven home to me that this actually
makes the code a lot harder to follow, as the actual code for what it’s really
doing is hidden amongst a load of error checking.
Whether or not you use exceptions, you have the same number of possible
flow paths. With exceptions, the code can be a lot cleaner than with
exceptions, as you don't have to write a check after every function call to
verify that it did indeed succeed, and you can now proceed with the rest
of the function. Instead, the code tells you when it’s gone wrong by
throwing an exception.
Exceptions also simplify the function signature: rather than having to add
an additional parameter to hold the potential error code, or to hold the
function result (because the return value is used for the error code),
exceptions allow the function signature to specify exactly what is
appropriate for the task at hand, with errors being reported ‘out-of-band’.
Yes, some functions use errno, which helps by providing a similar out-
of-band error channel, but it’s not a panacea: you have to check and clear
it between every call, otherwise you might be passing invalid data into
subsequent functions. Also, it requires that you have a value you can use
for the return type in the case that an error occurs. With exceptions you
don’t have to worry about either of these, as they interrupt the code at the
point of the error, and you don’t have to supply a return value.
Listing 1 shows three implementations of the same function using error
code returns, errno and exceptions.

Error recovery
In all three cases, I’ve assumed that no recovery is required if do_blah
succeeds but do_flibble fails. If recovery was required, additional code
would be required. It could be argued that this is where the problems with
exceptions begin, as the code paths for exceptions are hidden, and it is
therefore unclear where the cleanup must be done. However, if you design
your code with exceptions in mind I find you still get elegant code (see
my blog entry [Williams#2] for some considerations on elegance in
software). try/catch blocks are ugly: this is where deterministic
destruction comes into its own. By encapsulating resources, and
performing changes in an exception-safe manner, you end up with elegant

code that behaves gracefully in the face of exceptions, without cluttering
the ‘happy path’. See Listing 2.
In the error code cases, we need to explicitly cleanup on error, by calling
cleanup_blah. In the exception case we’ve got two possibilities,
depending on how your code is structured. In foo_with_exceptions,
everything is just handled directly: if do_flibble doesn’t take
ownership of the intermediate data, it cleans itself up. This might well be
the case if do_blah returns a type that handles its own resources, such as
std::string or boost::shared_ptr. If explicit cleanup might be
required, we can write a resource management class such as
blah_cleanup_guard used by foo_with_exceptions2, which
takes ownership of the effects of do_blah, and calls cleanup_blah in
the destructor unless we call dismiss to indicate that everything is going
OK.

Real examples
That’s enough waffling about made up examples, let’s look at some
real(ish) code. Here’s something simple: adding a new value to a dynamic
array of DataType objects held in a simple dynamic_array class. Let’s

O

Anthony Williams Anthony is the Managing Director of
Just Software Solutions Ltd, where he spends most of his
time developing custom software for clients. Anthony is
also the maintainer of the Boost Thread Library, and has
considerable experience with developing and maintaining
high-quality multi-threaded software in C++. He can be
contacted at anthony@justsoftwaresolutions.co.uk.

Listing 1

int foo_with_error_codes(some_type param1,
 other_type param2,result_type* result)
{
 int error=0;
 intermediate_type temp;
 if((error=do_blah(param1,23,&temp)) ||
 (error=do_flibble(param2,temp,result))
 {
 return error;
 }
 return 0;
}

result_type foo_with_errno(some_type param1,
 other_type param2)
{
 errno=0;
 intermediate_type temp=do_blah(param1,23);
 if(errno)
 {
 return dummy_result_type_value;
 }
 return do_flibble(param2,temp);
}

result_type foo_with_exceptions(some_type param1,
 other_type param2)
{
 return do_flibble(param2,do_blah(param1,23));
}

20 | Overload | August 2008

FEATUREANTHONY WILLIAMS

this is where the problems with
exceptions begin, as the code paths for

exceptions are hidden
assume that objects of DataType can somehow fail to be copied: maybe
they allocate memory internally, which may therefore fail. We’ll also use
a really dumb algorithm that reallocates every time a new element is added.
This is not for any reason other than it simplifies the code: we don’t need
to check whether or not reallocation is needed.
If we’re using exceptions, that failure will manifest as an exception, and
our code looks like Listing 3. On the other, if we can’t use exceptions, the
code looks like Listing 4.
It’s not too dissimilar, but there are a lot of checks for error codes:
add_element has gone from 10 lines to 17, which is almost double, and
there are also additional checks in the heap_data_holder class. In my

Listing 2

int foo_with_error_codes(some_type param1,
 other_type param2,result_type* result)
{
 int error=0;
 intermediate_type temp;
 if(error=do_blah(param1,23,&temp))
 {
 return error;
 }
 if(error=do_flibble(param2,temp,result))
 {
 cleanup_blah(temp);
 return error;
 }
 return 0;
}

result_type foo_with_errno(some_type param1,
 other_type param2)
{
 errno=0;
 intermediate_type temp=do_blah(param1,23);
 if(errno)
 {
 return dummy_result_type_value;
 }
 result_type res=do_flibble(param2,temp);
 if(errno)
 {
 cleanup_blah(temp);
 return dummy_result_type_value;
 }
 return res;
}

result_type foo_with_exceptions(some_type param1,
 other_type param2)
{
 return do_flibble(param2,do_blah(param1,23));
}

result_type foo_with_exceptions2(some_type param1,
 other_type param2)
{
 blah_cleanup_guard temp(do_blah(param1,23));
 result_type res=do_flibble(param2,temp);
 temp.dismiss();
 return res;
}

