

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 The Model Student: Can Chance Make Fine
Things? (Part 2)
Richard Harris models the evolution of
populations.

12 Model View Controller with Java Swing
Paul Grenyer redesigns his user interface.

20 On Management: Understanding Who
Creates Software
Allan Kelly looks at software organisations.

24 The Legion’s Revolting
Stuart Golodetz cuts his model down to size.

29 Iterators and Memberspaces
Roel Vanhout shows how to expose member data
cleanly.

34 Generics without Templates - Revisited
Robert Jones re-implements parts of the STL for
limited compilers.

OVERLOAD 88

December 2008

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Richard Blundell
richard.blundell@gmail.com

Simon Farnsworth
simon@farnz.co.uk

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Paul Thomas
pthomas@spongelava.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@cthree.org

Copy deadlines
All articles intended for publication in
Overload 89 should be submitted by
1st January 2009 and for
Overload 90 by 1st March 2009.

EDITORIAL RIC PARKIN
The Sweet Smell of Success
If your last project wasn’t successful, you’re not alone...
Apparently most software projects fail [Standish]. A
scarily high statistic, but how do you decide if a project
has indeed failed? What do ‘fail’ and ‘succeed’ mean?
At the most simplistic, a successful project has achieved
its goals and a failing project hasn’t to a greater or lesser

degree. (Of course, if it doesn’t have any goals then it’s very hard to decide
whether or not it has succeeded, but a project with no goals isn’t very
interesting.) So lets expand the concept of ‘goals’ a bit, and see how not
meeting them causes failures.
The most general goal is ‘deliver enough value to have been worth it’. This
is still pretty vague, but it does start to produce some insights: the first
thing is to deliver – a project is an obvious failure if it has never been
finished, but it also won’t have delivered if no one uses it, either because
no users exist, or they've got it but don't use it (this latter is a bit more subtle
if you sell your software – you might have got the money for the first sale,
but you’re unlikely to get repeat sales if the users aren’t happy.)
But what of a project that is still being written? It’s not yet delivering any
value, so it cannot be thought of as successful or not, just ‘in progress’.
This is one of the problems of those over-long projects that go on for years
– until the first user starts getting some value out of it, the project is just
pure cost. This is one reason why early delivery of incomplete systems is
such a good idea – apart from getting feedback on what you have done as
soon as possible so you can adjust your future plans, the system can start
earning its keep while you implement the next stage.
But what is this vague sounding word ‘value’? Well, it is a measure of what
is important to the person paying for the work. This could be the obvious
monetary measure, but could just as easily be measured in improved
performance, or just making the user’s life a bit easier and making them
happier with the system. But delivering a small amount of value at a large
cost isn’t a good trade-off, so there must be a minimum level to have made
the effort worthwhile. To do that we must compare the value gained to the
cost of achieving that gain.
That cost can comprise several aspects – again there’s the obvious
monetary cost of computers, tools and people’s wages. A more subtle cost
is the ‘opportunity cost’ – while you were implementing feature X, you
have given up the opportunity to do feature Y instead. This gets really
noticeable when you take the huge decision to scrap an existing system
and reimplement – all the time and effort taken to redo it could have been
spent enhancing the existing system with completely new features, or
improving the performance and reliability. And starting from an existing
system will generally mean you’ve an already stable, working codebase,
which makes incremental improvements and delivery easier and more
predictable.

“I didn't fail the test, I just found 100 ways to do it
wrong” – Benjamin Franklin

So in what ways could a project fail? Remember,
though, that failing is not an all-or-nothing idea,
it just means that in some way it fell short of

success, perhaps by only a little. A good starting point would be to consider
the three classic aspects you try to manage: Features, Quality and Time.
Failing on features reduces the utility of what is delivered, and thus
reduces the amount of value delivered. In project management, when
something has to give, this is often the compromise of choice, especially
if you make sure the vital features are done first and then you can drop the
Nice-To-Haves and optional extras if things look tight.
There’s a more insidious way to fail on features though – doing the wrong
ones. Creating features that few or no people use is a waste of time, effort
and opportunity. This is why it is vital to get a really good idea of what
users actually need and their relative importance. Other problems are
implementing features that you think might be useful, but no one really
knows for sure. This is pretty common when you’re creating something
brand new, as you are having to predict based on very little evidence or
experience.
Failing on the level of quality can have serious effects – buggy code can
be an irritant that slows users down (so they get less value), really bad bugs
can prevent the system working at all, and could even cause so much pain
and effort to get to work that the net effect is negative over previous
systems. Some software can be so critical that failures can cause fatalities.
Failing on time, in the form of not delivering by the promised date, is
depressingly common in our industry, and I suspect accounts for most
projects counted as failures. In the worst case, the project is cancelled
outright, 50% to 100% overrun is not uncommon in my experience, but
even delivering slightly late can have serious effects on a business, from
loss of time to spend on other opportunities reducing the business’
competitiveness, to contract penalty clauses, and ultimately going under
because a competitor got their software out sooner.
As an aside, I suspect this effect can cause poor software to be common.
Consider a market with two competitors. Company A takes six months and
releases a limited and buggy product. Company B tries to do the ‘right
thing’, and takes a year to ship a full featured, robust product. But product
A has already been shipping for six months and has dominated the market,
so product B sells poorly, and the company goes under. A sting in the tail
is that there’s no longer as large an incentive for Company A to further
improve their product.
But it seems that being late is often not that serious an issue – many
projects deliver late but are otherwise successes. As long as the company
hasn’t suffered majorly in the meantime – perhaps a previous version of
the system is still selling well enough – then such delays can be absorbed.

So, what causes these failures?
Doing the wrong features can stem from poorly understanding the target
market and its needs. And don’t confuse what the user says they want with
what they actually need – quite often a feature request is someone’s idea
of how they think a problem can be solved, and there can be a better
solution if you can find out what is the real underlying problem. Another
cause is a form of Priority Inflation – a suggestion that something might
be considered is included as a Nice-To-Have, which mysteriously

Ric Parkin has been programming professionally for nearly 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him and is now organising the ACCU Cambridge local meetings. He can be
contacted at ric.parkin@gmail.com.
2 | Overload | December 2008

EDITORIALRIC PARKIN
becomes a Priority and is then translated into a Show-Stopper. These sorts
of misunderstandings could be caused by the marketing department not
functioning well, having a brand new and unknown market where the
customers don’t even know what would work, or the developers not
understanding what is needed – a lot of these are communication
problems.

A hard issue to address is the natural tendency for developers to want to
do something cool and new – it might well be interesting to rewrite
everything in a brand new language, but can it really be justified that it is
the best thing to do? Worst of all if the people suggesting such a move
have the power to push it though – the hardest customer to say no to is
your manager or architect who has a pet feature they want to do.

Poor quality has a myriad of causes, but the most pernicious is for the
development system as a whole to not have a solid commitment to it. Even
if individuals and teams want to do the right thing, it’s very easy for corners
to be cut especially in the face of an important deadline, or a customer
offering a big order. In a sense the way that software is comparatively easy
to change is a cause of this problem – quality can quickly be compromised
because of a last minute ‘can we just get this change in? It’s a little one I
promise!’ Even in the best teams with the best of intentions, it’s all too
easy to put something in late in the development cycle with not enough
time to verify that your (no doubt carefully considered) reasoning was in
fact accurate and it is a safe change. Here I find Agile methods can cause
problems – if your release cycle is very short then there is never enough
time to flush out any subtle problems, so there’s a pressure not to do
anything unless it’s trivial and important issues get postponed.

Being late is easy. All you have to do is promise too much and
underestimate the time it takes to implement – and politically that might
be done to ‘sell’ the project, deliberately or unconsciously. The real killer
factor here is the interrelationships: the simple estimation technique I
suggested last issue works well for small isolated tasks, and also extends
well to combine strings of subtasks into a bigger estimate. But one thing
it is easy to miss are the interactions between tasks and existing systems.
If you do one thing in isolation, you have one estimate. Do two things and
you have two estimates, plus one interaction that may generate a third
small task to fix. Do three things, and you’ve three estimates, plus three
interactions. And so on until the interactions dominate and you can’t get
anything done. This effect is why I think principles such as ‘Separation
Of Concerns’, and ‘Program to an Interface not an Implementation’ work
– they cause you to organise your design such that the interactions are
reduced to a manageable level and things are isolated enough to get a grip
on. In a similar manner, incremental implementation and delivery avoids
biting off more than you can chew, and can let systems settle down,
stabilise, and unforeseen problems fixed, before doing the next round.

But for all those ‘failures’, it is surprising just how many projects deliver
something worthwhile, and are fantastic opportunities from which to learn
lessons that can be applied to the next project. As Ralph Waldo Emerson
put it, ‘Our greatest glory is not in never failing, but in rising up every time
we fail.’

Economic turmoil
While writing my last editorial I noted how things were going a little odd
in the financial world, and how hopefully things would have settled down
and the consequences had become clearer by the time you read it. Well,
another editorial and things have got worse, with the outlook rather bleak
for the next year or two (if we’re lucky.) The big difference now is that
this is no longer just a financial crisis, and everyday companies and people
are now being affected. Otherwise healthy companies are deferring major
investments in new projects, or cancelling until things become more
stable; similarly with spending decisions – only buy when absolutely
necessary, and so products aren’t selling as well as forecast. All those nice
optimistic sales forecasts are now out of date overnight, and no one has a
clue what’s going to happen next, and so companies understandably have
to re-plan for an uncertain future.
But the personal cost of this can be great, as excellent people find
themselves without a job. Having been made redundant myself in the wake
of the dotcom bubble, I know how difficult it can be to know where to start
sorting things out, but also how much the ACCU can be of help – just being
a member looks good on a CV (and writing articles and giving talks even
better!) and the networking aspects such as accu-contacts and the local
meetings can really help to get the ideas and contacts that lead to that next
job (and did you know there are also informal Facebook and LinkedIn
groups?).

Le C++ nouveau est arrivé!
And to finish, some good news. Towards the end of September, the C++
committee met up and a major milestone happened: the draft of the new
C++ standard [WG21] was published for an international ballot. This is
essentially the feature-complete release, sent out to the beta testers (ie the
national bodies) ready for some bugfixing. The first review is now
happening, a second will happen next year and then the standard will be
ratified – the intention is for it to happen towards the end of 2009, so it
will indeed be C++09. Several compilers are already implementing parts
– GCC has various features as options, patches and branches [GCC],
Microsoft’s early preview of Visual Studio 10
[Microsoft] has some too, and Codegear [CodeGear] are
also working hard at the new features. Time to get
experimenting!

References
[CodeGear] http://www.codegear.com/products/cppbuilder/whats-new/
[GCC] http://gcc.gnu.org/projects/cxx0x.html
[Microsoft] https://connect.microsoft.com/VisualStudio/content/

content.aspx?ContentID=9790
[Standish] http://www.standishgroup.com/ produce a series of CHAOS

reports into software projects. Their results fairly consistently report
around 70-80% of projects fail or are challenged.

[WG21] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/
n2798.pdf
December 2008 | Overload | 3

FEATURE RICHARD HARRIS
The Model Student: Can Chance
Make Fine Things? (Part 2)
How well does evolution find solutions?
Richard Harris models population change.
ast time we built a library with which we will simulate the process of
evolution in the hope that we can use it to gain some insight into if
and how evolution works in the real world. All that was left to do was

implement a biochem complex enough to act as an analogue of the
relationship between the genetic makeup of a real world creature and its
physical properties. What I’d really like to use would be a model of engine
efficiency and power such as I used to illustrate the Pareto optimal front.
Unfortunately, such models are complicated. Really complicated. We’re
talking advanced computational fluid dynamics to even work out what
happens inside a piston [Meinkel97].
So instead, I’m going use randomly generated functions with several peaks
and troughs. Thankfully, it’s really easy to construct such functions by
adding together a set of randomly weighted constituent functions, known
as basis functions. Specifically I’m going to use radial basis functions, so
named because they depend only on how far an evaluated point is from a
central point.
There are quite a few radial basis functions to choose from. I shall use one
we have already come across; the Gaussian function. This is the probability
density function of the normal distribution and has the form

Its shape is illustrated in Figure 1.
We don’t require that the function integrates to one over the entire real line,
so shall replace the scaling factor with a simple weighting value. We also
want to generalise to more than one dimension so must slightly change the
exponentiated term. The functions we shall use will have the form

The means the square of the straight line, or Euclidean, distance
between the points x and and is easily calculated by summing the
squares of the differences between each element of the vectors
representing the coordinates of those points. Each function in the set will
have its own weight wi and they all share a scaling factor c applied to the
squared distance. We shall restrict the arguments of our functions to values
between zero and one, so I shall choose this scaling factor so that, rather
arbitrarily, a distance of 0.1 corresponds to a 50% drop in the value of the
function from its maximum at a distance of zero. This implies that

Taking logs of both sides yields

Figure 2 illustrates one such function, in one dimension, constructed from
8 basis functions with centres randomly chosen from the range 0.2 to 0.8
and weights randomly chosen from the range -1 to 1.
Implementing a two dimensional version of this is reasonably
straightforward. Listing 1 shows the class definition for our random
function.
The node nested class represents a single, randomly centred and weighted,
basis function supporting function call semantics through operator().
The random_function class maintains a set of nodes and sums the
results of the function calls to each of them in its own operator().
So let’s take a look at the implementation of node’s member functions
(Listing 2).
I’m a little ashamed to have hard coded the ranges of the central points and
weights. However, we’re only going to use it during our simulations, so I
think it’s probably forgivable in this instance.

L

f x μ σ,;() 1
σ 2π
--------------e

x μ–()– 2

2σ2

=

fi x() wie
c x μi– 2–=

x μi– 2

μi

0.5 e 0.01c–=

0.01c– 0.5ln 0.7–≈=

c 70=

Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and
numerical computing and is currently employed writing
software for financial regulation.