Listing 3

class DataType
{
public:
 DataType(const DataType& other);
};
class dynamic_array
{
private:
 class heap_data_holder
 {
 DataType* data;
 unsigned initialized_count;
 public:
 heap_data_holder():
 data(0),initialized_count(0)
 {}
 explicit heap_data_holder(unsigned max_count):
 data((DataType*)malloc(
 max_count*sizeof(DataType))),
 initialized_count(0)
 {
 if(!data)
 {
 throw std::bad_alloc();
 }
 }
 void append_copy(DataType const& value)
 {
 new (
 data+initialized_count) DataType(value);
 ++initialized_count;
 }
 void swap(heap_data_holder& other)
 {
 std::swap(data,other.data);
 std::swap(initialized_count,
 other.initialized_count);
 }
August 2008 | Overload | 21

22 | Overload | August 2008

FEATURE ANTHONY WILLIAMS

Listing 3 (cont’d)

 unsigned get_count() const
 {
 return initialized_count;
 }
 ~heap_data_holder()
 {
 for(unsigned i=0;i<initialized_count;++i)
 {
 data[i].~DataType();
 }
 free(data);
 }
 DataType& operator[](unsigned index)
 {
 return data[index];
 }
 };
 heap_data_holder data;
 // no copying for now
 dynamic_array& operator=(
 dynamic_array& other);
 dynamic_array(dynamic_array& other);
public:
 dynamic_array()
 {}
 void add_element(DataType const& new_value)
 {
 heap_data_holder new_data(data.get_count()+1);
 for(unsigned i=0;i<data.get_count();++i)
 {
 new_data.append_copy(data[i]);
 }
 new_data.append_copy(new_value);
 new_data.swap(data);
 }
};

Listing 4 (cont’d)

 int get_error() const
 {
 return error_code;
 }
 int append_copy(DataType const& value)
 {
 new (
 data+initialized_count) DataType(value);
 if(data[initialized_count].get_error())
 {
 int const error=
 data[initialized_count].get_error();
 data[initialized_count].~DataType();
 return error;
 }
 ++initialized_count;
 return 0;
 }
 void swap(heap_data_holder& other)
 {
 std::swap(data,other.data);
 std::swap(initialized_count,
 other.initialized_count);
 }
 unsigned get_count() const
 {
 return initialized_count;
 }
 ~heap_data_holder()
 {
 for(unsigned i=0;i<initialized_count;++i)
 {
 data[i].~DataType();
 }
 free(data);
 }
 DataType& operator[](unsigned index)
 {
 return data[index];
 }
 };
 heap_data_holder data;
 // no copying for now
 dynamic_array& operator=(dynamic_array& other);
 dynamic_array(dynamic_array& other);

public:
 dynamic_array()
 {}
 int add_element(DataType const& new_value)
 {
 heap_data_holder new_data(data.get_count()+1);
 if(new_data.get_error())
 return new_data.get_error();
 for(unsigned i=0;i<data.get_count();++i)
 {
 int const error=
 new_data.append_copy(data[i]);
 if(error)
 return error;
 }
 int const error=
 new_data.append_copy(new_value);
 if(error)
 return error;
 new_data.swap(data);
 return 0;
 }

Listing 4

class DataType
{
public:
 DataType(const DataType& other);
 int get_error();
};
class dynamic_array
{
private:
 class heap_data_holder
 {
 DataType* data;
 unsigned initialized_count;
 int error_code;
 public:
 heap_data_holder():
 data(0),initialized_count(0),
 error_code(0)
 {}
 explicit heap_data_holder(unsigned max_count):
 data((DataType*)malloc(
 max_count*sizeof(DataType))),
 initialized_count(0), error_code(0)
 {
 if(!data)
 {
 error_code=out_of_memory;
 }
 }

FEATUREANTHONY WILLIAMS
experience, this is typical: if you have to explicitly write error checks at
every failure point rather than use exceptions, your code can get quite a
lot larger for no gain. Also, the constructor of heap_data_holder can
no longer report failure directly: it must store the error code for later
retrieval. To my eyes, the exception-based version is a whole lot clearer
and more elegant, as well as being shorter: a net gain over the error-code
version.

Error safety
I expect most of you are familiar with the Abrahams Exception Safety
Guarantees [Abrahams], but these could realisticly be termed Error Safety
Guarantees: we want code that is robust in the face of errors in general,
not just exceptions. The only reason that exceptions are ‘special’ is that
people are less familiar with how to write code in the presence of
exceptions. It is providing sensible guarantees for the code that leads us
to the structure of the example code above; something that remains
essentially the same even when using error codes. Creating a copy of a
structure ‘off to the side’ and then swapping it with the original is a useful
technique whichever error handling mechanism you use, but it really
comes into its own with exceptions.

Structural changes
The lack of the ability for the constructor of heap_data_holder to abort
on failure means that the way objects are written must change: the
‘invariants’ of the class must be extended to allow for it to be in an ‘invalid’
state due to the constructor failing. Similarly, the signatures of some
functions must change to allow for failures: if your function returns a
reference then this can pose a problem if the function failed: you don’t
necessarily have an object to return a reference to, and must instead return
a pointer, which can therefore be NULL. This subtle shift in the design of
the code now means that any code that calls this function has to be prepared
for a NULL pointer to be returned where before it could rely on there being
an object, since there is no such thing as a NULL reference.
The lack of exceptions actually makes it hard to pass the result of one
function as a parameter to another altogether: because the function will
return normally even if it failed, the second function has to handle whatever
the first returns on error without causing serious problems. We saw this
back in the first example where the call to do_blah was separated from
the call to do_flibble in order to check the error code, whereas the
exception version had do_blah called directly in the call for
do_flibble. If you apply this to operators it gets even worse: operators
don’t have any means of returning an error code directly, so they have to
resort to techniques such as the use of errno, and you essentially lose any
benefits of writing an operator in the first place. With exceptions, we can
write:

 std::string foo(std::string const& s)
 {
 return "hello " + s + " goodbye";
 }

where the second call to operator+ will only happen if the first
succeeded. If we don’t have exceptions then the first call to operator+
has to return something, and the second call to operator+ has to handle
the case that one or more of its arguments is an ‘invalid’ object.

Conclusion
I guess it’s a matter of taste, but I find code that uses exceptions is shorter,
clearer, and actually has fewer bugs than code that uses error codes. Yes,
you have to think about the consequences of an exception, and at which
points in the code an exception can be thrown, but you have to do that
anyway with error codes, and it’s easy to write simple resource
management classes to ensure everything is taken care of. Without
exceptions you often have to contort the design to handle the error
checking.

References
[Abrahams] Abrahams, D., ‘Exception Safety in Generic Components’,

http://www.boost.org/community/exception_safety.html
[Spolsky] ‘Stack Overflow’ (podcast) – available from:

http://blog.stackoverflow.com/index.php/2008/06/podcast-8/
[Williams07] ‘Elegance in Software’, http://

www.justsoftwaresolutions.co.uk/design/elegance-in-software.html

This article is based on a blog entry with the same title at http://
www.justsoftwaresolutions.co.uk/design/exceptions-make-for-elegant-
code.html

These guarantees were first documented by Dave Abrahams when the
C++ Standards committee were working on the 1998 C++ Standard. The
idea is that code should provide one of the three guarantees – if it doesn’t,
then an exception occuring in your code will result in leaked resources
or corrupt data structures or both. The guarantees are:

The no-fail (or no-throw) guarantee

This is the strongest of all guarantees. A function that provides this
guarantee will not throw any exceptions, and will not fail. All destructors
should provide this guarantee, as should important operations like swap
which provide the building blocks for the code that uses them to provide
suitable exception safety guarantees.

The strong guarantee

A function that provides this guarantee is all or nothing: if it fails, then any
effects are rolled back so the state of the data structure is the same as
it was on entry. This requires that the function doesn’t do anything
irreversible (like perform I/O), and that there are suitable operations that
provide the no-fail guarantee which can be used to commit or roll back
the changes.

The basic guarantee

This is the basic level you should strive for in all code: if a function fails,
then it must leave the data structures in a valid state, even if that state
differs from the original. For example, failure to insert a new item into a
container must leave the container in a valid state, even if all the existing
items have been deleted.

The Abrahams Exception Safety Guarantee
August 2008 | Overload | 23

FEATURE STUART GOLODETZ
Divide and Conquer:
Partition Trees and Their Uses
The world is a complex place. Stuart Golodetz
introduces a powerful technique to describe it.
artition trees are a useful data structure for maintaining a hierarchy
of partitions of an entity, e.g. the world, an image, or even a pizza.
In this article, I want to explain how they work and describe some

of their uses.
A partition of an entity is a division of it into mutually disjoint parts which
together make up the whole entity. (Put mathematically, a partition of E
is a set S = {E1,...,En} of sub-entities of E such that Union(S) = E and for
all i,j in {1,n}, i != j ⇒ intersect(Ei, Ej) = ∅.) For example, we could
partition a pizza into twelve slices: none of the slices overlap, and together
they make up the whole pizza (until someone starts munching, at any rate).
A partition tree is a way of representing a hierarchy of these partitions of
an entity. The way it works is as follows:

Each node in the tree represents a part of the whole entity. In
particular, the root node of the tree represents the entity in its
entirety.
As is usual with trees in computer science, a node is either a branch
node or a leaf node. (The distinction is that a branch node has child
nodes, whereas a leaf has none.) In a partition tree, the children of a
branch node represent a partition of the branch node (properly
speaking, the parts of the entity represented by the children of the
branch node represent a partition of the part of the entity represented
by the branch node, but continually distinguishing between nodes
and the sub-entities they represent is tedious).
Each layer in the hierarchy represents a partition of the entire entity.

Using our pizza analogy, we could imagine first dividing our pizza into
three portions, one for each person at the table. Each person’s portion is
then further sub-divided into four slices. Each person’s slices are a partition
of their portion, and the portions are a partition of the pizza as a whole.
Furthermore, if you take all the slices, or all the portions, together, you have
the entire pizza.
As a graphical example, take a look at Figure 1, which shows a partition
tree for the square image shown at the bottom-right. The image pieces at
each node are colour-coded for easy identification in the images for each
layer of the tree on the right. They are clearly mutually disjoint, and their
union in each case is the whole image. This example with images illustrates
one potential use for partition trees (and indeed the reason I’m interested
in them at the moment, as those of you who saw my previous articles on
image segmentation [Golodetz, 08b] may have guessed), but it is very
much one among many.

Binary space partitioning
We’ll return to image partition trees later, but first I want to look at a
different domain in which partition trees are useful, that of partitioning 2D
or 3D space. Space partitioning is an extremely useful tool in the arsenal
of 3D graphics programmers, particularly in the context of games, which
was where I first encountered the technique.
The general idea is to start with an infinite space (e.g. the game world) and
recursively divide it into pieces. This division can happen in a number of
ways, depending on the type of tree, but we’ll start by discussing binary
space partitioning.
Binary space partitioning, as its name suggests, is the process of
recursively dividing a world into two. We start with our infinite world, split
it across a plane, then split the newly formed sub-spaces on each side across
other planes, and carry on until we run out of sub-spaces we want to split.
These terminal sub-spaces become the leaves of our tree. (Figure 2 shows
an example of the BSP construction process.) Each branch node stores the
plane which was chosen to split its sub-space into two (the splitter, or split
plane), and the tree generally satisfies the property that every node in the
sub-tree rooted at the left child of a branch node represents a sub-space in
front of that branch’s splitter, and conversely for nodes in the right sub-
tree. One consequence of the way the splitting process works is that the
sub-spaces represented by the nodes are all convex (inductive proof: the
initial world can be viewed as convex, and splitting a convex space across
a plane gives you two convex sub-spaces as a result).
As an example of this, consider Figure 3. In (a) we see the recursive
partitioning of a 2D world consisting of two rectangular rooms joined by
a short corridor, whilst (b) shows its equivalent partition tree. Branch nodes
in the tree are marked with the number of the wall they correspond to in
(a), while leaf nodes are marked either ⊥ or T (along with a Greek letter
indicating the convex subspace in (a) to which they correspond). Leaves
marked ⊥ are called empty leaves, and represent the parts of the world
which are inside the rooms/corridor (the bits a player could walk around
in, were this a game). Leaves marked T are called solid leaves, and
represent the opposite.