Figure 1

Figure 2

A one-dimensional random function

The Gaussian function
4 | Overload | December 2008

FEATURERICHARD HARRIS

I’m going to use radial basis functions, so
named because they depend only on how far

an evaluated point is from a central point
Now we can take a look at the implementation of random_function.
First off, the constructors (Listing 3).
Both are pretty simple. The initialising constructor simply pushes the
required number of default constructed nodes onto the nodes_
collection, relying upon their constructors to randomly initialise them.
The function call operator is also pretty straightforward (Listing 4).
As described before, this simply iterates over the nodes_, summing the
results of each function call.
At long last we’re ready to implement a specialisation of biochem
(Listing 5).Listing 1

namespace evolve
{
 class random_function :
 public std::binary_function<double,
 double, double>
 {
 class node
 {
 public:
 node();
 double operator()(double x, double y) const;
 private:
 double x_;
 double y_;
 double w_;
 };
 typedef std::vector<node> nodes_type;
 public:
 random_function();
 explicit random_function(size_t nodes);
 double operator()(double x, double y) const;
 private:
 nodes_type nodes_;
 };
}

Listing 2

evolve::random_function::node::node() :
 x_(rnd(0.6)+0.2),
 y_(rnd(0.6)+0.2),
 w_(rnd(2.0)-1.0)
{
}
double
evolve::random_function::node::operator()(
 double x, double y) const
{
 double d2 = (x-x_)*(x-x_)+(y-y_)*(y-y_);
 return w_*exp(-70.0*d2);
}

Listing 3

evolve::random_function::random_function()
{
}
evolve::random_function::random_function(
 size_t nodes)
{
 nodes_.reserve(nodes);
 while(nodes--) nodes_.push_back(node());
}

Listing 4

double
evolve::random_function::operator()(
 double x, double y) const
{
 double result = 0.0;
 nodes_type::const_iterator first =
 nodes_.begin();
 nodes_type::const_iterator last =
 nodes_.end();
 while(first!=last) result += (*first++)(x, y);
 return result;
}

Listing 5

class example_biochem : public evolve::biochem
{
public:
 explicit example_biochem(size_t nodes);
 virtual size_t genome_base() const;
 virtual size_t genome_size() const;
 virtual size_t phenome_size() const;
 virtual double p_select() const;
 virtual void develop(
 const genome_type &genome,
 phenome_type &phenome) const;

private:
 enum {precision=5};

 double make_x(const genome_type &genome) const;
 double make_y(const genome_type &genome) const;
 double make_var(
 genome_type::const_iterator first,
 genome_type::const_iterator last) const;
 evolve::random_function f1_;
 evolve::random_function f2_;
 };
December 2008 | Overload | 5

FEATURE RICHARD HARRIS

the develop member function is
responsible for mapping from the genome
to the phenome
Listing 8

 double
 example_biochem::make_x(
 const genome_type &genome) const
 {
 if(genome.size()!=genome_size())
 throw std::invalid_argument("");
 return make_var(genome.begin(),
 genome.begin()+precision);
 }
 double
 example_biochem::make_y(
 const genome_type &genome) const
 {
 if(genome.size()!=genome_size())
 throw std::invalid_argument("");
 return make_var(genome.begin()+precision,
 genome.end());
 }

The example_biochem treats the genome as a discrete representation of
two variables each with precision, or five, digits each. The two
random_functions map these variables onto a two dimensional
phenome. We hard code the biochem properties to reflect this, as
illustrated in Listing 6.
Note that we’re sticking with the selection probability of 0.9 that we used
in our original model.
The constructor simply initialises the two random_functions with the
required number of nodes.
 example_biochem::example_biochem(
 size_t nodes) : f1_(nodes), f2_(nodes)
 {
 }

As you no doubt recall, the develop member function is responsible for
mapping from the genome to the phenome and our example does so using
the make_x and make_y member functions to create the two variables
we need for the random_functions from the genome. (See Listing 7.)
The make_x and make_y member functions themselves simply forward
to the make_var member function with each of the two precision digit
halves of the genome (Listing 8).
The make_var function maps an iterator range to a variable between zero
and one. It does this by treating the elements in the range as progressively
smaller digits, dividing the multiplying factor by the genome_base at
each step to accomplish this.
Since we’re using base 10, this is equivalent to simply putting a decimal
point at the start of the sequence of digits. The elements 1, 2, 3, 4 and 5

Listing 6

 size_t
 example_biochem::genome_base() const
 {
 return 10;
 }
 size_t
 example_biochem::genome_size() const
 {
 return 2*precision;
 }
 size_t
 example_biochem::phenome_size() const
 {
 return 2;
 }
 double
 example_biochem::p_select() const
 {
 return 0.9;
 }

Listing 7

 void
 example_biochem::develop(
 const genome_type &genome,
 phenome_type &phenome) const
 {
 if(genome.size()!=genome_size())
 throw std::logic_error("");
 phenome.resize(phenome_size());
 double x = make_x(genome);
 double y = make_y(genome);
 phenome[0] = f1_(x, y);
 phenome[1] = f2_(x, y);
 }

Listing 9

 double
 example_biochem::make_var(
 genome_type::const_iterator first,
 genome_type::const_iterator last) const
 {
 double var = 0.0;
 double mult = 1.0;
 while(first!=last)
 {
 mult /= double(genome_base());
 var += *first++ * mult;
 }
 return var;
 }
6 | Overload | December 2008

FEATURERICHARD HARRIS
would therefore map to 0.12345.
So what are the results of a simulation based on our example_biochem?
Figure 3 illustrates the distribution of the phenomes of a population of
100 individuals from their initial state to their states after 10, 50 and
250 generations.
Well, it certainly looks like the population converges to a Pareto
optimal front. However, we cannot be certain that there are not any better
trade offs between the two functions. To check, we’ll need to take a
comprehensive sample of the two variables and record the optimal front.
We can do this by maintaining a list of undominated points. As we test each
new point, we check to see if it is dominated by any in the list. If not, we
remove any points in the list that it dominates and finally add it to the list.
In order to calculate the function values for any point, we first need to add
another member function to example_biochem. The function call
operator seems a reasonable choice and its implementation is illustrated
in Listing 10.
Now we can implement a function to sample the optimal front.
 typedef std::pair<double, double> point;
 typedef std::vector<std::pair<point,
 point> > front;
 front sample_front(size_t n,
 const example_biochem &b);

Note that the std::pair of points represents the two input variables
with its first member and the two elements of the output phenome with
its second member.
The implementation of sample_front (Listing 11) follows the scheme
outlined above, slicing each of the variables into n samples and iterating
over them, filling up the sample of the optimal front.
T h e t w o h e l pe r f un c t i o ns , on_sample_fron t and
remove_dominated, implement the check that a point is not dominated
by any already in the list and the removal of any that it dominates
respectively. (See Listing 12.)

Figure 3

Listing 10

class example_biochem : public evolve::biochem
{
public:
 ...
 std::pair<double, double> operator()(double x,
 double y) const;
 ...
};
std::pair<double, double>
example_biochem::operator()(double x,
 double y) const
{
 return std::make_pair(f1_(x, y), f2_(x, y));
}

December 2008 | Overload | 7

FEATURE RICHARD HARRIS
Note that the loop condition in on_sample_front and the comparison
at the heart of remove_dominated are simply hard coded versions of
the complement of the pareto_compare function we developed earlier.
Note that for n samples of each variable, the sample_front function
must iterate over n2 points, making approximately O(n) comparisons at
each step (since the optimal front is a line in the plane). We can’t therefore
afford to work to the same precision as we do in the simulation itself.
Figure 4 adds the 100 by 100 point sample of the optimal front to the final
state of our earlier simulation.

Well, our simulation has certainly ended up distributed along part of the
optimal front, but seems to have missed an entire section of it. To see why,
we need to take a look at how the points whose values lie on the optimal
front are distributed.
This requires a further change to the example_biochem. To compute the
distribution of the variables represented by the genomes, we need to make
the make_x and make_y member functions public. Figure 5 compares the
final distribution of points in our simulation to the set comprising the
sample of the Pareto optimal front.
Clearly our population has converged on only one of the two regions
from which the optimal front is formed. The question is, why?
To investigate this, we need to examine the properties of our
example_biochem near each of the two regions of the optimal front. We
do this by sampling squares of side 0.3 centred on the mid points of the
two regions, as illustrated along with the results in Figure 6.
The 100 point uniform sample of the two regions clearly shows that points
in the region of the rightmost front, marked with + symbols, are dominated
by points in the region of the leftmost, marked with x symbols. The
evolution process during our simulation has therefore converged on the
portion of the optimal front located in the generally better region.
So presumably, if our example_biochem were to have several mutually
dominant regions, we should expect to find individuals populating many
of them. Well, sometimes, as Figure 7 illustrates.
In this case the front is formed from 3 separate regions, of which 2 are
represented in the final population. Such regions will not necessarily
persist for the duration of a simulation, however. In many cases multiple
optimal regions will be populated part way through a simulation, only to
disappear by the end. This is due to an effect known as genetic drift, which
is also observed in the natural world [Frankham02].
In a small population, a less densely occupied region has a relatively large
risk of being out competed by a more densely occupied region. The latter
will likely have a greater number of dominant individuals and hence
a better chance of representation after selection. The cumulative effect is
that the population can converge on a single region, even if that region is
not quantitatively better than the other. This can be mitigated with
geographically separated sub populations or, in the terms of our model,
several independent simulations. If the loss of diversity is solely due to
genetic drift, different simulations will converge on different optimal
regions and the combination of the final states will yield a more complete
picture of the optimal front.
Returning to the argument that evolution cannot create information, only
destroy it, one could argue that the success of our simulation is due to the
initial random distribution of individuals in the population. Could

Listing 11

front
sample_front(size_t n, const example_biochem &b)
{
 front sample;
 for(size_t i=0;i!=n;++i)
 {
 for(size_t j=0;j!=n;++j)
 {
 double x = double(i) / double(n);
 double y = double(j) / double(n);
 point val = b(x, y);
 if(on_sample_front(val, sample))
 {
 remove_dominated(val, sample);
 sample.push_back(std::make_pair(
 point(x, y), val));
 }
 }
 }
 return sample;
}

Listing 12

bool
on_sample_front(const point &value,
 const front &sample)
{
 front::const_iterator first = sample.begin();
 front::const_iterator last = sample.end();
 while(first!=last &&
 (value.first>=first->second.first ||
 value.second>=first->second.second))
 {
 ++first;
 }
 return first==last;
}
void
remove_dominated(const point &value,
 front &sample)
{
 front::iterator first = sample.begin();
 while(first!=sample.end())
 {
 if(value.first>=first->second.first &&
 value.second>=first->second.second)
 {
 first = sample.erase(first);
 }
 else
 {
 ++first;
 }
 }
}

Figure 4
8 | Overload | December 2008

December 2008 | Overload | 9

FEATURERICHARD HARRIS

Figure 5

Figure 6

Figure 7

FEATURE RICHARD HARRIS
evolution simply be concentrating on the best region of the initial sample,
rather than seeking out novelty?
This question is easily answered by forcing the individuals in the initial
population to start at the same point. This requires a couple of minor
changes to the individual and population classes.
Listing 13 shows the new constructors we need to add to these classes.
Their implementation is pretty straightforward, replacing the random
initialisation of the phenome with assignment to the initial value. (See
Listing 14.)
Note that we don’t call reset in the new population constructor since
this time we want all of the individuals to be the same.
Figure 8 shows the results of repeating our original simulation with an
initial population formed entirely from individuals with zero
initialised genomes.
Clearly, the initial distribution seems to have had little impact on the final
state of the population.
So, given that our simulation has converged on the optimal set of trade offs,
or at least the most stable of them, despite starting far from that set, where
does the information actually come from?
Well, one further criticism that has been made is that these kinds of
simulations somehow inadvertently encode the answers into the process;
that we have unconsciously cheated and hidden the solution in the code.
You may be surprised, but I am willing to concede this point. The
information describing the best individuals is hidden in the code.

Specifically, it’s in example_biochem. Whilst we may find it difficult
to spot which genomes are optimal simply by examining the complex trade
offs between the two functions, it does not mean that the information is
not there. The Pareto optimal front exists, whether or not it’s easy for us
to identify.
However, I do not agree that this represents a weakness in our model.
Just as the information describing the Pareto optimal front is written into
our example_biochem, so the information describing the rich tapestry
of life we find around us is written into the laws of nature; into physics
and chemistry. We simply do not have the wherewithal to read it.
Evolution, however, suffers no such illiteracy. It may not create
information, but it is supremely effective at distilling it from the
environment in which it operates.
The extraordinary power of evolution has not escaped the computer
science community. From its beginnings in the 1960s and 1970s
[Rechenberg65] [Klockgether70] [Holland75] the field of evolutionary
computing has blossomed [Goldberg89] [Koza92] [Vose99]. Whilst the
details generally differ from those of our simulation, the general principles
are the same. The quality of a genome is measured by a function, or
functions, that model a design problem, say improving the efficiency and
reducing the emissions of a diesel engine [Hiroyasu02]. Through
reproduction and selection, evolution has repeatedly proven capable of
extracting optimal, or at least near optimal, solutions to problems that have
previously evaded us [Hiroyasu02].

Figure 8
10 | Overload | December 2008

FEATURERICHARD HARRIS
There are still some aspects of our model that could use some
improvement, however. For example, we are not modelling the effect of
limited resources during the development of an individual. If you have
the time and the inclination, you might consider adapting the code to reflect
this, perhaps by introducing some penalty to individuals in densely
populated regions.
If you make any further discoveries, I’d be delighted to hear about them.

Acknowledgements
With thanks to Keith Garbutt and Lee Jackson for proof reading this article.

References & Further Reading
[Frankham02] Frankham, R., Ballou, J. and Briscoe, D., Introduction to

Conservation Genetics, Cambridge University Press, 2002.
[Goldberg89] Goldberg, D., Genetic Algorithms in Search, Optimization,

and Machine Learning, Addison-Wesley, 1989.
[Hiroyasu02] Hiroyasu, T. et al., Multi-Objective Optimization of Diesel

Engine Emissions and Fuel Economy using Genetic Algorithms and
Phenomenological Model, Society of Automotive Engineers, 2002.

[Holland75] Holland, J., Adaptation in Natural and Artificial Systems,
University of Michigan Press, 1975.

Karr, C. and Freeman, L. (Eds.), Industrial Applications of Genetic
Algorithms, CRC, 1998.

[Klockgether70] Klockgether, J. and Schwefel, H., ‘Two-Phase Nozzle
and Hollow Core Jet Experiments’, Proceedings of the 11th
Symposium on Engineering Aspects of Magnetohydrodynamics,
Californian Institute of Technology, 1970.

[Koza92] Koza, J., Genetic Programming: On the Programming of
Computers by Means of Natural Selection, MIT Press, 1992.

[Meinkel97] Meinke1, M., Abdelfattah1, A. and Krause1, E., ‘Simulation
of piston engine flows in realistic geometries’, Proceedings of the
Fifteenth International Conference on Numerical Methods in Fluid
Dynamics, vol. 490, pp. 195-200, Springer Berlin, 1997.

[Rechenberg65] Rechenberg, I., Cybernetic Solution Path of an
Experimental Problem, Royal Aircraft Establishment, Library
Translation 1122, 1965.

[Vose99] Vose, M., The Simple Genetic Algorithm: Foundations and
Theory, MIT Press, 1999.

Listing 13

namespace evolve
{
 class individual
 {
 public:
 ...
 individual(unsigned long init_val,
 const biochem &b);
 ...
 };
 class population
 {
 public:
 ...
 population(size_t n, unsigned long init_val,
 const biochem &b);
 ...
 };
}

Listing 14

evolve::individual::individual(
 unsigned long init_val,
 const biochem &biochem) :
 biochem_(&biochem),
 genome_(biochem.genome_size(), init_val)
{
 develop();
}
evolve::population::population(size_t n,
 unsigned long init_val,
 const biochem &biochem) : biochem_(biochem),
 population_(n, individual(init_val, biochem)),
 offspring_(2*n)
{
}

December 2008 | Overload | 11

FEATURE PAUL GRENYER
Model View Controller
with Java Swing
It’s recommended to keep user interface and data model
separate. Paul Grenyer looks a common solution.
n Patterns of Enterprise Application Architecture [PEAA] Martin
Fowler tells us that the Model View Controller (MVC) splits user
interface interaction into three distinct roles (Figure 1):
Model – The model holds and manipulates domain data (sometimes
called business logic or the back end).
View – A view renders some or all of the data contained within the
model.
Controller – The controller takes input from the user and uses it to
update the model and to determine when to redraw the view(s).

MVC is all about separating concerns. The model and views separate the
data from the views and the controller and the view separate user input
from the views.
Another version of the MVC pattern employs the controller as a mediator
between the views and model (Figure 2).
The controller still takes user input, but now it passes it on to model. It also
passes commands from the view to the model and takes events from the
model and passes them on to the view. This version provides greater
separation as the model and view no longer need to know about each other
to communicate.
In this article I am going to describe a real problem I had and demonstrate
how I solved it in Java with MVC. I am going to assume familiarity with
both Java 6 and Swing.
It is very important to implement MVC carefully with a good set of tests.
Benjamin Booth discusses this in his article ‘The M/VC Antipattern’.
[MVC Antipattern].