P

Figure 1

Stuart Golodetz has been programming for 13 years and is
studying for a computing doctorate at Oxford University. His
current work is on the automatic segmentation of abdominal
CT scans. He can be contacted at
stuart.golodetz@comlab.ox.ac.uk
24 | Overload | August 2008

FEATURESTUART GOLODETZ

a tree like this can easily answer the
question of whether any given point is in

empty or solid space
So why is this representation useful? Well, for a start, a tree like this can
easily answer the question of whether any given point is in empty or solid
space. As those of you who can remember your maths will recall, the
equation of a plane is:

where n is the unit normal of the plane, x is an arbitrary point on the plane
and d is the plane distance value. The plane normal indicates the facing of
the plane. Plugging a specific point x into this equation gives us a positive
value if x is in front of the plane, a negative value if it’s behind, and 0 if it
lies in the plane (when we call it a coplanar point).
We can therefore classify a point in terms of where it lies in relation to a
plane. To determine whether a point lies in empty or solid space, we start
by classifying it against the split plane for the root node of the tree. If it
lies in front of the plane, we recurse to the left child of the root (the child
representing the sub-space in front of the plane) and classify the point
again; if behind, we recurse to the right child. (If it lies on the plane, we

have a choice of what to do: if we recurse down the front side of the tree,
then coplanar points will be classified as being in empty space; if we
recurse down the back side, they’ll be in solid space. It’s up to us in this
case.)
Eventually we will recurse into a leaf, which has no split plane. At this
point, we return whether or not the leaf is solid as the result. This method
provides a simple (if very naive) way of doing collision detection for small
objects: we move an object, check whether its centroid is in solid space,
and perform collision resolution on it if so. (There are much better ways,
however!)
Another simple technique can be used to find the first ‘transition point’ of
a half-ray, i.e. the first point at which the half-ray first goes from empty
space to solid space, or vice-versa (the first point at which it hits a wall).
(Specifically, given a ray r(λ) = start + λ(dir), λ ≥ 0, the algorithm will
return the transition point closest to start.) The process essentially works
in a similar way to a line segment classifier, but it prioritises the side of
the tree nearest the start of the ray. Starting from the root of the tree, the

n̂ x• d– 0=

Figure 2

The BSP construction process for a simple L-shaped room: at each stage, a split plane is chosen to split the world in two, according to a
metric m based on the weighted linear combination of the balance of polygons on either side of the splitter and the number of polygons
which will be split if that splitter is chosen. The plane of a polygon with the lowest value of m is chosen. The value of m in the figure is calculated
as 8*|front - back| + 1*straddle, where front is the number of polygons completely in front of the plane, back is the number completely behind,
and straddle is the number straddling the plane. The weights 8 and 1 are somewhat arbitrary, and the ratio between them can be varied to
produce alternative trees.
August 2008 | Overload | 25

FEATURE STUART GOLODETZ

They provide us with a way to render our
polygons in back-to-front order when viewed
from an arbitrary position in the world
algorithm classifies the ray against the split plane at the current node (via
classifying its endpoints against the plane). If it is entirely on one side of
the plane, it is passed down the relevant side of the tree. If it straddles the
plane, it is split in two at the plane and the two halves are passed down
their respective sides of the tree, with the half nearest the start of the ray
being processed first and the other half only being processed if no
transition point has been found in the first half. Finally, there are a number
of annoying coplanar special cases: I don’t want to get into those here, but
the interested reader can find working code for the whole algorithm in my
transfer report [Golodetz, 08a]. The find first transition algorithm provides
a way of testing ‘line-of-sight’ in a game world (although it actually gives
you back more information than you strictly need, as line-of-sight is a
boolean value): this can be useful for AI players when deciding whether
to try and shoot you, for example. It can also provide a (slightly!) better

method of collision detection than the point-checking method above: we
check whether the ray from the object’s old location to its new location
intersects a wall, and move it back to somewhere near the first transition
point if it does (I say ‘somewhere near’ because we’re usually dealing with
objects that have extent, rather than point objects).
As a brief aside, I’ll quickly mention a reasonably good BSP-based
collision detection scheme you can use for objects with extent. This was
used in id Software’s Quake III Arena [van Waveren], with good results.
The basic idea is a configuration space one. They determine an axis-
aligned bounding box for each class of object in the game, then generate
a special collision BSP for each size of bounding box (not necessarily one
for each class of object, though this can happen if all the classes have
different bounding boxes). Quake III worlds are built up from a large
number of convex building blocks (brushes). In order to build a collision
BSP for a particular size of bounding box, they push the planes which
define each brush along their respective normals by a certain amount (thus
expanding the brush anisotropically). Each plane is moved along its
normal by the amount which would take it to the centre of the bounding
box when the box was just touching the plane (see Figure 6.4 in [van
Waveren] for a picture). The collision BSP is then built from the expanded
brushes. What this whole exercise achieves is the generation of a tree that
defines where the centroid of bounding box is allowed to go (i.e. the
configuration space for the centroid): an annoying bounding box collision
detection problem has thus been reduced to a point problem. We can then
use any scheme we like (e.g. the find first transition approach described
above) to perform the actual point-based collision detection. It should be
noted that there are a few complications to the whole approach, which are
described in [van Waveren], but this is the basic principle involved.
Collision detection aside, BSP trees are also useful for rendering. They
provide us with a way to render our polygons in back-to-front order when
viewed from an arbitrary position in the world. This was especially useful
in the days when z-buffers were still quite costly to use, but it remains a
useful technique even now when rendering transparent polygons. The
rendering algorithm is once again recursive:

Starting from the root node, classify the position of the viewer
against the split plane.
If it’s in front of the plane, recurse down the back half of the tree and
render all the polygons behind the plane, then render the polygon on
the plane itself, then recurse down the front half of the tree and
render all the polygons in front of the plane.
If it’s behind the plane, do the opposite, except that the polygon on
the plane itself isn’t rendered (we’re behind it, so it gets back-face
culled).

One very useful thing you can do with BSP trees (which saw use in id
Software’s Quake [Abrash]) is to precalculate something called the
potentially visible set (PVS) of each leaf in the tree. This basically means
calculating and caching which leaves can be viewed from which other
leaves. The way this is done is a little bit complicated, but the first step is
to calculate all the portals (doorways) between the various leaves: an
interesting and useful process in itself. Portal calculation essentially

Figure 3

A partition diagram of an example 2D world
(above) and its partition tree (below).
26 | Overload | August 2008

FEATURESTUART GOLODETZ

by combining two simple squares together,
we can create a hollow square using a

difference operation
involves clipping polygons to the tree. We build massive polygons (bigger
than our game world) on each unique plane in which one of our world
polygons lies, then clip them to the tree to get the portals. Caching the PVS
for each leaf makes rendering substantially (e.g. an order of magnitude)
faster. Instead of having to render all the polygons in the game world, we
now only have to render a small subset of them. This was one of the key
techniques that made Quake run so fast.
A final BSP-related technique worth mentioning is that of constructive
solid geometry (CSG). This is a completely general technique which
involves combining primitive solid objects into more complicated ones
using set operations (i.e. union, intersection and difference) and doesn’t
necessarily have to be implemented using BSP trees, but doing CSG using
BSP trees works rather well. Figure 4 shows the idea: by combining two
simple squares together, we can create a hollow square using a difference
operation. This sort of approach works extremely well in game level
editors, since it allows the user to create complicated worlds from a very

simple set of initial objects (e.g. cuboids, cylinders, cones and spheres).
For more details, see my undergraduate project report [Golodetz, 06].

Quadtrees and octrees
For now, let’s look at a completely different way of partitioning the world.
Quadtrees (in 2D) and octrees (their 3D analogue) are a way of sub-
dividing the world along axis-aligned planes. Consider Figure 5, in which
we imagine applying a quadtree approach to a 2D map of a river running
through a landscape. The idea is basically as follows: at each stage, we
divide the space into four along planes in the x and y directions. We have
some sort of termination criteria to tell us when to stop. For instance, we
could stop dividing a square when it contains > 95% river or land, say.

So why is this useful? One obvious application is mesh generation: if
we’ve got large homogeneous areas of land, such as in the north-west part
of the image, we don’t want to generate a fine mesh for them because it’s
wasteful. If there’s a lot of detail, however, such as in the north-east of the
image, we don’t want to miss it by having too coarse a mesh. Quadtrees
provide one solution to this problem (another would be a binary triangle
tree algorithm like ROAM – real-time optimally adapting meshes
[Duchaineau]) by effectively adapting the grid size to the local terrain.
As with BSP trees, quadtrees can be used to classify a point in the world:
in this case, we can easily determine whether a given point is part of the
river or part of the terrain by recursively classifying the point against the
tree. ‘Big deal!’, you might think, since we have the original image and
can just look it up in that. But quadtrees are a much more space-efficient
representation of the world than the original image: this allows us to
capture the useful information in the original image without keeping it
continually hanging around in memory.
There are lots of other uses of quadtrees besides dividing the terrain. One
such application is collision detection (see Figure 6). The idea of Figure 6
is basically that objects can only collide with objects in the quadrants they

Figure 5

An example quadtree for a river –
only the first 5 levels are shown.

Figure 4

A simple example of a CSG difference operation
August 2008 | Overload | 27

FEATURE STUART GOLODETZ
are in. So for instance, the square object won’t collide with the stationary
circles elsewhere in the world, so we don’t need to check for that. There’s
more to it than that, of course, such as how to change the tree when the
objects move around, but that’s another story.

Image partition trees
For now, I want to conclude this brief overview of partition trees by
returning to the image partition trees (IPTs) we started with in the
introduction. So far, the partition trees we’ve seen have been constructed
using a top-down splitting approach. This is certainly possible for IPTs,
but for the purposes of this article, I want to describe an alternative bottom-
up approach based on region merging.
The basic plan is as follows. We start by somehow generating a large
number of small regions in the image, then combine some of them to form
the next layer up in the tree, then iteratively repeat this process until we
run out of regions to merge (i.e. we get a single region at the top of the
tree: the root). At a more concrete level, the algorithms I described in my
previous articles [Golodetz, 08b] can be directly put to use here: the
watershed transform will give you a very fine initial partition of the image
into small regions, and the waterfall algorithm can be used for the actual
merging process, thereby generating a hierarchy of partitions of the image
that get coarser the further up the tree you get. (Other approaches can also
be taken here: this is merely by way of an ‘existence proof’ that it can be
done.)
Having generated an IPT, what can we do with it? Its main use (i.e. its
advantage over the simple sequence of partitions generated as the normal
output of the waterfall algorithm) is in representing how regions were
merged: it’s very useful to know that (say) a kidney and two bits of liver
were merged into a larger region, since if we identify the kidney (a process
which will remove it from consideration) then we know that the remainder
of the larger region represents the liver. It’s also useful for knowing about
parent relationships: if two regions are good candidates for being identified
as a kidney, it’s very important to know if one is the parent of the other,
since it helps us distinguish between there being two separate kidneys, and
there being two different versions of the same kidney.

Conclusion
Partition trees are a hugely useful information representation in at least two
different domains. In this article, I’ve done my best to give you a broad
overview of the various uses of spatial partition trees for things like
collision detection, rendering, constructive solid geometry, mesh
generation, and the use of image partition trees for feature identification

in images. In future articles, I hope to return to a few of the topics, such
as portal and PVS generation, and level building using CSG, in more detail.
Till then...

References
[Abrash97] Abrash, M., Graphics Programming Black Book (Special

Edition), Coriolis Group Books, July 1997.
[Duchaineau97] Duchaineau, M., et al., ‘ROAMing Terrain: Real-time

Optimally Adapting Meshes’, IEEE Visualization Journal, 1997.
[Golodetz06] Golodetz, S., A 3D Map Editor (undergraduate project

report), May 2006: http://compsci.gxstudios.net/project.pdf.
[Golodetz08a] Golodetz, S., Segmentation of Abdominal Organs and

Growth Modelling of Tumours in Renal Cancer Patients, (transfer
report), p.59, May 2008: http://dphil.gxstudios.net/transfer2.pdf.

[Golodetz08b] Golodetz, S. ‘Watersheds and Waterfalls’, Overload 83/
84, February/April 2008.

[VanWaveren01] Van Waveren, J.M.P., The Quake III Arena Bot, (MSc
Thesis), p.25 onwards, June 2001: http://www.kbs.twi.tudelft.nl/
docs/MSc/2001/Waveren_Jean-Paul_van/thesis.pdf.

Figure 6

Using a quadtree to avoid doing unnecessary
collision detection – the square remains within its
quadrant, so it will never collide with the stationary
circles and doesn’t need to be tested against them.
28 | Overload | August 2008

FEATUREALLAN KELLY
On Management
Management is a vital part of software
development. Allan Kelly starts a new series by
balancing some constraints.
s usual, Fred Brooks [Brooks75] got here first:
In many ways, managing a large computer programming project
is like managing any other large undertaking – in more ways than

most programmers believe. But in many other ways it is different –
in more ways than most professional managers expect.

A few years later [Brooks95] he pointed out how important management
is:

Some readers have found it curious that The Mythical Man Month
devotes most of the essays to the managerial aspects of software
engineering, rather than the many technical issues. This bias ...
sprang from [my] conviction that the quality of the people on a
project, and their organization and management, are much more
important factors in the success than are the tools they use or the
technical approaches they take.

Managing software development is a big topic. It is a mistake to equate
the management of software development efforts with project
management. There are project management aspects to the topic but they
are a subset of the whole. Indeed, the discipline of project management
openly acknowledges this. For example, the UK Government backed
PRINCE 2 project management techniques excludes all human resources
aspects of management.
PRINCE 2 defines a project [Commerce05] as:

A temporary organisation that is needed to produce a unique and
predefined outcome or result at a prespecified time using
predetermined resources.

While I’m sure this describes the situation some readers find themselves
in, I’m also sure that many many more of you find yourselves in a different
type of organization. You are working on something that doesn’t have an
end date, or if it does there will be another ‘project’ starting on the same
code base the next day.
Rather than call these efforts projects, a better term is products. Products,
unlike projects, go on and on. This introduces a longer time perspective
and emphasises the need to produce something tangible from the work.
Product Management is a discipline in its own right. One that is understood
much better in Silicon Valley and the US than it is in the UK and Europe.
You can replace the word Project with the word Product but you can’t
replace a Project Manager with a Product Manager as the roles are
different. More importantly the skills needed for each, and the training
given to each, are different.
Then there is all the other management stuff: recruitment, retention,
assessment, business strategy, etc., etc. In other words: there is a lot to be
said about management in the software development arena.
Unfortunately, a lot of people have come to believe that ‘project
management’ is the way to manage all IT. It isn’t. There is a lot more to
‘software development management’ than managing the project. Limiting
our view of management to ‘project management’ risks harming our work.

So I have decided Overload needs a new series, ‘On Management’. We’ll
start with Project Management, move through into Product Management
and take in some of the other stuff along the way. No time scales, no
promises, no defined route, design will be emergent.
In this, and future, articles, I will not hide my agreement with Agile and
Lean thinking. Indeed I will take many of the Agile practices as given.
Agile is a brand, a powerful brand, and a brand that gets most things right.
But it is also a brand that gets people’s backs up. It’s also a brand that
doesn’t go far enough in some respects.
When it comes to management most Agile management practices are just
plain good management. I know not everyone agrees with Agile ideas –
and I don’t agree with every word ever written about Agile development
– but at present I think Agile represents the current state of the art.
Product management, strategy, IT strategy, financing, human resources –
recruitment, retention, objective setting, compensation, succession
planning, and more – much more. There is plenty of material here. So best
to get started...