The problem
As I have mentioned in previous articles (and probably to everyone’s
boredom on accu-general) I am writing a file viewer application that allows
fixed length record files in excess of 4GB to be viewed without loading
the entire file into memory. I have had a few failed attempts to write it in
C# recently (although recent discoveries have encouraged me to try again),
but it was not until I had a go in Java with its JTable and
AbstractTableModel classes that I really made some progress. These
two classes are themselves a model (AbstractTableModel) and view
(Jtable). However, in the example I’ll discuss in this article they actually
form part of one of the views.
The file viewer application needs to be able to handle multiple files in a
single instance. The easiest and most convenient way to do this is with a
tabbed view (Figure 3).
I have completed the back-end business logic which models the file and

I

Paul Grenyer An active ACCU member since 2000, Paul is the
founder of the Mentored Developers. Having worked in industries as
diverse as direct mail, mobile phones and finance, Paul now works for
a small company in Norwich writing Java. He can be contacted at
paul.grenyer@gmail.com

Figure 1

Figure 2

Figure 3
12 | Overload | December 2008

FEATUREPAUL GRENYER

The Model View Controller (MVC)
splits user interface interaction into

three distinct roles
its associated layout (which describes how records are divided up into
fields) as a project with the interface in Listing 1.
I will look in a bit more detail at most of the methods in the interface as
the article progresses, but for now the important methods are
getRecordReader and getLayout. getRecordReader gives the
AbstractTableModel random access to the records and fields in the
file and getLayout gives access to the layout which allows the view to
name and order its fields.
The table model implementation I have looks like Listing 2.
I’ve omitted exception handling and a few other bits and pieces that are
not relevant to the example. Basically a RecordGrid object holds a
reference to a Project object and uses it to populate the table cells and
column titles on request. Rows are populated one at a time from column
0 to column x, so every time column 0 is requested a new record is loaded.
This reduces the amount of file access that would be required if a record
was loaded every time a cell was requested.
Every time a new project is created the code in Listing 3 is used to create
a tab for the file.
Again, exception handling has been omitted. A reference to the
RecordReader is created in order to get a name for the tab by calling
the getDataDescription method. The new Project object is passed
to a new RecordGrid object, which is then used as a JTable model. A
new scrollable pane is created using the table and in turn used to create a

Listing 1

public interface Project
{
 public abstract RecordReader getRecordReader()
 throws RecordReaderException;
 public abstract Layout getLayout() throws
 LayoutException;
 public abstract String getDataDescription();
 public abstract void close();
}

Listing 2

public class RecordGrid extends AbstractTableModel
{
 private final Project project;
 private Record record = null;
 public RecordGrid(Project project)
 {
 this.project = project;
 }
 public Project getProject()
 {
 return project;
 }

 @Override
 public int getRowCount()
 {
 return (int)
 project.getRecordReader().getRecordCount();
 }

 @Override
 public int getColumnCount()
 {
 return project.getLayout().getFieldCount();
 }

 @Override
 public Object getValueAt(int row, int column)
 {
 if (column == 0)
 {
 record =
 project.getRecordReader().getRecord(row);
 }
 return record.getField(column);
 }

 @Override
 public String getColumnName(int column)
 {
 return
 project.getLayout().getFieldName(column);
 }

 @Override
 public Class<? extends String> getColumnClass(
 int column)
 {
 return String.class;
 }
}

Listing 3

public class DataPane extends JtabbedPane
{
 public void addProject(Project project)
 {
 RecordReader recordReader =
 project.getRecordReader();
 TableModel model = new RecordGrid(project);
 JTable table = new JTable(model);
 this.addTab(recordReader.getDataDescription(),
 new JScrollPane(table));
 this.setSelectedIndex(this.getTabCount()-1);
 }
 ...
}

December 2008 | Overload | 13

FEATURE PAUL GRENYER
new tab. Finally the new table is made the currently selected tab. All
straight forward and not particularly complicated or problematic.
The problem comes when you want to get the Project object out of the
current tab so that you can, for example, call close on it or use it to set
the main window title bar. Listing 4 shows one way it can be done.
It relies on the fact that every object is a component of another object.
Sometimes, as shown above, requesting a component’s child component
returns an array of components and, although this code doesn’t show it,
the required component needs to be found within the array. This is messy
and potentially unreliable. After writing this code I felt there had to be a
better way. So I asked some people. Roger Orr came up with a much
simpler solution:
 JTable table =
 (Jtable)pane.getViewport().getView();

Something still didn’t feel right though. The code is querying the GUI
components to navigate the object relationships. This breaks encapsulation
as changing the GUI layout would break this code. There are also other
ways, but none of them seemed to be the right solution either.

The solution
The general consensus of opinion was that I was mad to have a user
interface component (the tabs) managing a data component (the project)
and that I should be using the mediator version of the Model View
Controller (MVC) described above.
I thought I pretty much had how MVC worked nailed down because of the
MFC document view model stuff (basically just a model and views) I had
done early in my career, but reading up on MVC and Swing in the various
books I had just left me confused in terms of implementation. Then I
googled and found Java SE Application Design With MVC [JADwMVC]
on the Sun website. Suddenly everything was much clearer and I set about
knocking up a prototype.
The main concern I had was keeping the tabbed view in sync with the
model, so that when I selected a tab the currently selected project in the
model was changed to reflect it correctly and when a new project was
added to or deleted from the model it was also added or removed from the
tabbed view. Should I remove every tab from the tabbed view and redraw
when the model was updated or try and add and remove tabs one at a time
in line with the model?
I decided to start developing my MVC prototype and cross that bridge
when I came to it. The beauty of the mediator MVC patterns is that each
component can be worked on and changed individually to a greater or
lesser extent. The concerns are well separated.

The model
The file viewer model:

Needs to handle multiple projects.
Needs to have a mechanism for adding projects.
Needs to have a mechanism for deleting projects.
Needs to have a mechanism for setting the current project.
Needs to have a mechanism for getting the current project.
Should have a mechanism for getting the number of projects for
testing purposes.
Needs to fire events when properties change (e.g. a project is added,
deleted or selected).

The controller will have to mediate a number of these operations from
views and menus to the model. So both will have similar interfaces for
organizing projects within the model. The model interface looks like
Listing 5.
New projects will be created outside of the controller, so the newProject
method takes a Project reference. Fully unit testing a model like this is
relatively easy, but beyond the scope of this article. The other methods
perform the other required operations, with the exception of firing events.
Implementing the model is straightforward. I’ll go through the data
members first and then each method in turn.

 public class Projects implements ProjectOrganiser
 {
 private final List<Project> projects =
 new ArrayList<Project>();
 private int currentProjectIndex = -1;
 ...
 }

The model is essentially a container for storing and manipulating projects,
so it needs a way of storing the projects. An ArrayList is ideal. The
model also needs to indicate which project is currently selected. To keep
track it stores the ArrayList index of the currently selected project. If
the ArrayList is empty or no project is currently selected then
currentProjectIndex’s value is -1. Initially there are no projects.
The addProject method adds the new project to the ArrayList and
sets it as the current project:
 public void addProject(Project prj)
 {
 projects.add(prj);
 setCurrentProjectIndex(projects.size() - 1);
 }

The getProjectCount method simply asks the ArrayList its size and
returns it.
The setCurrentProjectIndex method checks the index it is passed
to make sure it is within the permitted range. It can either be -1 or a valid
index within the ArrayList. If the index is not valid it constructs an
except ion message expla in ing the problem and th rows an
IndexOutOfBoundsException. If the index is valid it is used to set
the current project. (See Listing 6.)
The getCurrentProjectIndex s i mp l y r e t u r n s
currentProjectIndex.
The getCurrentProject method relies on the fact that the
setCurrentProjectIndex method has policed the value of
currentProjectIndex successfully. Therefore it only checks to make
sure currentProjectIndex is greater than or equal to 0. If it is it
returns the corresponding project from the ArrayList, otherwise null
(Listing 7).
The deleteCurrentProject method is by far the most interesting in
the model. It is also the most important method to get a unit test around.
It checks to make sure there are projects in the ArrayList. If there are
then it calls close on and then deletes the current project from the
ArrayList and calculates which the next selected project should be. If,
following the deletion, another project moves into the same ArrayList
index it becomes the next selected project. Otherwise the project at the

Listing 4

JScrollPane pane = (JScrollPane)
 tabbedPane.getSelectedComponent();
Component coms[] = pane.getComponents();
JViewport viewPort = (JViewport) coms[0];
coms = viewPort.getComponents();
JTable table = (JTable) coms[0];
RecordGrid grid = (RecordGrid) table.getModel();
project = grid.getProject();

Listing 5

public interface ProjectOrganiser
{
 public abstract void addProject(Project prj);
 public abstract int getProjectCount();
 public abstract void setCurrentProjectIndex(
 int index);
 public abstract int getCurrentProjectIndex();
 public abstract Project getCurrentProject();
 public abstract void deleteCurrentProject();
}

14 | Overload | December 2008

FEATUREPAUL GRENYER
previous index in the ArrayList is used. If there are no longer any
projects in the ArrayList the current index is set to -1. (Listing 8.)
As you can see, manipulating projects within the model via the
ProjectOrganiser interface is very straight forward. However, there
is currently no way of notifying the controller when a property changes.
The Java SE Application Design With MVC article recommends using the
Java Beans component called Property Change Support. The
PropertyChangeSupport class makes it easy to fire and listen for
property change events. It allows chaining of listeners, as well as filtering
by property name.
To enable the registering of listeners and the firing of events a few changes
need to be made to ProjectOrganiser and Projects. First, event
names and a change listener registering method need to be added to
ProjectOrganiser (see Listing 9).
Later versions of Java have support for enums. However, property change
support does not, but uses strings instead. Enums could be used in
conjunction with the toString method, but this makes their use overly
verbose and does not give any clear advantages.
Then the Projects class needs a PropertyChangeSupport object
and the methods to add listeners and fire events (Listing 10).
The PropertyChangeSupport object needs to know the source of the
even t s i t i s f i r i ng so t h i s i s pa s sed i n . The
addPropertyChangeListener method simply forwards to the same
method of the PropertyChangeSupport object.

Any class that implements the PropertyChangeListener interface
can receive events. The firePropertyChange method takes the name
of the property that has changed, the property’s old value and its new value.
All of these, together with the source object, are passed to the event sink
as a PropertyChangeEvent. If the old and new values are the same the
event is not fired. This can be overcome by setting one or more of the old
and new objects to null. We’ll look at the implications of this shortly.
The Projects class now has the methods to fire events, but is not actually
firing anything. The controller needs to be notified every time a project is

Listing 6

public void setCurrentProjectIndex(int index)
{
 if (index >= getProjectCount() || index < -1)
 {
 final StringBuilder msg = new StringBuilder();
 msg.append("Set current project to ");
 msg.append(index);
 msg.append(" failed. Project count is ");
 msg.append(getProjectCount());
 msg.append(".");
 throw new IndexOutOfBoundsException(
 msg.toString());
 }
 currentProjectIndex = index;
}

Listing 7

public void getCurrentProject()
{
 Project project = null;
 if (getCurrentProjectIndex() >= 0)
 {
 project = projects.get(currentProjectIndex);
 }
 return project;
}

Listing 8

public void deleteCurrentProject()
{
 if (getCurrentProjectIndex() >= 0)
 {
 final int currentIndex =
 getCurrentProjectIndex();
 getCurrentProject().close();
 projects.remove(currentIndex);
 int nextIndex = -1;
 final int projectCount = getProjectCount();
 if (currentIndex < projectCount)
 {
 nextIndex = currentIndex;
 }
 else if (projectCount > 0)
 {
 nextIndex = projectCount - 1;
 }
 setCurrentProjectIndex(nextIndex);
 }
}

Listing 9

public interface ProjectOrganiser
{
public static final String NEW_PROJECT_EVENT = "ProjectOrganiser.NEW_PROJECT";
public static final String DELETE_PROJECT_EVENT = "ProjectOrganiser.DELETE_PROJECT";
public static final String CURRENT_PROJECT_INDEX_CHANGED_EVENT =
 "ProjectOrganiser.CURRENT_PROJECT_INDEX_CHANGED";
public static final String CURRENT_PROJECT_CHANGED_EVENT = "ProjectOrganiser.CURRENT_PROJECT_CHANGED";
public abstract void addPropertyChangeListener(PropertyChangeListener listener);
 ...
}

Listing 10

public class Projects implements ProjectOrganiser
{
 ...
 private final PropertyChangeSupport
 propertyChangeSupport =
 new PropertyChangeSupport(this);
 ...
 @Override
 public void addPropertyChangeListener(
 PropertyChangeListener listener)
 {
 propertyChangeSupport.
 addPropertyChangeListener(listener);
 }
 private void firePropertyChange(
 String propertyName, Object oldValue,
 Object newValue)
 {
 propertyChangeSupport.firePropertyChange(
 propertyName, oldValue, newValue);
 }
}

December 2008 | Overload | 15

FEATURE PAUL GRENYER
created, deleted or selected. This means the addProject ,
deleteProject and setCurrentProjectIndex methods must be
modified:

 public void addProject(Project prj)
 {
 Project old = getCurrentProject();
 projects.add(prj);
 firePropertyChange(NEW_PROJECT_EVENT,old,prj);
 setCurrentProjectIndex(projects.size() - 1);
 }

The addProject method now stores a reference to the current project
prior to the new project being added. The old project and the new project
are both passed to the event as properties. This means that the event sink
can perform any necessary clean up using the previously selected project
and update itself with the new project without having to query the
controller. Also, the old project and new project references will never refer
to the same project, so the event will never be ignored.
The setCurrentProjectIndex method fires two events. The
CURRENT_PROJECT_INDEX_CHANGE_EVENT event is fired when the
cu r r e n t p ro j ec t i ndex changes and t he
CURRENT_PROJECT_CHANGE_EVENT is fired when the current project
changes. These are deceptively similar events. Consider when a project is
deleted. If the project is in the middle of the ArrayList the project in
front of it moves into its index. The project changes, but the index stays
the same.
The CURRENT_PROJECT_INDEX_CHANGE_EVENT event passes both
the old and new indexes. The CURRENT_PROJECT_CHANGE_EVENT is
only passed the new project. The old value is always null. This is because,
following a project deletion the old project no longer exists.
The deleteCurrentProject method requires some significant
changes, shown in Listing 12.
Ideally, when a project is deleted the old value and the next project to be
selected are be passed as the old and new values. The event needs to be
fired before the project is actually removed so that any thing using it can
clean up. This can make it difficult to work out which project is which.
One way to be sure is to make a copy of the project ArrayList, remove
the project to be deleted from it and then work out which the next selected
project will be. To do this I wrote a helper class called NextProject.
Overall it is more code, but it makes for a much neater solution to the
deleteCurrentProject method and means the next project index
only needs to be calculated once. Again, the deleted project and the next
selected project will never be the same, so the event will not be ignored.
That completes the fully unit testable model. The model is by far the most
complex and difficult part of the MVC to implement and get right. A good
set of unit tests is essential. Once you have it right the view and controller
follow quite easily.

The controller
The controller is the mediator between the model and the views. Therefore
it makes sense to develop it next; otherwise the model and view could end
up so incompatible that writing a controller would be very difficult.

The controller maintains a reference to the model and list of references to
registered views. If the model changes it passes the event onto the views
via the ProjectOrganiserEventSink interface.
 public interface ProjectOrganiserEventSink
 {
 public abstract void modelPropertyChange(
 final PropertyChangeEvent evt);
 }

Menu items and registered views all maintain a reference to the controller
and use it to pass actions to the model. Therefore the model has a number
of methods that just forward to the model.
The code below shows the Controller properties and constructor:
 public class Controller implements
 PropertyChangeListener
 {
 private final ProjectOrganiser model;
 private List<ProjectOrganiserEventSink> views =
 new ArrayList<ProjectOrganiserEventSink>();
 public Controller(ProjectOrganiser model)
 {
 this.model = model;
 this.model.addPropertyChangeListener(this);
 }...

 }

The Controller implements the PropertyChangeListener
interface. The PropertyChangeListener interface allows the
controller to receive events from the model. The Controller takes a
reference to the model as a constructor parameter and uses it to register
itself with the model. Views register themselves via the addView method:
 public void addView(
 ProjectOrganiserEventSink view)
 {
 views.add(view);
 }

Events are passed to registered views via the overridden propertyChange
method from the PropertyChangeListener interface:
 @Override
 public void propertyChange(
 PropertyChangeEvent evt)
 {
 for (ProjectOrganiserEventSink view : views)
 {
 view.modelPropertyChange(evt);
 }
 }

The model forwarding methods do just that, with the exception of the
newProject method. The newProject method is different because it

Listing 11

public void setCurrentProjectIndex(int index)
{ ...
 final int oldIndex = currentProjectIndex;
 currentProjectIndex = index;
 firePropertyChange(
 CURRENT_PROJECT_INDEX_CHANGED_EVENT,
 oldIndex, currentProjectIndex);
 firePropertyChange(
 CURRENT_PROJECT_CHANGED_EVENT,null,
 getCurrentProject());
}

Listing 12

public void deleteCurrentProject()
{
 if (getCurrentProjectIndex() >= 0)
 {
 final int currentIndex =
 getCurrentProjectIndex();
 final Project currentProject =
 getCurrentProject();
 final NextProject nextProject =
 new NextProject(projects, currentIndex);
 firePropertyChange(DELETE_PROJECT_EVENT,
 currentProject, nextProject.getProject());
 currentProject.close();
 projects.remove(currentIndex);
 setCurrentProjectIndex(
 nextProject.getIndex());
 }
}

16 | Overload | December 2008

FEATUREPAUL GRENYER
has to create a project to pass to the model. The idea behind the Project
interface is that it can be used to reference implementations for different
file type and layout type combinations. Therefore I have written the
NewProjectDlg class to allow the user to select the type of project they
want. It then calls createNew on the project to do some project specific
creation. A reference to the project can then be queried and passed to the
model:
 public void newProject(JFrame owner)
 {
 NewProjectDlg d =
 new NewProjectDlg(owner,true);
 d.setVisible(true);
 Project prj = d.getProject();
 if (prj != null)
 {
 model.newProject(prj);
 }
 }

The internal workings of the NewProjectDlg class are beyond the scope
of this article.
The Controller is almost fully unit testable. The fly in the ointment is
of course the NewProjectDlg. You just don’t want it popping up in the
middle of a test. There are a number of easy ways of getting round it, but
they are beyond the scope of this article also. However, Controller is
so simple that it hardly requires a unit test. Under normal circumstances I
would write one anyway, but it would require some non-trivial mock
objects that just do not seem worth it.

The view
Getting a view to receive events from the controller is very simple. It only
requires the implementation of the ProjectOrganiserEventSink
interface and then registering with the controller. The complexity comes
with what you actually do with the view. I’m going to explain two
examples. One that just updates the title of the main window when the
current project changes and one that keeps tabs in sync with the model.

(That was the method I decided to try and implement first. It worked as
you’ll see!)

Main window view
As I hinted at earlier, I come from an MFC background. Writing GUIs in
Java with Swing is therefore an absolute dream by comparison. Instead of
having to rely hugely on the wizard and get the linking right, with Swing
a window can be created from a main function and a few simple objects.
The main window is a good place to create and reference the controller.
In order to receive events from the controller the view must implement the
ProjectOrganiserEventSink interface and register itself with the
model (Listing 13).
When the current project changes, due to a project being added or deleted
or the user selecting a different tab, the description of the project should
be updated in the main window’s title bar. This is done by handling the
project changed event (Listing 14).
When the view receives the PropertyChangeEvent it checks to see what
type of event it is. If it is a CURRENT_PROJECT_CHANGED_EVENT it gets
the project from the event object. If the current project is null, for example
if there are no projects in the model, it sets the default title, otherwise it
gets a description from the project and concatenates that to the default title.
So far we have a main window that creates and handles events from a
controller, but nothing that actually causes an event to be fired. To get
events we need to be able to create and delete projects. One of the easiest
ways to do this is via a menu. Menus are easy to create and anonymous
classes give instant access to the controller. (See Listing 15.)
Projects can now be added to and deleted from the model via the main
window’s file menu. The main window handles an event from the
controller that allows it to set its title based on the currently selected
project.

Tabbed view
Projects are not much use if they cannot be viewed or selected, so what is
needed is a tabbed view capable of displaying projects (Listing 16).
Swing has the JTabbedPane class that will do the job perfectly.
Subclassing, as shown in Listing 16, gives a better level of encapsulation
and control of the view’s functionality. The view must also implement the

Listing 13

public class MainWindow extends JFrame
 implements ProjectOrganiserEventSink
{
 private final Controller controller;
 public MainWindow()
 {
 controller = new Controller(new Projects());
 controller.addView(this);
 this.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);
 this.setSize(1000, 600);
 }
 @Override
 public void modelPropertyChange(
 PropertyChangeEvent evt)
 {
 ...
 }
 public static void main(String[] args)
 {
 javax.swing.SwingUtilities.invokeLater(
 new Runnable()
 {
 public void run()
 {
 new MainWindow().setVisible(true);
 }
 });
 }
}

Listing 14

public class MainWindow extends JFrame
 implements ProjectOrganiserEventSink
{
 private static final String TITLE =
 "File Viewer";
 ...
 @Override
 public void modelPropertyChange(
 PropertyChangeEvent evt)
 {
 if (evt.getPropertyName().equals(
 ProjectOrganiser.
 CURRENT_PROJECT_CHANGED_EVENT))
 {
 StringBuilder builder =
 new StringBuilder(TITLE);
 Project prj = (Project) evt.getNewValue();
 if (prj != null)
 {
 builder.append(" - ");
 builder.append(prj.getDataDescription())
 }
 setTitle(builder.toString());
 }
 }
 ...
}

December 2008 | Overload | 17

FEATURE PAUL GRENYER
ProjectOrganiserEventSink, maintain a reference to the controller,
which must be passed into the constructor, and register itself with the
controller. In order to be seen and used the DataPane also needs to be
added to the main window:

 public class MainWindow extends JFrame
 implements ProjectOrganiserEventSink
 {
 ...
 public MainWindow()
 {
 ...
 this.add(new DataPane(controller));
 this.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);
 this.setSize(1000, 600);
 }
 ...
 }

As well as responding to events fired by the controller, the view also needs
to notify the controller when a user has selected a different tab. This is done
by writing a change listener:
 public void initialise()
 {
 controller.addView(this);
 addChangeListener(new ChangeListener()
 {
 @Override
 public void stateChanged(ChangeEvent arg0)
 {
 controller.setCurrentProjectIndex(
 getSelectedIndex());
 }
 });
 }

Every time the tabbed control’s state changes, for example the user selects
a different tab, the change listener’s stateChanged method is called. As
the change listener is implemented as an anonymous class within
DataPane it has access to DataPane’s properties. Therefore it can query
the tabbed view for the current index and pass it to the controller.
The modelPropertyChange override handles events from the
controller (Listing 18).
As before, the event’s name is used to determine what sort of event it is.
The DataPane handles the new project, project deleted and project index
change events, passing where appropriate, the event’s new value to another
method for handling. The new value is a new project that has been created,
the newly selected project following a project deletion, or the new index
following a newly created or deleted project. setSelectedIndex is a
method inherited via JTabbedPane and does exactly what you would

Listing 15

public class MainWindow extends JFrame
 implements ProjectOrganiserEventSink
{
 private final Controller controller;
 public MainWindow()
 {
 controller = new Controller(new Projects());
 controller.addView(MainWindow.this);
 buildMenu();
 }
 private void buildMenu()
 {
 JMenu fileMenu = new JMenu("File");
 fileMenu.setMnemonic(KeyEvent.VK_F);
 JMenuItem newItem = new JMenuItem("New");
 newItem.setMnemonic(KeyEvent.VK_N);
 newItem.addActionListener(
 new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent e)
 {
 controller.newProject(MainWindow.this);
 }
 });
 fileMenu.add(newItem);
 JMenuItem closeItem = new JMenuItem("Close");
 closeItem.setMnemonic(KeyEvent.VK_C);
 closeItem.addActionListener(
 new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent e)
 {
 controller.deleteCurrentProject();
 }
 });
 fileMenu.add(closeItem);
 JMenuBar menuBar = new JMenuBar();
 menuBar.add(fileMenu);
 this.setJMenuBar(menuBar);
 }
}

Listing 16

public class DataPane extends JtabbedPane
 implements ProjectOrganiserEventSink
{
 private final Controller controller;
 public DataPane(Controller controller)
 {
 this.controller = controller;
 initialise();
 }
 private void initialise()
 {
 controller.addView(this);
 }
 @Override
 public void modelPropertyChange(
 PropertyChangeEvent evt)
 { ... }
}

Listing 17

@Override
public void modelPropertyChange(
 PropertyChangeEvent evt)
{
 if (evt.getPropertyName().equals(
 ProjectOrganiser.NEW_PROJECT_EVENT))
 {
 addProject((Project)evt.getNewValue());
 }
 else if(evt.getPropertyName().equals(
 ProjectOrganiser.
 CURRENT_PROJECT_INDEX_CHANGED_EVENT))
 {
 setSelectedIndex((Integer) evt.getNewValue());
 }
 else if(evt.getPropertyName().equals(
 ProjectOrganiser.DELETE_PROJECT_EVENT))
 {
 deleteCurrentTab();
 }
}

18 | Overload | December 2008

FEATUREPAUL GRENYER
expect. The addProject method is implemented as follows, with
exception handling omitted for clarity:

 private void addProject(Project project)
 {
 if (project != null)
 {
 RecordReader recordReader =
 project.getRecordReader();
 TableModel model = new RecordGrid(project);
 JTable table = new JTable(model);
 this.addTab(
 recordReader.getDataDescription(),
 new JscrollPane(table));
 }
 }

The code should look familiar. It is almost identical to part of the code in
‘The problem’ section above. The only difference is that the newly added
tab is not selected as the current tab. That is now set following a project
index changed event.

private void deleteCurrentTab()
{
 if (getTabCount() > 0)
 {
 remove(this.getSelectedIndex());
 }
}

The deleteCurrentTab method checks to make sure there is at least
one tab to delete, gets the index of the current tab and deletes it.
That completes the implementation of the DataPane view. Projects can
now be added to and deleted from the application, tabs can be changed and
the changes reflected in the main window title and the client area tabbed
view (see Figure 4).

Conclusion
By implementing MVC and demonstrating how easy it is to manipulate,
control and display the projects, I believe I have demonstrated the
advantages of MVC over the original design I had, where the model was
effectively buried in the view and difficult to get hold of when needed.
The mediator pattern keeps the model and views nicely decoupled. There
is slight coupling of the view to the ProjectOrganiser interface as the
event names are part of the interface. If this became an issue it would be
simple to move the event names to their own class. I believe this is
unnecessary at this stage.
I was also concerned about keeping the projects in the model and the
associated tab in the view in sync. However, this problem was easily
overcome:

By relying on the fact that new tabs are always added at the end of
the tabbed view and new projects are always added at the end of the
model ArrayList.
Using an event from the model to set the currently selected project
in the tabbed view.
Using an event from the model to remove the tabs for deleted
projects from the tabbed view.

Finally I’ll leave you with a comment from a colleague of mine:
“I really like the idea of Model View Controller, but it takes so much
code to do very little.”

I think I’ve shown here that there is quite a lot of code involved in the MVC
design compared to the model within the view design, but the separation
and the ease with which the data can be manipulated is a clear advantage.

Acknowledgments
Thanks to Roger Orr, Tom Hawtin, Kevlin Henney, Russel Winder and
Jez Higgins for general guidance advice and patience and to Caroline
Hargreaves for review.

References
[PEAA] Patterns of Enterprise Application Architecture by Martin

Fowler. ISBN-13: 978-0321127426
[MVC Antipattern] The M/VC Antipattern http://

www.benjaminbooth.com/tableorbooth/2005/04/m_c_v.html
[JADwMVC] Java SE Application Design With MVC http://

java.sun.com/developer/technicalArticles/javase/mvc/

Figure 4
December 2008 | Overload | 19

FEATURE ALLAN KELLY
On Management: Understanding
Who Creates Software
Software development organizations vary greatly.
Allan Kelly considers what this means for managers.
hen I was at school, studying for my Computer Studies GCE ‘O’
level I was issued with a little green book of computing terms
published by the British Computer Society. Amongst other things

this book described the titles and roles found in a computing department.
The book is long gone and so too are some of the titles – I’ve never met a
‘Head of Data Processing’ and don’t expect to. This is shame because I
find job titles more and more confusing. What one company calls a
‘Development Manager’ another calls a ‘Project Manager’, what one calls
a ‘Product Manager’ another calls a ‘Business Analyst’ and so on.
Being a manager is different to being a developer. As a developer I could
buy Scott Meyers’ Effective C++ and stick to his 50 rules. Yes C++, Java
and C# are hard to use and there is a lot to learn but there are important
differences between developing code and managing the activity.
Managers work in a far more ambiguous environment than developers. Not
only are the parameters within which they work unclear and changing but
the actual practice of management is ambiguous.
Neither is it clear what managers actually do. Newly promoted managers
often tell me they go home at night wondering what they have done. As a
developer it’s possible to measure the lines of code written today, or the
bugs fixed, or even the UML diagrams drawn. A bad day is one spent in
meetings and discussions without any code cut. Measuring management
work is more difficult.

Lesson 1: Managing software development is different to
developing software and requires different skills. It is a mistake
to manage people and processes in the same way as files and
systems.

Few management books are of help. Books for managers often focus on a
specific idea – ‘re-engineering’, ‘knowledge management’ or
‘outsourcing’. General management books discuss the things managers
should be doing – thinking big thoughts, setting strategy, objectives and
measuring value. In fact most days are spent in a constant round of fire
fighting and crisis control.
Discussing ‘managers’ in general is not very insightful. Management roles
are not equal. In this article and future articles I would like to discuss what
managers do, and what they ‘should’ be doing. Thus, in this and future
articles, I would like to look at the role of management in software
development projects by looking at some of the roles managers undertake.

In the same way that management roles differ, so too do organisations.
Therefore, before looking at management roles it is necessary to consider
organizations. Superficially similar roles, with the same title, can be very
different in different types of organisation. In order to understand any
given role one has to understand the organization, in order to understand
the organization one has to know what types of organization there are.

Lesson 2: One size does not fit all; different types of
organizations require different structures and different roles.
And each individual organization will have its own unique
differences. Don’t try to force one company into the mould of
another.

Thus this article will look at a few of the most common types of
organizations that develop software. As such it will set the stage for future
discussion. It is not meant to represent any kind of best practice but it is
meant to describe a reference model.

Types of organization
Broadly speaking there are three types of organization which develop
software:

Independent Software Vendor (ISV) or Software Product Company:
A company that produces and sells the same software products to
customers. For example: Microsoft, Oracle, Symbian and
SalesForce.com. If these companies did not produce software they
would not have a business.
Corporate IT / In house: A company that develops software to
support its activities. For example: Barclays Capital, Unilever/Lever
Brothers and British Airways. These companies sell a product or
service that is not software but develop software to make the product
or service. To keep things simple the term Corporate IT is used to
include both central corporate IT functions and distributed IT
activities, e.g. a bank may well have developers working for the
equities trading desk.
External Service Providers (ESP): A company that develops
software for customers. For example Accenture, EDS, Infosys and
Thoughtworks. Such companies may also provide additional IT
services such as operations control and data centres. For some
customers they may provide such services but not develop software.
Most customers are corporate who need some IT services.

ISVs do on occasion contract ESPs but since their business depends on
their ability to create software this is uncommon. ISVs also have internal
IT needs and may contract an ESP to run aspects of the computing system,
e.g. Microsoft have outsourced some of their internal support operations
to an ESP.
The three categories outlines will serve for reference. This list is by no
means exhaustive and new business models are constantly arising which
obscures the boundaries. For example, Software as a Service (SaaS)
pioneer SalesForce is included here as an ISV but their business model

W

Allan Kelly After years at the code-face Allan realised that
most of the problems faced by software developers are not in
the code but in the management of projects and products. He
now works as a consultant and trainer to address these
problems by helping teams adopt Agile methods and improve
development practices and processes. He can be contacted
at allan@allankelly.net and maintains a blog at
http://allankelly.blogspot.net.
20 | Overload | December 2008

FEATUREALLAN KELLY

Internal development groups have
different objectives, roles and processes
to those which produce software for sale
rests on providing a service in a similar way an ESP might. The difference
is that the SaaS model offers the same software to all customers.
Other companies produce products that would not be possible without a
software element but would not think of themselves as an ISV. For
example the makers of digital radio sets are dependent on software but are
clearly not an ISV. As more and more products contain complex software
– cars, televisions, alarm clocks – more and more companies will be
dependent on software for their key products.
The rest of this article will focus on the ISV and corporate IT models. This
is not because ESPs are any less worthy but because ESPs usually operate
either as an extension of a corporate IT (think outsourcing) or are used to
provide a specific product (similar to an ISV).
One of the biggest mistakes made by young ISVs is operating as a
Corporate IT department and not an ISV. Software engineering skills are
largely the same inside corporate IT departments and ISVs. If you can code
Java in a bank you can code Java for a company that sells software. But
the same is not true at management level. Managing the creation and
delivery inside a corporate requires different skills and judgements to those
required to successfully manage the delivery of software products.

Lesson 3: Know what type of software producer you are, and
which you are not. Understand what role your software plays in
delivering the final product to the customer and generating
revenue.