Triangle of constraints
All software is developed under constraints but there are three which are
more important than others: time, resources and features [McCarthy95].
Others could be added, money being the obvious: Money is, economists
like to tell us, fungible. Which is another way of saying it can be exchanged
for other things very easily. Money can be exchanged for resources such
as a new developer, thereby increasing our resources. Or money may pay
for overtime working thereby increasing the time we have on a project.
The net result is that introducing money complicates things. Since (almost)
everything can be reduced, or replaced, by money, this analysis leaves
money to one side. Rather it is better to regard cost as a function of time
and resources, and revenue as a function of features. If we increase the time
or resources then costs will increase, and if cost needs to be reduced then
resources and/or time needs to be reduced.
Resources is a rather elastic word as well and can include just about
anything. In the name of simplicity, in this context resources is taken to
mean people (developer, testers, etc.) and the tools they need to do their
job.
These three parameters can be thought of as a triangle, as shown in
Figure 1.

A

Allan Kelly After years at the code-face Allan realised that
most of the problems faced by software developers are not in
the code but in the management of projects and products. He
now works as a consultant and trainer to address these
problems by helping teams adopt Agile methods and improve
development practices and processes. He can be contacted
at allan@allankelly.net and maintains a blog at
http://allankelly.blogspot.net.
August 2008 | Overload | 29

FEATURE ALLAN KELLY

The future is uncertain, and the degree of
uncertainty increases in proportion to the
length of time considered
Lesson 1: Time, resources and features are the critical factors
that require managing. But they are not the only factors.

All software development takes place within such a triangle. As with any
triangle it is not possible to change one of the three parameters without
changing another:

More features must be accommodated by either increasing the
amount of time available or adding more resources.
Delivering a project in less time requires more resources or a
reduction in features.
Adding more people (resources) to the project, in theory, either
reduces the amount of time it will take or allows for more features –
except...

The people issue
That last bullet point sounds OK, doesn’t it? Except the way it usually
works is that adding more people invokes Brooks’ Law [Brooks75]:

adding more people to a project a late software project makes it later

Adding people to a project comes at a cost. New people need time to come
up to speed on the system being developed, the requirements, the existing
code base, the technology, etc., etc. Consequently, in the short run the
resources on a project are effectively fixed and adding more people will
delay the work.
In the long run people can be added to a project, and they can increase the
capacity to undertake work but they come at a cost. Therefore, as Brooks’
Law states, if the project is late, adding more people will make it later.
However, if a project is not late, or rather if the project is managed actively,
people may be added to the project without too much detriment. Projects
which plan to add people can do it in an orderly fashion.

Lesson 2: Adding people to a project needs to be done in an
orderly fashion.

In fact, it is essential to add people to a project over time because there is
a natural tendency for people to leave a project. People get offered better
jobs, people take time off for health and personal reasons, overseas
workers decide to go home, and people retire.

Lesson 3: Active management seeks to slowly expand a team
to compensate for natural loss.

Obviously there are times when this is inappropriate, such as when a
project is winding down. There are also occasions were it is more important
to add people.
The net result of these forces is that, for any project, in the short term the
resources available are fixed or even reducing. (The short term may be as
short as three months or as long as a year.) Only in the long term can
resources be increased and even then major increases in resources are not
possible.
Consequently, managing software development becomes an exercise in:

Human resource management: motivating people, retaining people,
hiring people and training people.
Managing the time v. feature trade off.

Neither of these trade-offs is, strictly speaking, a Project Management task.
Project management techniques like PRINCE 2 explicitly exclude
managing people. While a Project Manager may be able to offer advice on
time considerations, the decision on whether to include or sacrifice a
feature is a job for someone well versed in business need. This is a job for
a Product Manager or a Business Analyst.

Lesson 4: Human Resource Management is not part of Project
Management. However, when managing a project many of the
issues are people issues.

Time v. features
It’s obvious really: the more time a team has, the more work it can do and
the more features it can implement. However, the longer a piece of work
is scheduled to last the greater the expectations and the greater the risk.
The future is uncertain, and the degree of uncertainty increases in
proportion to the length of time considered. Next week is more uncertain
than tomorrow, and next year more so. A competitor may launch a product
and steal the market, legal changes may limit the product’s application –
as happened to some online gaming companies – or economic changes may
render the software unprofitable.
Neither is it just risk that increases with time: technology advances. New
operating systems, new chips, new discoveries may undermine the
software under development or require re-work.

Figure 1
30 | Overload | August 2008

FEATUREALLAN KELLY

A late product, no matter how well
engineered it may be, is often worthless
Lesson 5: The further you look ahead the greater the
uncertainty.

In order to cope with these difficulties – and others – it is necessary to
consider shorter time frames. There is significantly less risk attached to
product development which lasts six months than one lasting two years.
Less risk equates to less cost but there is also revenue to consider. A
product that ships in six months will start earning revenue for the builder
in a quarter of the time it takes the longer project. This means cash will
start flowing that much sooner – especially useful for start-up companies.
However, shipping a product in a reduced time frame creates two
problems, one technical and one social.

A technical problem
Technically software engineers are taught to, well, engineer. To design
systems that are resilient to change and will stand the test of time. To stand
like a bridge for a hundred years. But software faces different economics
to bridges and buildings.
Unlike most construction projects, most of the costs of software occur after
it is initially released – what is euphemistically called the maintenance
phase. It is hard to foresee the changes that are required during this phase.
A building may be designed by one individual, or by a small group of
individuals. It is then constructed by another, larger, group of people.
However, there is little design, innovation or problem solving during this
phase. Much of the work is performed to industry standards. Therefore the
final structure mostly resembles the original design.
Design, innovation and problem solving occur at every step of software
development. Deciding whether to divide a piece of work into several
classes each with one function or one class with several functions is a
design decision left to individual developers. The scale of the task is such
that the designer, or architect, cannot have sight of all the decisions unless
they actually perform the work themselves.