Internal development groups have different objectives, roles and processes
to those which produce software for sale. Particularly in the UK where
most IT is based insides corporates this is a common mistake. In the US
were there is a longer tradition of software product companies there are
more role models available to ISVs.
The reverse mistake is not so often made and is actually less dangerous.
ISVs live and die by their ability to deliver software, therefore their
practices need to deliver and they have a software-centric culture. The
same is not true in corporate where the culture will come from the main
business. If a software development project is late or fails, the business will
usually carry on as before, in other words the company can afford a few
IT failures.
I would like to make the very broad generalisation that ISVs tend to have
better practices than corporate IT groups. Since ISVs depend on selling
software in order to survive one might expect that their development
practices are better than corporate IT departments. After all, if an ISV
cannot create good software the business cannot continue.
However, experience shows that even poor ISVs can survive for a
surprising amount of time. If they have an existing customer base, or a
product that is genuinely innovative they can often scrape together enough
money to continue for some time. In the extreme these companies can even
trade on their poor quality by selling customer maintenance contracts and
upgrades to fix faults.

For those looking to improve the performance of their software
development activities high-performing ISVs are a good place to look for
practices and techniques. These techniques can then be transplanted to the
corporate IT world provided account is taken of the differences.
Traditionally corporate IT departments only dealt with internal customers.
If they produced a program which was difficult to use, the users had little
choice but to use it. The IT department could always offer training courses,
tell people to read the manual or simply refuse to support other systems.
However this is no longer true and corporate IT department need to take
lessons from ISVs.
For example, until ten years ago the IT department of a package holiday
company only had internal users, and perhaps a few travel agents. Today
they may be asked to build a website to be used directly by customers to
book holidays. If the customers find the website hard to use, confusing or
slow they may go elsewhere. Ten years ago, the only customers had no
choice – they had to wait.
So corporate IT departments face changing times. Together with the
traditional internal only systems they are used to developing and
supporting they are also being asked to develop customer facing systems.
These systems need a different approach and require different skills to
build.

Corporate IT roles
Inside a corporation the IT department is just one more function alongside
Marketing, Finance and so on. Such a group will be lead by a Director of
IT or Chief Information Officer (CIO) – or, if I remember my BCS booklet,

Senior managers are now more likely to be called Directors whether they
sit on the company board or not. Other managers may manage people,
things, or simply organise their own time.

As in program code, the term ‘manager’ is often used as a general
catchall name. The term itself implies a degree of seniority and authority.
Rather than actually managing something many ‘managers’ would be
better thought of as ‘specialists’. I once worked with several ‘Product
Managers’ at a telecoms firm; these managers would have been better
described as ‘Mobile telephone radio specialists’.

Small companies with big companies as customers tend to suffer more
than most from title inflation. There is a need to appear big, to send people
of equivalent ‘rank’ to meetings, so titles are often aggrandised for
marketing reasons. And all companies are prone to offering title
enhancements in place of financial rewards.

Such practices are harmless as long as the individuals and their co-
workers don’t attach too much significance to the title. One developer of
my acquaintance acquired the title ‘Chief Software Architect’. This would
have been harmless enough if the individual concerned had carried on
as before but with only about 10 developers the company hardly needed
a Bill Gates type figure to direct the architecture. What it did need was a
software engineer who understood how things hung together; helped
more junior engineers design and got their hands dirty with code.

Title inflation
December 2008 | Overload | 21

FEATURE ALLAN KELLY
the Head of Data Processing. The structure of the group may look
something like Figure 1. The size of an organization will have an obvious
effect on this chart. Larger organizations may have more levels and smaller
companies may combine roles and groups.
Software development is only one part of the CIO’s responsibilities. Quite
likely there will be an operations group and maybe a business analysis
group. Software Architects may report directly to the CIO or they may
report to another senior manager, it all depends on the type and role of the
architect.
Where an organisation uses external suppliers – ESPs, ISVs or rents data
centre space – there may be a group to co-ordinate this work too.
The development of new systems is just one part of the CIO’s
responsibilities and would normally be headed by a senior manager such
as a Development Director. Reporting to this director would be one or more
development managers and one (or even more) QA/Test Managers.
On this diagram, project Managers, Testers and Business Analyst have
been shown at different levels. The important point is that each of these
groups exists as a group in their own right, the level at which the head of
the group reports varies.

This description is static
and shows report ing
lines. Actually creating
and maintaining software
requires that a team is
brought together from
d i f f e re n t g r ou ps .
Corporate IT groups may
have several software
development teams – as
in Figure 2. Project teams
may be sho r t - l ived ,
l a s t i ng a ma t t e r o f
months, or they may last
for years building and
s u pp o r t i n g t he
application.
A s a r e s u l t o f t h i s
s t ruc tu re t he ac tua l
workers – engineers,
business analysts, testers,
etc. – are considered a
pool of resources and
matrix management is
common. So for example,
a Software Tester would
r e p or t t o t he T e s t
Manager for l ine (or

personnel) matters and professional test issues but to a Project Manager
for the specific project.
The three key features of this reference model are:

CIO is head of the organizations
Project teams are drawn from resource pools
Matrix management

Lesson 4: Corporate IT departments exist to support a
business. Software development is not the business; it is only
a means to an end.

Independent software vendor
Technology companies may well have a CIO role as described above. Like
all other companies – especially when they get large – there are corporate
information needs, and the need for corporate IT services. However, when
a company’s life blood is technology itself – and specifically software
vendors – there is a need for another role, the Chief Technology Officer
or CTO.
While the CIO role is internally focused on processes and systems to
support the business, the CTO role and the organization they lead are
focused on the application of technology to create products. This creates
a different organization with different roles.
Things get a little confusing when the company does not sell technology
but sells a product or service that is inherently dependent on technology.
For example an online retailer like Amazon or a travel company like
Expedia.
A technology company has roles that don’t exist – or don’t exist in the same
way – as a non-technology corporate and this is reflected in the corporate
structure shown in Figure 3.
Some CTOs choose to take a hands-on role in managing the development
department. Other CTOs define their role as architects and involve
themselves directly with the development of products – even coding –
while leaving it to a Development Director, or Vice-President of
Engineering to organize the department. Another type of CTO
concentrates their efforts in the board room and may spend most of their
time making strategy or evaluating merges and acquisitions.

Figure 1

Figure 2

Project
Manager

Business
Analysts

Senior
Engineer

Engineers ...

Testers ...

Project Team X

CIO

Operations
Director

Development
Director

Business
Analysis
Director

Business
Analysts ...

Development
Manager

...

Software
Engineers ...

Project
Managers

QA / Test
Manager

Testers ...

Architect

Sourcing /
Contracts
Director

...
22 | Overload | December 2008

FEATUREALLAN KELLY
Lesson 5: The CTO’s role is
what the CTO and other
senior managers choose to
make it.

Companies with multiple products
may have product heads that run their
o w n o r g a n i z a t i o n s w i t h i n
organizations. Development teams
and other resources working on one
product may have little involvement
with those working on a different
product.
Traditionally, software companies
that delivered software on a disc had
no need of an operations department.
Now when software is delivered
online (as a service) there is an
operations element thus there is
usually a Technical Operations group
(‘TechOps’) also reporting to the
CTO.
Whether delivering on a disc or
online there is support to users so
t he re a r e o f t en suppor t de sk
operations. These sometimes report
to the CTO but more often report
elsewhere, say to sales or client services.
Perhaps the biggest difference is the replacement of Business Analysts
reporting to the CIO with Product Managers reporting to the CEO. In a
technology company knowing what technology products to develop is
very important thus they report to the CEO – of course some companies
will have them reporting to the CTO.
The Business Analyst and Product Manager roles will be discussed in
future articles but for the moment it is enough to say that while the BA is
inward focused, looking at systems and processes within the organization,
the Product Manager is outward-focused looking at what customers want.
Both roles feed the development teams with requirements and requests but
they discover their requirements in a different fashion.
The inward looking nature of business analysis makes it well suited to the
corporate IT world where systems are developed for internal users and to
change company processes, while the customer facing nature of Product
Managers makes them more suitable to ISVs.

Lesson 6: Both Product Managers and Business Analysts can
create requirements for development teams. In an ISV it is
typically outward-looking Product Managers who supply
requirements while in corporate IT departments it is typically
inward looking Business Analysts.

In recent years Scrum [Highsmith02] has popularised the term ‘Product
Owner’. This role decides what the development team should be working
on but it does not prescribe how the decision is arrived at. Making these
decisions required the skills of a Product Manager or Business Analyst.
Whatever the role is called it is important that someone is concerned with
what the software will do, that someone is asking what the customer or user
needs and that that person is directing the team on what should be
developed and when.

Lesson 7: Software Developers should not be deciding what to
develop and when to develop it. This is a separate role and
should be filled by someone with the appropriate skills.

When this role is not filled explicitly there is a void. Nature abhors a
vacuum and this is no exception. Sooner or later someone steps in to fill
this void even when they are not explicitly tasked to do so. With luck this
person is motivated to do the job, is knowledgeable about the field and has
the right skills. Unfortunately it is also possible the person who steps in is
not knowledgeable, has the wrong skills and has their own agenda.

Conclusion
The structures given here are examples to help discuss the role and
responsibilities of management. They are also intended to highlight the
difference in organizations that develop software.
There are countless variations on these models – not least those caused by
culture and national differences, and business trends and fashions. The
arrival of CEO – and other ‘C’ level – officers in British companies is
relatively new. Not long ago the top person would be the Managing
Director.
These models categorise development according to business model.
Alternative categorisations could be by size – small or large – or according
to project or product focus. As a general rule-of-thumb, ISVs are
considered as product focused and corporate IT as project focused.
At a technology level – Java, Windows and such – there is often little
difference between the technology company and the corporate IT
department. But in terms of managing there is a world of difference.
Creating systems to support a business is very different to creating systems
to sell are two different tasks.
Unfortunately it is becoming harder to determine which is which. As
companies come to depend on technology to deliver their products they
take more of the characteristics of technology companies, but if they
continue thinking like a corporate IT department the results will be
disappointing at best.

References
[Highsmith02] Highsmith, J. 2002. Agile Software Development

Ecosystems: Addison-Wesley.

Figure 3

CTO

Operations
Director

Development
Director

Head of
Product

Management

Product
Managers ...

Development
Manager

...

Software
Engineers ...

Team Leaders

QA / Test
Manager

Testers ...

Architect

CEO

Technical
Support
Manager

...
December 2008 | Overload | 23

FEATURE STUART GOLODETZ
The Legion’s Revolting!
3D meshes can be too large to deal with
efficiently. Stuart Golodetz applies some
ancient discipline.
Stuart Golodetz has been programming for 13 years and is
studying for a computing doctorate at Oxford University. His
current work is on the automatic segmentation of abdominal
CT scans. He can be contacted at
stuart.golodetz@comlab.ox.ac.uk

n my last article, I explained the first stage of the multiple material
marching cubes (M3C) algorithm [Wu03] for generating polygonal
meshes from labelled volumes. For my own work in medical image

analysis, I make use of this algorithm to generate 3D models from a series
of segmented (labelled) CT slices. The meshes produced by this first stage
of the process are reasonable, but (as I noted last time) they tend to suffer
from ‘stair-stepping’, due to the inter-slice distance being substantially
greater than the intra-slice distance (the distance between the centres of
adjacent pixels in a slice). They also contain far too many triangles.
I will discuss solutions to both of these problems in this article. Stair-
stepping (and indeed lack of smoothness in general) can be mitigated by
a technique called Laplacian smoothing; excessive triangle counts can be
cured by a process known as decimation.

Stage 2: Laplacian smoothing (overview)
For single-material meshes, Laplacian smoothing is actually a remarkably
simple ‘averaging’ process. The idea is essentially to iteratively move each
mesh node a small distance towards its neighbours, using the equation:

In other words, the position of xi at iteration t+1 is calculated by adding
offset vectors in the directions of each of its adjacent nodes in N(xi). The
following things are worth noting:

 is known as the relaxation factor and can be set by the user: it is
usually defined to be somewhere between 0 and 1
The adjacent nodes don’t change between iterations, hence we can
write N(xi) rather than
The equation in [Wu03] misses the division by |N(xi)|: it turns out to
be important

Smoothing multiple-material meshes is a similar process, but with the
difference that in this case we only smooth certain nodes in order to
preserve the overall topology of the mesh. Nodes can be classified into
three types:

Simple nodes are those that have exactly two material IDs
Edge nodes are those that have three or more material IDs and are
adjacent to exactly two nodes with at least those same material IDs
Corner nodes are those that have three or more material IDs and are
not edge nodes

Having classified the nodes in the mesh, we then smooth the three types
differently. Simple nodes are smoothed straightforwardly using the single-

material equation given above. Edge nodes (in my implementation) are
smoothed similarly, but using a neighbour set consisting of only the two
nodes with at least the material IDs of the node being smoothed: note that
this differs from the method described in [Wu03], where they restrict edge
nodes to motion along the edge path (I tried both, and noticed very little
difference in practice). Corner nodes are topologically important and thus
not subjected to smoothing at all.

Stage 2: Laplacian smoothing (implementation)
Implementing Laplacian smoothing in C++ is quite straightforward. The
process is initialised with a value for lambda and an iteration count, and
the iterate() method is then called the specified number of times on
the mesh (see Listing 1, which performs a single iteration of Laplacian
smoothing). Each iteration proceeds by classifying each node and then
smoothing it according to its classification; all the new positions are copied
across en-masse at the end of the iteration because the old positions are
required for the smoothing process. The function for actually classifying
each node as a simple, edge or corner node is shown in Listing 2.

Stage 3: Mesh decimation (overview)
In Ancient Roman times, decimation was the barbaric punishment
occasionally meted out to rebellious troops, or those who were considered
to have shown cowardice in the face of the enemy. A military unit selected
for decimation would have its number reduced by a tenth: one in ten men
would be selected by lot and clubbed to death by his comrades. The idea
was to terrify the remaining troops into obeying orders and fighting
courageously: needless to say, however, the process more often reduced
morale than increased it. In the case of modern computing, however,
decimation is a much more benign procedure. Here, decimation refers to
the process of selectively removing triangles and nodes from a mesh until
the triangle count has been reduced to the desired level. (The triangle count
can often be reduced by as much as 80-90% without greatly affecting the
appearance of the mesh!).
There are various different algorithms for this, but the one referred to in
[Wu03] works as follows: first of all, a decimation metric is calculated for
each simple or edge node that indicates how good a candidate it is for
removal from the mesh. For simple nodes, the metric is the perpendicular
distance of the node from the average plane of its surrounding loop of
adjacent nodes (I described how to calculate the average plane in
[Golodetz08]). For an edge node, it is the perpendicular distance from the
line joining the two adjacent nodes which have at least the same material
IDs [Wu03], but I will only focus on simple nodes for the purposes of this
article.
All the nodes are then placed into a ‘priority queue’ that supports post-
insertion updates of element keys (note that std::priority_queue is
not such a data structure); the decimation metric for each node is used as
its key, so that the first node to be extracted from the queue will be a ‘most
suitable’ candidate for decimation (I say ‘a’ rather than ‘the’ because
several nodes can be equally good candidates).

I

xi
t 1+ xt

i
λ

N xi()
--------------- xt

j xt
i–()

xj N xi()∈
∑+=

λ

N x t
i()
24 | Overload | December 2008

FEATURESTUART GOLODETZ
Nodes are then iteratively extracted from the queue and the local mesh
around them decimated, until some user-defined reduction threshold is
reached. In the case of simple nodes, this local decimation process consists
of removing the node in question, and all triangles that use it, and

retriangulating the loop of adjacent nodes around it using the Schroeder
triangulation process introduced in [Golodetz08]. (It is important to note
that the adjacent node loop will generally be non-planar, which
necessitates a more complicated triangulation scheme than might
otherwise be necessary.) The metrics of adjacent nodes are then
recalculated, which may cause them to move around in the priority queue.
This process reduces both the triangle and node counts of the mesh. The
node count obviously decreases by 1, since a single node has been
removed. The triangle count decreases by 2: consider the example of
meshing a hexagaon with a central node (6 triangles) compared to one
without (4 triangles): see Figure 1.

Stage 3: Mesh decimation (implementation)
The implementation of mesh decimation relies on a peculiar type of
priority queue that supports the updating of priorities while elements are
still in the queue (see Listing 3). The priority queue itself is represented
as a heap (as usual); the only difference is that we also maintain a dictionary
to allow elements in the heap to be referenced and their keys modified. In
our case, we use each node’s global ID as the ID, its decimation metric as

Listing 1

template <typename Label>
void LaplacianSmoother<Label>::iterate(
 const Mesh_Ptr& mesh) const
{
 NodeVector& nodes = mesh->writeable_nodes();
 int nodeCount = static_cast<int>(nodes.size());
 std::vector<Vector3d> newPositions(nodeCount);
 // Calculate the new node positions. Note that
 // they have to be stored separately since we
 // need the old node positions in order to
 // calculate them.
 for(int i=0; i<nodeCount; ++i)
 {
 // holds the neighbours which might affect a
 // node (depends on the node type)
 std::vector<int> neighbours;
 // Determine the type of node: this affects
 // how the node is allowed to move.
 NodeType nodeType = classify_node(
 i, nodes, neighbours);
 newPositions[i] = nodes[i].position;
 switch(nodeType)
 {
 case SIMPLE:
 case EDGE:
 {
 for(
 std::vector<int>::const_iterator
 jt=neighbours.begin(),
 jend=neighbours.end(); jt!=jend; ++jt)
 {
 Vector3d offset =
 nodes[*jt].position -
 nodes[i].position;
 offset *= m_lambda / neighbours.size();
 newPositions[i] += offset;
 }
 break;
 }
 case CORNER:
 {
 // Corner nodes are topologically
 // important and must stay fixed.
 break;
 }
 }
 }
 // Copy them across to the mesh.
 for(int i=0; i<nodeCount; ++i)
 {
 nodes[i].position = newPositions[i];
 }
}

Listing 2

template <typename Label>
NodeType classify_node(int i,
 const std::vector< Node<Label> >& nodes,
 std::vector<int>& neighbours)
{
 NodeType nodeType = SIMPLE;
 if(nodes[i].labels.size() == 2)
 {
 // We're dealing with a simple node.
 neighbours.swap(
 std::vector<int>(
 nodes[i].adjacentNodes.begin(),
 nodes[i].adjacentNodes.end()));
 }
 else
 {
 // Count the number of adjacent nodes with at
 // least the same labels as this one. If it's
 // equal to two, we're dealing with an edge
 // node. Otherwise, we have a corner.
 int edgeCriterion = 0;
 for(std::set<int>::const_iterator
 jt=nodes[i].adjacentNodes.begin(),
 jend=nodes[i].adjacentNodes.end();
 jt!=jend; ++jt)
 {
 std::set<int> commonLabels;
 std::set_intersection(
 nodes[i].labels.begin(),
 nodes[i].labels.end(),
 nodes[*jt].labels.begin(),
 nodes[*jt].labels.end(),
 std::inserter(commonLabels,
 commonLabels.begin()));
 if(commonLabels.size() ==
 nodes[i].labels.size())
 {
 ++edgeCriterion;
 neighbours.push_back(*jt);
 }
 }
 if(edgeCriterion == 2) nodeType = EDGE;
 else nodeType = CORNER;
 }
 return nodeType;
}

Figure 1
December 2008 | Overload | 25

26 | Overload | December 2008

FEATURE STUART GOLODETZ

Listing 3

template <typename ID, typename Key,
 typename Data, typename Comp = std::less<Key> >
class PriorityQueue
{
public:
 class Element
 {
 private:
 Data m_data;
 ID m_id;
 Key m_key;
 public:
 Element() {}
 Element(const ID& id, const Key& key,
 const Data& data) : m_id(id), m_key(key),
 m_data(data) {}
 Data& data() { return m_data; }
 const ID& id() const { return m_id; }
 const Key& key() const { return m_key; }
 friend class PriorityQueue;
 };
private:
 // The dictionary maps IDs to their current
 // position in the heap
 typedef std::map<ID,size_t> Dictionary;
 typedef std::vector<Element> Heap;
 // Datatype Invariant: m_dictionary.size()
 // == m_heap.size()
 Dictionary m_dictionary;
 Heap m_heap;
public:
 void clear()
 {
 m_dictionary.clear();
 m_heap.swap(Heap());
 }
 bool contains(const ID& id) const
 {
 return m_dictionary.find(id) !=
 m_dictionary.end();
 }
 Element& element(const ID& id)
 {
 return m_heap[m_dictionary[id]];
 }
 bool empty() const
 {
 return m_dictionary.empty();
 }
 void erase(const ID& id)
 {
 size_t i = m_dictionary[id];
 m_dictionary.erase(id);
 m_heap[i] = m_heap[m_heap.size()-1];
 if(m_heap[i].id() != id) // assuming the
 // element we were erasing wasn't the last one
 // in the heap, update the dictionary
 {
 m_dictionary[m_heap[i].id()] = i;
 }
 m_heap.pop_back();
 heapify(i);
 }
 void insert(const ID& id, const Key& key,
 const Data& data)
 {
 if(contains(id))
 {

Listing 3 (cont’d)

 throw Exception("An element with the
 specified ID is already in the priority
 queue");
 }
 size_t i = m_heap.size();
 m_heap.resize(i+1);
 while(i > 0 && Comp()(key,
 m_heap[parent(i)].key()))
 {
 size_t p = parent(i);
 m_heap[i] = m_heap[p];
 m_dictionary[m_heap[i].id()] = i;
 i = p;
 }
 m_heap[i] = Element(id, key, data);
 m_dictionary[id] = i;
 }
 void pop()
 {
 erase(m_heap[0].id());
 ensure_invariant();
 }
 Element top()
 {
 return m_heap[0];
 }
 void update_key(const ID& id, const Key& key)
 {
 size_t i = m_dictionary[id];
 update_key_at(i, key);
 }
private:
 void heapify(size_t i)
 {
 bool done = false;
 while(!done)
 {
 size_t L = left(i), R = right(i);
 size_t largest = i;
 if(L < m_heap.size() &&
 Comp()(m_heap[L].key(),
 m_heap[largest].key()))
 largest = L;
 if(R < m_heap.size() &&
 Comp()(m_heap[R].key(),
 m_heap[largest].key()))
 largest = R;
 if(largest != i)
 {
 std::swap(m_heap[i], m_heap[largest]);
 m_dictionary[m_heap[i].id()] = i;
 m_dictionary[m_heap[largest].id()] =
 largest;
 i = largest;
 }
 else done = true;
 }
 }
 static size_t left(size_t i) { return 2*i + 1; }
 static size_t parent(size_t i)
 {
 // Precondition: i > 0
 return (i+1)/2 - 1;
 }
 void percolate(size_t i)
 {
 while(i > 0 && Comp()(m_heap[i].key(),
 m_heap[parent(i)].key()))

December 2008 | Overload | 27

FEATURESTUART GOLODETZ

Listing 3 (cont’d)

 {
 size_t p = parent(i);
 std::swap(m_heap[i], m_heap[p]);
 m_dictionary[m_heap[i].id()] = i;
 m_dictionary[m_heap[p].id()] = p;
 i = p;
 }
 }
 static size_t right(size_t i){ return 2*i + 2; }
 void update_key_at(size_t i, const Key& key)
 {
 if(Comp()(key, m_heap[i].key()))
 {
 // The key has increased.
 m_heap[i].m_key = key;
 percolate(i);
 }
 else if(Comp()(m_heap[i].key(), key))
 {
 // The key has decreased.
 m_heap[i].m_key = key;
 heapify(i);
 }
 }
};

Listing 4 (cont’d)

 {
 int i0 = it->indices[0],
 i1 = it->indices[1],
 i2 = it->indices[2];
 NodeL& n0 = nodes[i0];
 NodeL& n1 = nodes[i1];
 NodeL& n2 = nodes[i2];
 n0.adjacentNodes.insert(i1);
 n0.adjacentNodes.insert(i2);
 n1.adjacentNodes.insert(i0);
 n1.adjacentNodes.insert(i2);
 n2.adjacentNodes.insert(i0);
 n2.adjacentNodes.insert(i1);
 }
 // Splice the new triangles onto the end of
 // the triangle list.
 TriangleList& meshTriangles =
 mesh->writeable_triangles();
 meshTriangles.splice(meshTriangles.end(),
 tris);
 // Recalculate the metrics for the surrounding
 // nodes and update their keys in the priority
 // queue.
 for(std::set<int>::const_iterator it=
 n.adjacentNodes.begin(),
 iend=n.adjacentNodes.end(); it!=iend;
 ++it)
 {
 if(pq.contains(*it))
 {
 PriQ::Element& adj = pq.element(*it);
 adj.data()->calculate_details();
 if(adj.data()->valid()) pq.update_key(
 *it, adj.data()->metric());
 else pq.erase(*it);
 }
 }
 }
 }
 clean_triangle_list(mesh);
 rebuild_node_array(mesh);
 return mesh;
}

template <typename Label>
void MeshDecimator<Label>::clean_triangle_list(
 const Mesh_Ptr& mesh) const
{
 const NodeVector& nodes = *(mesh->nodes());
 TriangleList& triangles =
 mesh->writeable_triangles();
 for(TriangleList::iterator it=triangles.begin(),
 iend=triangles.end(); it!=iend;)
 {
 int i0 = it->indices[0], i1 = it->indices[1],
 i2 = it->indices[2];
 if(!nodes[i0].valid || !nodes[i1].valid ||
 !nodes[i2].valid)
 {
 it = triangles.erase(it);
 }
 else ++it;
 }
}

template <typename Label>
void MeshDecimator<Label>::
 construct_priority_queue(PriQ& pq,
 const Mesh_Ptr& mesh) const

Listing 4

template <typename Label>
typename MeshDecimator<Label>::Mesh_Ptr
MeshDecimator<Label>::operator()(
 const Mesh_Ptr& mesh) const
{
 m_trisToRemove = static_cast<int>(
 m_reductionTarget *
 mesh->triangles()->size());
 m_trisRemoved = 0;
 PriQ pq;
 construct_priority_queue(pq, mesh);
 while(!pq.empty() &&
 m_trisRemoved < m_trisToRemove)
 {
 PriQ::Element e = pq.top();
 pq.pop();
 std::list<TriangleL> tris =
 e.data()->decimate();
 int triCount = static_cast<int>(tris.size());
 if(triCount > 0)
 {
 int index = e.data()->index();
 NodeVector& nodes = mesh->writeable_nodes();
 NodeL& n = nodes[index];
 m_trisRemoved += static_cast<int>(
 n.adjacentNodes.size()) - triCount;
 // Mark the node as no longer valid and remove
 // references to it from the surrounding nodes.
 n.valid = false;
 for(std::set<int>::const_iterator it=
 n.adjacentNodes.begin(),
 iend=n.adjacentNodes.end(); it!=iend;
 ++it)
 {
 nodes[*it].adjacentNodes.erase(index);
 }
 // Add any new edges introduced by the
 // retriangulation.
 for(std::list<TriangleL>::
 const_iterator it=tris.begin(),
 iend=tris.end(); it!=iend; ++it)

FEATURE STUART GOLODETZ
the key, and store a mesh decimation functor (to perform the local
decimation work) as the data payload.
The key part of the decimation code, then, is shown in Listing 4. It works
as follows: provided there are still undecimated nodes remaining, and we
haven’t yet reached our reduction target, nodes are repeatedly extracted
from the priority queue and the mesh around them decimated. This
decimation is handled in practice by marking the node to be decimated as
invalid and retriangulating the node loop around it. Some book-keeping is
necessary to update the various mesh data structures, after which the new
triangles are added to the mesh and the metrics for the surrounding nodes
are recalculated. At the end of the process, the triangle list is cleaned by
removing any triangles which mention invalid nodes. The node array is
then cleaned by removing any nodes which are invalid: this involves
renumbering all the remaining nodes, so a map is created from old to new
indices, and this is used to update the triangle list accordingly.
Figure 2 shows the end result.

Summary
In this article, we have seen how to smooth and decimate the intermediate
meshes produced by the first stage of the multiple material marching cubes
(M3C) algorithm [Wu03]. This allows us to generate smooth, reasonably-
sized meshes that are suitable for real-time visualization. In the medical
imaging domain, these meshes can be used to allow doctors to view a
patient’s state from any angle (and indeed to ‘fly around’ the patient’s
model), greatly aiding their understanding of the 3D situation involved.

References
[Golodetz08] Golodetz, SM, Seeing Things Differently, Overload 86,

August 2008.
[Wu03] Wu, Z, and Sullivan Jr., JM, Multiple material marching cubes

algorithm, International Journal for Numerical Methods in
Engineering, 2003.

Listing 4 (cont’d)

{
 const NodeVector& nodes = *(mesh->nodes());
 int nodeCount = static_cast<int>(nodes.size());
 for(int i=0; i<nodeCount; ++i)
 {
 std::vector<int> neighbours; // holds the
 // neighbours which might affect a node (depends
 // on the node type)
 NodeType nodeType = classify_node(
 i, nodes, neighbours);
 switch(nodeType)
 {
 case SIMPLE:
 {
 NodeDecimator_Ptr nodeDecimator(
 new SimpleNodeDecimator(i, mesh, pq));
 if(nodeDecimator->valid()) pq.insert(i,
 nodeDecimator->metric(),
 nodeDecimator);
 break;
 }
 case EDGE:
 {
 //...
 break;
 }
 case CORNER:
 {
 // Corner nodes should not be decimated.
 break;
 }
 }
 }
}
template <typename Label>
void MeshDecimator<Label>::rebuild_node_array(
 const Mesh_Ptr& mesh) const
{
 NodeVector& nodes = mesh->writeable_nodes();
 TriangleList& triangles =
 mesh->writeable_triangles();
 int nodeCount = static_cast<int>(nodes.size());
 // Rebuild the node array.
 std::vector<int> mapping(nodeCount, -1);
 NodeVector newNodes;
 for(int i=0; i<nodeCount; ++i)
 {
 if(nodes[i].valid)
 {
 mapping[i] =
 static_cast<int>(newNodes.size());
 newNodes.push_back(nodes[i]);
 }
 }
 nodes = newNodes;
 // Update the indices in the adjacent node sets
 // using the mapping.
 nodeCount = static_cast<int>(nodes.size());
 for(int i=0; i<nodeCount; ++i)
 {
 std::vector<int> adjacentNodes(
 nodes[i].adjacentNodes.begin(),
 nodes[i].adjacentNodes.end());
 int adjacentNodeCount =
 static_cast<int>(adjacentNodes.size());
 for(int j=0; j<adjacentNodeCount; ++j)
 {
 adjacentNodes[j] =
 mapping[adjacentNodes[j]];

Listing 4 (cont’d)

 }
 nodes[i].adjacentNodes =
 std::set<int>(adjacentNodes.begin(),
 adjacentNodes.end());
 }
 // Update the indices in the triangle list using
 // the mapping.
 for(TriangleList::iterator it=triangles.begin(),
 iend=triangles.end(); it!=iend; ++it)
 {
 for(int j=0; j<3; ++j)
 {
 it->indices[j] = mapping[it->indices[j]];
 }
 }
}

Figure 2
28 | Overload | December 2008

FEATUREROEL VANHOUT
Iterators and Memberspaces
Exposing a compound object’s collections
can be messy. Roel Vanhout introduces a
powerful idiom.
his article describes a C++ idiom to expose an object’s collection
member variables in a way that is easy to use and read for users of
the object. It allows users to iterate over filtered and/or modified

elements of a collection without the user having to be aware of the
implementation or type of the collection. It describes the problem, several
possible solutions and their drawbacks and proposes a technique that uses
the ‘memberspaces’ idiom and the Boost.Iterator library to provide
object designers with a mechanism to allow users of their objects flexible
access to the data of those objects.
It contains introductions to the memberspace idiom and Boost.Iterator’s
filter_iterator<> and transform_iterator<>.

Introduction
A common scenario in object-oriented development is that an object has
a collection (for example a std::vector<>) as a member that the
object’s author wants to expose in the public interface of the object.
Consider an object like this one:
 class A {
 protected:
 std::vector<int> values;
 };

This object has a member with a collection in it (values) in which ints
can be stored. As far as the internal implementation goes, this works fine;
however when the contents of values need to be exposed, dilemmas arise.
There are several solutions to most of those dilemmas, all with their
advantages and drawbacks.