Consequently software is the ongoing work of many minds rather than a
few. Naturally there will be differences of opinion and approach.
Software development is often opportune: if released at the right time the
software can fill a market need and make profit. Releasing the same
software later may miss the opportunity. Therefore the pressure to ‘get
something’ delivered is high.
A late product, no matter how well engineered it may be, is often worthless.
But a timely product, no matter how bad, may be worth millions. This
dilemma creates the conditions for adverse selection. Poorly engineered
or designed products may often be better positioned to win. This problem
has been called worse is better [Gabriel90].
These problems bedevil software developers. Software engineers have yet
to find ways of developing software that allow for good design without
imposing excessive economic costs. Test-driven design, rough up-front
design and refactoring are part of that solution but not the entire solution.

Prioritisation
The second problem a reduced timeframe creates is the need to decide
which features are included and which are left out. According to our
triangle, with fixed resources, if we reduce time we must reduce the feature
set.
Unfortunately this requires tough choices. Development projects are often
like trains. They don’t leave the station very often and when they do you
are either on it or you are not. People will pay a lot of money to be on a
train, or squeeze themselves into a small space rather than wait for the next
one. Worse still, with software projects it is not always clear that there will
be another one.
Consequently lots of people want their requests included in a software
project. Since including a request is relatively cheap there is little incentive
not to include it. Indeed, not including a request risks offending or
upsetting someone, therefore there is an understandable momentum for
including it.
At some point decisions about which features are included and which are
not need to be made. Postponing these decisions is bad for the development
team because they have to consider all requests – or at least read the
documents – and most likely spend time discussing requirements with
stakeholders.
Postponing decisions makes sense not only from a social point of view but
also from a business point of view. The option to develop a new feature,
or not to develop a feature, is exactly that: an option. Economics, again,
shows that options are valuable. (If you want to know the details read up
on Real Options which apply ideas from financial options to real life
problems.)
What is needed is a clear prioritisation process for the development team.
The team need to know what work is required for the next development
period and which is not. They should then ignore all other requests, to
consider any element would unbalance the economics.

Most people who have formally studied software development and
engineering will have been taught that 80% of the cost and effort
expended on software occurs not in the development phase but rather
during the later life time of the software, the maintenance phase.

But far fewer people appreciate the corollary of this. If this rule holds for
all software, it follows that 80% of a developer’s career will be spent
maintaining existing software, or possibly that 80% of developers will
spend their entire career maintaining software.

Given that, it might be reasonable to assume that 80% of the research
into software development considers the maintenance phase, or that
80% of the publication relate to maintaining software. Yet neither seems
to be the case.

The maintenance phase corollary
August 2008 | Overload | 31

FEATURE ALLAN KELLY

To date software engineering has done
developers a disservice by allowing
engineering to become top heavy
In order to have clear prioritisation somebody – or some group of people
– must be able to make a decision. This individual needs to have all the
information necessary to make the decision, they must be trusted by the
organization and they must be empowered to make these decisions and
make them at the right time.
This role is that of Product Manager. Not all organizations have Product
Managers in name – they have different titles, like Business Analyst or
Product Owner – but many organizations simply do not have Product
Managers at all.

Lesson 6: Product Managers are needed to decide what goes
in, and what does not go in, each software release.

In some organizations Project Managers fill this function. The problem
here is that Project Managers are trained in a different skill set. They are
trained for estimating, project scheduling, risk assessment, issue and
progress tracking, reporting and such. They are not trained to gather
information from disparate sources and make business value judgements.
Priorities should be communicated to development teams in unambiguous
terms. The simplest way to do this is to prioritise requests as 1, 2, 3, and
so on where no two items are allowed to have the same priority. So there
is only one number one priority, one number two and so on.

Lesson 7: Priorities need to be unambiguously spelt out to
teams

Some organizations use the so called ‘MoSCoW’ rules to categorise items
as Must Have, Should Have, Could Have and Will Not Have (or Would
like to Have). Such prioritisations are an abdication of responsibility on
the part of the business. Asking a team to develop five ‘Must have’ features
turns over the decision to the development team – when this happens the
business loses its right to complain about the result.

Conclusion
The triangle of constraints governs all software development. Add to it
Brooks’ Law and all decisions come down to questions of how long a
project will take, and which features are included.
To date software engineering has done developers a disservice by allowing
engineering to become top heavy. New engineering techniques are needed
that can be used in short cycles.
The business side of work also faces a challenge: to straighten out the
prioritisation process. There is one ready made answer: to embrace Product
Management but unfortunately too few organization are using these
techniques. Neither is this any guarantee, product management can be done
badly or it can be done well.
And this is just the tip of the iceberg when it comes to managing software
development. A future article will discuss the role of Product Management
in depth, but before then, the next instalment will discuss quality, time-
boxing and focus.

Acknowledgements
Thanks to Ric Parkin and the Overload team for comments and
suggestions.

References
[Brooks75] Brooks, F., 1975, The mythical man month: essays on

software engineering,Addison-Wesley.
[Brooks95] Brooks, F., 1995, The mythical man month: essays on

software engineering, Anniversary edition Edition: Addison-
Wesley.

[Commerce05] Commerce, Office of Government, 2005, Managing
Successful Projects with PRINCE2, Fourth Edition. London: TSO
(The Stationary Office), page 7.

[Gabriel90] Gabriel, R.P., 1990, ‘Worse is Better’ in EuroPAL.
Cambridge.

[McCarthy95] McCarthy, J., 1995, Dynamics of Software Development,
Microsoft Press.
32 | Overload | August 2008

	It’s good to talk...
	DynamicAny, Part I
	Performitis - Part 2
	Globals, Singletons and Parameters
	Exceptions Make for Elegant Code
	Divide and Conquer: Partition Trees and Their Uses
	On Management