Potential solutions
The first solution is to expose the collection itself directly:
 std::vector<int>& getValues();

or (depending on whether read/write or read-only access is appropriate):
 const std::vector<int>& getValues();

The disadvantages to this are clear: when the type of the collection or of
its contents changes internally, users will have to change their code as well.
Secondly, there is no granularity in what users of the object can do to the
collection. When exposing the non-const version above, users can change
the contents of the vector but also its size. There is no way to limit them
to do just one of those two, nor does it have a mechanism to do validation
of the vector’s contents after the user performed an operation on it.
A second solution is to expose functions to query and modify the
collection:
 size_t getNValues() const {
 return values.size(); }
 int getValue(int index) const {
 return values[index]; }
 void setValue(int index, int new_value) {
 values[index] = new_value;
 }

This solves the encapsulation issue of the first solution, and provides a way
for the object author to put in validation of the input. On the other hand,
it’s inconvenient to use for both the author and the user of the object
because there are so many ways to name and implement this solution.
Although it is possible to enforce naming standards within the same class
library (but even within a team this gets harder as the team grows and the
codebase ages), invariably at one point differences in naming will emerge
(getNumValues(), GetValuesCount(), …) and users of the object
will have to start refering to the documentation or header file of an object
every time they want to use it; not to mention the inevitable differences in
conventions between different libraries. Worse than this issue, users
cannot use stl-style generic algorithms on collections that are exposed this
way.
A third solution is to expose the stl interface of the collection directly:

 typedef std::vector<int>::iterator iterator;
 typedef std::vector<int>::const_iterator
 const_iterator;
 iterator begin() { return values.begin(); }
 iterator end() { return values.end(); }

This solution is starting to look better but is still not without its flaws. First,
it makes the object directly ‘iterable’, which may not be intuitive
(depending on the relationship between the object and its collection).
Furthermore it restricts the number of exposed collections to one. Thirdly,
it re-introduces the problem of the first solution of having no granularity
in the access to the collection: users can for example change values and
assign any value to the elements of the collection, without regards of
whether or not those values make sense in the context of the object. As
long as those values remain compatible with the collection’s data type, they
can do anything they want with them. Lastly, it relies on the collection that
is being exposed to already have an stl-compatible interface with functions
that provide iterators.

The goal
The ideal solution to the described problem has the following properties:

It exposes iterators so collections can be used by generic, stl-
compliant algorithms.
It can be used to expose all sorts of collections, not only stl
collections.
It allows multiple collections to be exposed by an object.

T

Roel Vanhout Roes Vanhout is a software developer at a
small company in the Netherlands that develops and
commercializes Spatial Decision Support Systems. He spends
most of his time in C++ but likes to reminisce about his times
with PHP too. He can be contacted at
roel.vanhout@gmail.com
December 2008 | Overload | 29

FEATURE ROEL VANHOUT

A problem arises when you want to
access the variables of the class in which
a member space is contained
It’s intuitive and idiomatic: it allows client code to express clearly
what is happening.
It provides object authors with finely grained control over the way
the collection is accessed or modified.

Ideally, client code could look like this:
 Classroom c;
 BOOST_FOREACH (Desk d, c.Desks) {
 // do something with Desk d here
 }
 BOOST_FOREACH (Student s,
 c.StudentsInClassroomRightNow) {
 // do something with Student s here
 }

This code uses the boost Foreach construct that wraps iterators to allow
direct iteration over stl-compliant containers; the corresponding way to do
this directly with iterators is:

 typedef Classroom::Desks::iterator TDeskIter;
 for (TDeskIter it = c.Desks.begin() ;
 it != c.Desks.end() ;
 it++) {
 Desk d = *it;
 // do something with Desk d here
 }

Fortunately there is a way to make this happen. By combining the freely
available Iterator library from Boost and using an idiom called
‘memberspaces’, the code above can be made into compilable and working
C++ code.

Memberspaces and two techniques for implementing
them
Memberspaces (a name I first found mentioned in [LópezMuñoz02]) are
essentially a technique to subdivide the ‘space’ in which the member
variables of an object live into separately named ‘subspaces’, like
namespaces do for freestanding functions and classes. They are
implemented as member structs, hence the name ‘memberspace’. When
used with only variables (i.e., not member functions), they look like this1:

 class PirateShip {
 struct Deck {
 int nCannons;
 }
 struct UpperDeck : public Deck {
 } UpperDeck;
 struct LowerDeck : public Deck {
 } LowerDeck;
 }

This allows users of the pirateShip class to write code like this:
 PirateShip adventure_galley;
 …
 std::cout << "There are "
 << adventure_galley.UpperDeck.nCannons
 << " cannons on the upper deck and "
 << adventure_galley.LowerDeck.nCannons
 << " cannons on the lower deck."
 << std::endl;

Note the naming convention. In this article I use a style where class names
are in CamelCase and variables are in all lowercase with underscores. In
the PirateShip class above though, UpperDeck and LowerDeck are
variables; why are they not in lowercase with underscores? The reason is
in their use. They are not used as ‘regular’ member variables, but as
pseudo-namespaces; therefore they use the naming convention of
namespaces, which is CamelCase.
Also note that the class name and the memberspace (variable) name are
the same (UpperDeck and LowerDeck). This is legal and although it
doesn’t serve an explicit purpose, I find it an easy way to recognize
memberspaces in the code. It also prevents you from having to make up
another name for the class: it could be called UpperDeckT ,
UpperDeckClass, UpperDeck_, … but by making it be the same as the
memberspace variable itself, it is easy to be consistent across your project.
After a little getting used to, this is a very readable and natural way of
working with the properties of an object.
A problem arises when you want to access the variables of the class in
which a member space is contained. If you wanted to implement member
functions in the Deck class and for that wanted access to variables of the
PirateShip class, you’d need a way to get to those variables. There are
two easy ways to implement this, one of which I’ve coined ‘non-intrusive’
because it doesn’t require changing the containing class, the other one
‘intrusive’ because it does.

‘Non-intrusive’
To write a memberspace that can handle access to the containing class on
its own, without any help from the containing class, you can use some
pointer arithmetic to calculate the start address of the containing class and
cast that to the correct type. To calculate this start address, you take the
address of the memberspace struct and deduct from it the offset of the
memberspace struct within the containing class – which you can get with
the offsetof() macro.

1. History buffs will shake their heads at this example, as pirates
(the sea-faring type) generally preferred the highly manoeuvrable
schooners or sloops, which typically only had one level of
artillery. In this article, it is assumed that the PirateShip class
is part of a highly extensible pirate-modelling framework that
allows for flexible configuration of pirate paraphernalia and puts
responsibility for historical accuracy in the hands of the modeller.
30 | Overload | December 2008

FEATUREROEL VANHOUT

you’ll have to check yourself whether this
technique falls within the ‘acceptable’ bounds of

the coding standards of your environment
The drawback of this technique is that it relies on potentially unportable
assumptions, like offsetof() being implemented in a way that it
accounts for things like virtual functions. More specifically, the standard
requires offsetof() to work only on POD types. This (roughly) means
that for classes you are restricted to those that are ‘struct-like’: no virtual
functions, no constructor or destructor and only public functions. For more
information.
Recent offsetof() implementations of the Visual Studio compiler and
gcc work also in (some) cases not covered by the standard, but if you
require guaranteed portability this technique is not the right one to use.
This technique may give others reviewing your code the jitters because it
uses reinterpret_cast<>, a construct that is often indicative of code
of highly questionable quality. In my opinion the case presented here is
one of the few cases in which it is ok to use reinterpret_cast<>, but
you’ll have to check yourself whether this technique falls within the
‘acceptable’ bounds of the coding standards of your environment.
An example is shown in Listing 1.

‘Intrusive’
A more portable way is to keep a reference to the containing object in a
member variable and let the containing object initialize it in its constructor.
This is most easily explained with a code example (Listing 2).
The main disadvantage of this technique is that it requires a variable in the
memberspace – adding to the size of the object. When the first technique
is used, no such member is needed and no price in space overhead needs
to be paid. There will be few circumstances in which this overhead is
prohibitive, though.

Exposing a collection through a memberspace
We’ve already fulfilled one of the original design goals we started with:
we have a way to expose multiple collections, through multiple
memberspaces that all have their own name. The next thing we want to do
is make the memberspaces iterable, that is, make them compliant with stl-
like containers. Luckily, it is easy to make them work for the most basic
cases. All that is required is that we provide begin() and end()
functions and an iterator typedef that indicates the type of iterator that
is returned by those functions. If the collection we are exposing is already
an stl-compatible container, we can use the iterator type and begin() and
end() iterator accessors to implement our own function. A simple
example is shown in Listing 3.

Listing 1

class A {
 public:
 void doSomething() {}
 struct MyMemberSpace {
 public:
 void someFunction()
 {
 owner().doSomething();
 }
 private:
 A& owner() {
 return *reinterpret_cast<A*>(
 reinterpret_cast<char*>(this) -
 offsetof(A, MyMemberSpace));
 }
 } MyMemberSpace;
}

A a;
a.MyMemberSpace.someFunction();

Listing 2

class A {
 A() : MyMemberSpace(*this) {}
 void doSomething() {}
 struct MyMemberSpace {
 void someFunction() {
 m_A.doSomething();
 }
 private:
 friend A;
 MyMemberSpace(A& a) : my_A(a) {}
 A& my_A;
 } MyMemberSpace;
}
A a;
a.MyMemberSpace.someFunction();

Listing 3

class A {
 public:
 A() : MyMemberSpace(*this) {}
 typedef std::vector<int> myCollection;
 myCollection collection;
 struct MyMemberSpace {
 friend A;
 typedef myCollection::iterator iterator;
 iterator begin() { return
 m_A.collection.begin(); }
 iterator end() { return
 m_A.collection.end(); }

 private:
 MyMemberSpace(A& a)
 : m_A(a)
 {}
 A& m_A;
 } MyMemberSpace;
};
December 2008 | Overload | 31

FEATURE ROEL VANHOUT

The technique ... works fine as long as the only thing
you want to do is to directly allow all elements of the
container to be visible from the outside
This can now be used like this:
 A a;
 BOOST_FOREACH (int i, a.MyMemberSpace) {
 // do something with int i here
 }

Exposing a filtered collection through a
memberspace
The technique explained above works fine as long as the only thing you
want to do is to directly allow all elements of the container to be visible
from the outside. But there are scenarios in which you want to provide an
easy way for clients to go through a subset of the elements in the container
– either as an addition to or as a replacement of the access to all elements.
Consider a class like the following:
 struct Employee {
 enum ESeniority { E_SENIOR, E_JUNIOR };
 std::string name;
 ESeniority seniority;
 };
 class Staff {

 protected:
 std::vector<Employee> employees;
 };

If we could find a way to expose an iterator over employees that could leave
out (or ‘filter’) certain elements that don’t fulfill a certain criterion, we
could use that iterator to go over all those that do fulfill it. Such an iterator
is called a ‘filtering iterator’. The design of one is described in detail in
[Higgins08].
Here however a filtering iterator is realized through the freely available
Boost.Iterator [Abrahams03] library. This library provides, roughly
speaking, templates to easily implement new iterators and to modify
existing ones. By using the filter_iterator<> template, we can
modify the behaviour of the i terators that we can get from
std::vector<> so that for every element in it, a function is called: if
that function returns true, the element is included when advancing the
iterator; otherwise it is skipped. This template provides us with a tool to
easily implement iterators for the memberspaces in the example above (see
Listing 4).
Here is what is happening. First, we define an object that will serve as the
‘decision-making point’ for whether or not a certain Employee will be
considered part of the SeniorEmployees. We can determine this by
testing the seniority member variable of the object. The object needs to be
callable (have the () operator defined) and should take the type of the
elements of the collection we want to iterate over – in this example, an
Employee.
For the implementation of the memberspace proper, we start with
providing a typedef for the iterator type that will be exposed. We can
use the type of the boost::filter_iterator template for this. It
takes two template arguments: the object that will provide the ‘decision-

making’ functionality and the iterator that is being ‘wrapped’ or modified.
Since we’re exposing an stl collection, we can re-use the iterator type from
the std::vector<>. Although not strictly needed, we also provide a
const_iterator – it is needed by the BOOST_FOREACH construct that
I’m rather fond of. Many algorithms use the const_iterator so it’s
good practice to always define it.
Next, we come to the implementation of the begin() and end()
functions which should return the actual iterators. Boost.Iterator provides
a utility function to make iterators of the filter_iterator<> type. It
is (unsurprisingly) called make_filter_iterator and takes three
arguments, of which one takes the form of a template parameter. This
template parameter is the type of the class that will decide whether or not
to include a certain element in the collection to be included when the
iterator is used. The two ‘normal’ arguments that are passed to the

Listing 4

#include <boost/iterator/filter_iterator.hpp>
struct isSeniorEmployee {
 bool operator()(Employee& e) {
 return e.seniority == Employee::SENIOR;
 }
};
struct SeniorEmployees {
 typedef
 boost::filter_iterator<isSeniorEmployee,
 std::vector<Employee>::iterator> iterator;
 typedef
 boost::filter_iterator<isSeniorEmployee,
 std::vector<Employee>::const_iterator>
 const_iterator;
 iterator begin() {
 return boost::make_filter_iterator<
 isSeniorEmployee>(
 owner().employees.begin(),
 owner().employees.end()
);
 }
 iterator end() {
 return boost::make_filter_iterator<
 isSeniorEmployee>(
 owner().employees.end(),
 owner().employees.end()
);
 }
private:
 Staff& owner() {
 return *reinterpret_cast<Staff*>(
 reinterpret_cast<char*>(this)
 - offsetof(Staff, SeniorEmployees));
 }
} SeniorEmployees;
32 | Overload | December 2008

FEATUREROEL VANHOUT
constructor are a range of elements, embodied by two iterators. The end()
iterator is needed because the filter iterator needs to know when to stop
going over the elements of the source collection.
The result is a construct where we can iterate over only the senior
employees by writing:
 Staff s;
 BOOST_FOREACH(Employee e, s.SeniorEmployees) {
 std::cout << e.name << std::endl;
 }

Exposing a modified collection through a
memberspace
The previous section covered modifying the appearance of a collection by
filtering out certain elements. We can also use iterators to modify not the
collection, but rather the individual elements of a collection. The crucial
e l e m e n t t o d o s o i s a n o t h e r i t e r a t o r adap t e r : boos t ’ s
transform_iterator<>.
Let’s add another potentially useful memberspace to the Staff class
introduced above:
 struct EmployeeNames {
 } EmployeeNames;

To get access to only the names of the employees (and to be able to iterate
over them), we have to get access to the ‘name’ member variable of every
Employee object. The transform_iterator<> mentioned earlier
will apply a user-defined operation on an object to transform it into a
different type. In the EmployeeNames example, what we want to do is
‘transform’ an Employee struct to its name, in std::string form. The
‘transformer’ struct to do this looks very similar to the struct that
determined whether or not to include an object in an exposed collection.
The actual conversion is done in the () operator, which should return the
type to be transformed to and takes as a reference the object to be
transformed. The code is shown in Listing 5.
The begin() and end() iterators work in the same way as those for the
filter_iterator. You use the make_transform_iterator
utility function provided by the library, which takes the beginning of the
iterator range you want to transform as an input. You don’t need to specify
an end this time as the transform_iterator iterates over all the

elements. The second argument is an instance of the class you wrote to
transform your input object.

Suggestions for further experimentation
It is easy to see that the previous two constructs can be combined: for
example providing a way to iterate over only the names of the junior
employees. For those trying to implement this, such an iterator declaration
can quickly get unwieldy – it is advisable to use lots of typedefs for the
iterator types to keep on top of things.
The transform_iterator can be used not only to query properties of
objects. A useful ‘transformer’ class is the following:
 template<typename TObj>
 struct getObjectNr<boost::shared_ptr<TObj> > {
 typedef TObj* result_type;
 TObj* operator()(
 boost::shared_ptr<TObj> sh_ptr) const {
 return sh_ptr.get();
 }
 };

Thi s a l l ows fo r ma k i ng an i t e r a t o r ove r a co l l ec t i on o f
boost::shared_ptr’s where the raw pointers themselves are exposed,
rather than the shared pointers. This comes in handy in a codebase where
smart pointers were added later but many parts of the code still only work
with raw pointers.
We’ve only explicitly covered a part of the initial qualities that we sought
in a solution to the original problem. Specifically, we haven’t yet discussed
using Boost.Iterator to make new iterators that work on non-stl types and
we haven’t done any input validation or value restrictions. Writing custom
iterators is a topic of its own; a task that is simplified by the use of other
parts of the Boost.Iterator libraries yet complex enough to warrant an
eventual separate article.

Conclusion
Memberspaces are a powerful idiom to provide interfaces to collections.
They make for expressive, easily readable code. With the help of the
Boost.Iterator library, we can extend their functionality to more than
readability: they can provide users of objects with an easy way to access
that object’s properties in a myriad of different ways – at little to no cost
in terms of memory usage or speed. It provides class designers with ways
to give users access to an object’s properties while maintaining control
over the way this is done.

Note
During review, a third technique to deal with this problem was mentioned
that may be of interest. See [Bass05].

References
[Abrahams03] ‘The Boost.Iterator Library’, David Abrahams, Jeremy

Siek, Thomas Witt, 2003: http://www.boost.org/doc/libs/1_36_0/
libs/iterator/doc/index.html

[Bass05] Phil Bass, ‘The Curate’s Wobbly Desk’, Overload 70
(December 2005)

[Higgins08] ‘Custom Iterators in C++’, Jez Higgins, CVu Volume 20
Issue 3 (June 2008), ACCU.

[LópezMuñoz02] ‘An STL-like bidirectional map’, Joaquín M López
Muñoz, 2002: http://www.codeproject.com/KB/stl/bimap.aspx

Listing 5

#include <boost/iterator/transform_iterator.hpp>
struct getEmployeeName {
 std::string operator()(Employee& e) const {
 return e.name;
 }
};

struct EmployeeNames {
 typedef
 boost::transform_iterator<getEmployeeName,
 std::vector<Employee>::iterator> iterator;
 typedef iterator const_iterator;
 iterator begin() {
 return boost::make_transform_iterator(
 owner().employees.begin(),
 getEmployeeName());
 }
 iterator end() {
 return boost::make_transform_iterator(
 owner().employees.end(),
 getEmployeeName());
 }
 private:
 Staff& owner() {
 return *reinterpret_cast<Staff*>(
 reinterpret_cast<char*>(this)
 - offsetof(Staff, EmployeeNames)); }
} EmployeeNames;
December 2008 | Overload | 33

FEATURE ROBERT JONES
Generics without Templates –
Revisited
Can you use the STL if your compiler lacks templates?
Robert Jones implements iterators and alogorithms.
n my last article on this topic [Jones08], I explored a method of creating
an STL-like vector container, without making use of templates, for
circumstances in which the template features C++ are not available.

In this article I shall extend the techniques explored previously, to include
other containers and more importantly their ability to inter-operate, and
finally examine a restricted, but still useful, implementation of some basic
STL algorithms using these containers.

Review
By the conclusion of the first part of this article we had seen how to create
an STL-like vector container, using a macro to generate a typed interface
and then exploiting code-hoisting techniques to abstract a single, common
implementation.
The resulting vector type could be used in this fashion, and offered the
dynamic resizing and iteration capabilities of the STL vector (Listing 1).
Using similar techniques it is possible to create an analogue of the STL
list container, and then things become rather more interesting.
Both the vector and list containers have methods such as
 void insert(position, first, last);

in which the range first...last may be bounded by iterators of any
type, including pointers. In the vector, iterators are indeed typedef’d as
pointers (although there are exceptions to this, e.g. checked iterators), so
the issue does not usually arise, but for other containers the semantics of
their iterators are quite different. Iterators themselves must contain the
semantics of how to move and compare them.

Towards a better Iterator
The behaviour required of iterators is essentially polymorphic – the
concept of moving or comparing is common to all iterators, but the
implementation of that concept for different iterators (aka different
containers) varies.
The natural approach to implementing polymorphic behaviour would be
to use inheritance – an abstract base iterator class, and various concrete
derived classes to iterate over the various containers; however this
approach is fatally flawed. Firstly, iterators are passed by value, and to do
otherwise would be a sufficiently subtle departure from expected
behaviour based on the STL to be folly, and consequently suffer from the
slicing problem [Meyers]. Secondly, the ultimate intent of this work
includes implementing some elementary STL-like algorithms, such as
find(). find() returns an iterator of the same type as its range
parameters. While, in the absence of templates, it is inevitable that find()

must be overloaded for containers of many different types, it is undesirable
to have to overload find() for many different containers of many
different types, since this is an unbounded group in two orthogonal
directions. Consequently, iterators over a collection of a single given type
must be of a single given type.
However, inheritance still provides the mechanism for customization of
behaviour, through a policy class wrapped by an iterator facade. The
policy class expresses the essential operations necessary to implement
a sufficiently general iterator (Listing 2).
A pointer to policy is then wrapped by a generic void * iterator core
(Listing 3).
And finally a type-aware macro is wrapped around the core iterator to
provide the necessary type information, which turns out to be just the size
of the type for iterators. See Listing 4.
For the sake of brevity much has been omitted from these code snippets;
both iterator core and wrapper must also exist in const versions, both need
the full gamut of comparison operators, and a chain of methods must also
be present to facilitate dereferencing, which must also be supported in the

I

Robert Jones Robert has been programming in C++ for many
years, since the early days when C++ was only available as a
cross compiler. His experience has been primarily in embedded
environments, especially telecoms. Robert attended his first
ACCU conference in 2007, and found the experience utterly
engaging. He can be contacted at robertgbjones@gmail.com

C++ compilers for embedded environments often lack support for some
of the relatively recent additions to the C++ language, most notably
templates and exceptions. There can be a number of reasons for this.

Some embedded environments are now very mature, and may now have
only a small active development community. As a result it may not be
commercially viable to update their compilers to support these features.
Supporting templates and exceptions adds significantly to the complexity
of the compiler, so the commercial case to make the investment may not
be attractive.

However, probably the most common reason for not supporting these
features is the obscurity they introduce to the runtime performance. Even
with a basic C++ implementation, the apparently simple act of exiting a
scope can cause a great deal of activity as a result of stack unwinding
and all the destructor calls that may be made. By including exceptions
and templates this unseen activity penalty is exacerbated. In the kind of
environments where the system must respond within a handful of
microseconds this kind of ‘under-the-hood’ activity can be problematic.

Compilers

Listing 1

#include "vector.hpp"
typedef vector(unsigned) IntVector;
IntVector v;
// Populate v;
for (
 IntVector::iterator i=v.begin();
 v!=v.end(); ++i)
{
 printf("%u\n", *i);
}

34 | Overload | December 2008

FEATUREROBERT JONES
policy since dereferencing a vector iterator may be very different to
dereferencing a list iterator.
Naturally nothing comes for free, and there is a price to pay for this
flexibility. Iterators are now at least twice the size of a pointer, and every
dereference introduces at least an extra virtual function call.
All of this can now be packaged to make it more useable with a few macros
(Listing 5).
Subsequently, when creating a new type over which it may be required to
iterate, all that is required for a type A is that its header file #includes
the iterator header, and appends a single line:
 ITERATORS(A);

Inspection of the names chosen in the macros above suggests that in
practice the definition of the full set of iterators is a little more complex,
and this is true. However, the additional complexity is essentially rote-
repetition of the approach described, and presents no new issues.

Iterator policy lifetime
The core iterator illustrated above contains a pointer to iterator policy,
which naturally raises the issue of ownership and lifetime of the pointee.
The policy may not, of course, be a contained member of the iterator, since
the precise type of the policy varies for different containers, whereas the
iterator must be a constant type for all containers of a given type. For
iterators over containers the policy may be a member of the container, since
the valid lifetime of the iterator can never exceed the lifetime of the
container over which it iterates. Native pointers converted to iterators
present a special case which will be examined separately.

Container changes
Changes to the container interfaces are now very minor, although
reflecting more substantial changes to the implementation. Previously the
vector container simply typedef’d pointers to create its nested iterator
type (Listing 6). Now, using the macros above this becomes Listing 7.
With iterators as common types across all containers, and with each iterator
containing the knowledge of how to iterate over its owning container, we
can now use our containers in this fashion. (See Listing 8.)

Listing 3

struct iterator_core
{
 iterator_core(AnyIteratorPolicy const *,
 void *);
 iterator_core & operator ++ ();
 iterator_core & operator -- ();
 // & +=, -=, +, -, equal etc.
 void * value() const;
private:
 AnyIteratorPolicy const * m_policy;
 void * m_value;
};

Listing 2

struct AnyIteratorPolicy
{
 typedef int difference_type;
 virtual void const * client(
 void const *) const = 0;
 virtual void increment(
 void const * &) const = 0;
 // & decrement, advance etc.,
 // all const & non-const
 virtual bool equal(
 void const *, void const *) const = 0;
 virtual difference_type distance(
 void const *, void const *) const = 0;
 virtual ~AnyIteratorPolicy() { }
};

Listing 4

#define DEFINERANDOMITERATOR(const_iterator, \
 iterator, type) \
struct iterator \
{ \
 typedef type value_type; \
 typedef iterator_core core_type; \
 typedef core_type :: difference_type \
 difference_type; \
 iterator(\
 value_type * value, \
 AnyIteratorPolicy const * policy) : \
 m_core(policy, value) \
 { } \
 iterator & operator ++ () \
 { ++ m_core; return * this; } \
 /* also --, +=, -=, +, -, ->, deref etc. */ \
private: \
 core_type m_core; \
}

Listing 5

#define concat3(a, b, c) a ## _ ## b ## _ ## c
#define i_category(category, type) concat3(\
 category, type, iterator)
#define const_i_category(category, type) \
 concat3(category, type, const_iterator)
#define random_iterator(type) i_category(\
 random, type)
#define random_const_iterator(type) \
 const_i_category(random, type)
#define ITERATORS(type) \
 DEFINERANDOMITERATOR(
 random_const_iterator(type),
random_iterator(type), type); \
 DEFINERANDOMCONSTITERATOR(\
 random_const_iterator(type),
random_iterator(type), type);
ITERATORS(bool);
ITERATORS(char);
ITERATORS(short);
ITERATORS(int);
ITERATORS(unsigned);
ITERATORS(long);
ITERATORS(float);
ITERATORS(double);

Listing 7

#define vector (TYPE) \
 class VectorOf##TYPE \
 { \
 public: \
 // ... \
 typedef random_iterator(TYPE) iterator; \
 typedef random_const_iterator(TYPE) \
 const_iterator; \
 // ... \
 }

Listing 6

#define vector (TYPE) \
 class VectorOf##TYPE \
 { \
 public: \
 // ... \
 typedef value_type * iterator; \
 typedef value_type const * const_iterator; \
 // ... \
 }
December 2008 | Overload | 35

FEATURE ROBERT JONES
Algorithms
The containers and iterators of the STL would be of little use without the
algorithms that operate on them. Simulating STL algorithms without using
templates in general is beyond the scope of this article, and presents some
difficult challenges. The root cause of difficulty is that algorithms are
functions, in contrast to containers which are classes, and so benefit from
implicit instantiation.
However by imposing some fairly draconian restrictions on the facility,
and explicitly specifying types in circumstances where a templated facility
could deduce them, some usefulness can be gained. Specifically, many
useful algorithms, such as find_if(), accept unary predicates, i.e.,
functions taking one parameter and returning bool, and that is a
sufficiently specific signature to make a macro generated base class
acceptable. (Listing 9.)
This kind of approach can be extended arbitrarily, but quickly becomes
unwieldy and difficult to maintain. However, defining sufficient unary
predicates to implement some basic algorithms is manageable and useful.
With solid iterators and predicates written, algorithms follow a similar
pattern, and are fairly straightforward. (Listing 10.)
These, as with functors, must be explicitly ‘instantiated’ before use. There
are some subtleties here to do with constness of iterators, predicate
arguments, and whether the algorithm is a mutating one, which makes a
full working implementation of these techniques quite extensive.
However, with care, and a few encapsulated const casts, STL-like
behaviour can be substantially achieved.

Dealing with pointers
Pointers present some special challenges because the semantics of their
operators cannot be changed. One possible approach would be to make
iterators implicitly constructible from the corresponding pointer, but this
would require the iterator to ‘own’ its own pointer policy, and so
necessitate either copying the policy each time the iterator is copied, or
holding it by counted pointer, which would involved a memory allocation
for each iterator construction. Neither of these is considered an attractive
option.
Instead, it is quite simple to overload all algorithms taking a range, and
similarly all container methods taking ranges, with pointer versions. These
versions are thin wrappers, but most importantly supply the iterator policy,
and use the knowledge that the policy need only exist for the lifetime of
the algorithm call.

Conclusion
With all of these facilities defined, some remarkably STL-like code can
be compiled.
 #include "vector.hpp"
 int a[] = { 0, 1, 2, 3, 4 };
 vector(int) v(a, a + sizeof(a)/sizeof(int));
 v.erase(remove(v.begin(), v.end(), 3),
 v.end());

To this extent this work has met the original objectives of providing STL-
like containers and the algorithms to use them in environments that do not
support templates. The alternative techniques employed, those of nested
macros and virtual functions, have their own costs and drawbacks, and in
the environments where templates are unavailable may be equally
unacceptable. The resulting code is brittle, and the macro generation
techniques that make this even moderately amenable to comprehension
produces a lot of redundant code artefacts.
However it is achieved, the flexibility and interoperability of iterators
comes at a cost.

Author’s note
Since producing the code described in this article I have moved on to other
work, and in particular have become very much more familiar with the

state of the art of template programming, and in particular the amazing
work that has been done in the Boost libraries. Having had the opportunity
to understand the full capabilities of templates, the work described here
seems a very poor imitation of compiler templates.
If I were in this position again, I would push much harder for adoption of
templates, with far greater understanding of the productivity benefits they
can bring.

References
[Jones08] ‘Generics Without Templates’, Overload 83
[Meyers] Effective STL, item 38

Listing 9

#define unary_function(arg, ret) concat4(\
 unary, ret, fn, arg)
#define unary_functor(arg, ret) concat4(\
 unary, ret, ftor, arg)
#define DEFINE_FUNCTION(fn, arg, ret) \
 typedef ret (* fn)(arg &); \
#define DEFINE_FUNCTOR(STRUCT, arg, ret) \
 struct STRUCT \
 { \
 typedef arg argument_type; \
 typedef ret return_type; \
 virtual return_type operator()(\
 argument_type &) = 0; \
 virtual ~STRUCT() { } \
 }
#define DEFINE_FUNCTORS(arg_type, ret_type) \
DEFINE_FUNCTION(\
 unary_function(arg_type, ret_type), \
 arg_type, ret_type); \
DEFINE_FUNCTOR(\
 unary_functor(arg_type, ret_type), \
 arg_type, ret_type);
DEFINE_FUNCTORS(bool, bool);
DEFINE_FUNCTORS(char, bool);
DEFINE_FUNCTORS(short, bool);
DEFINE_FUNCTORS(int, bool);
DEFINE_FUNCTORS(unsigned, bool);
DEFINE_FUNCTORS(long, bool);
DEFINE_FUNCTORS(float, bool);
DEFINE_FUNCTORS(double, bool);

Listing 10

#define DEFINE_FIND_IF_FTOR(Iterator, \
 Predicate) \
 Iterator find_if(\
 Iterator first, \
 Iterator last, \
 Predicate & p \
) \
 { \
 for (; first != last; ++ first) \
 if ((p(* first)) \
 break; \
 return first; \
 }

Listing 8

#include "vector.hpp"
#include "list.hpp"

list(unsigned) l;
vector(unsigned) v;
//...populate l...
v.assign(l.begin(), l.end());
36 | Overload | December 2008

	The Sweet Smell of Success
	The Model Student: Can Chance Make Fine Things? (Part 2)
	Model View Controller with Java Swing
	On Management: Understanding Who Creates Software
	The Legion’s Revolting!
	Iterators and Memberspaces
	Generics without Templates - Revisited

