

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 The Model Student: A Game of Six Integers
(Part 2)
Richard Harris continues to analyse the Numbers
Game.

13 Using Design Patterns to Manage Complexity
Omar Bashir tries to make programs simpler.

21 The Predicate Student: A Game of Six Integers
Nigel Eke solves a familiar numerical puzzle.

27 Bug Elimination – Defensive Agile Ruses
Walter Foyle re-evaluates a classic book.

28 A Practical, Reasoned and Inciteful Lemma for
Overworked and Overlooked Loners
Teedy Deigh rallies to the cause of the ordinary
programmer.

OVERLOAD 96

April 2010

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 97 should be submitted by
1st May 2010 and for Overload 98 by
1st July 2010.

EDITORIAL RIC PARKIN
Dealing with Growing Pains
Expanding your team is never easy. Ric
Parkin experiences the recruiting process.
Just recently I’ve been heavily involved in recruiting
two new developers. Although I’ve helped out in the
past with technical interviews, this is the first time I’ve
actually been involved the whole way through the
recruitment process. And it is remarkable just how
much work it is.

First of all you have to realise you need someone. This could be blindingly
obvious, for example if someone has just left and needs replacing, but
sometimes is more tricky with many factors involved. Perhaps a new
contract has been awarded leading to an upcoming block of work, using
a new technology needs someone with relevant experience, or organic
growth has allowed a bigger headcount to tackle that backlog of features.
In turn, the reasons why you need someone often influences the next two
factors – what skills require, and when do you need them by. This can be
quite complex, especially when you realise quite how disruptive taking
on a new developer and integrating them into a team can actually be. In
fact whole books and many Patterns have been written on how to cope,
for example SACRIFICIAL LAMB, where you dedicate a team member to
get the new people up to speed so that in the short term you only lose their
productivity and the rest of the team can continue to develop without being
distracted. So you need to balance getting the right skills in the right order
with the disruption that can cause. Sometimes the answer can be quite
simple, but often you’re looking for such a range of skills that it is
impossible for a single person to have them all, and so you end up juggling
possible subsets to find more realistic roles, eg C++ and unix scripting;
html, css and javascript. Depending on upcoming work, there may be
obvious roles and a natural order so it that makes sense hiring one at a time
to avoid taking a big hit.
Now we know what sort of things we need, we can write a job
specification. These usually involve what level of experience in essential
skills, and desirable or optional skills, and an idea of what sort of
remuneration would be appropriate. You do have to be careful here as
employment law changed a few years ago, and some common practices
are now illegal, eg asking for a number of years of experience. Your HR
department will be involved at this stage, but make sure you get a final
check on the wording – I’ve heard stories of the skills part being edited
so that they made no technical sense at all, which is hardly going to
encourage people to want to work for you! This last point is too often
overlooked – a large part of the recruitment process is selling the company
and the role to the candidate. So make sure there are no spelling mistakes.

Next we have to get that job spec out to get
applications. But where? Depending on the job,
different avenues can be excellent or a waste of
time. So for example, I’d probably not bother

with Job Centres for a C++ job, and perhaps not even the local papers even
in a hi-tech area such as Cambridge. The reasons are that you’re
potentially looking further afield and for someone who is probably already
in a job. A good agency can be an excellent route, but the problem here
is that sadly many are not very good at all. But if they do their job properly
and learn what you’re really looking for and care about, and what their
candidates are really interested in, then they do a fantastic job of matching
up very suitable people and jobs. There is one particular agency I know
that always stood out as the CVs they sent were always worth reading
through, in stark contrast to other agencies where they always sending
completely unsuitable CVs – eg just last week I got sent a CV for a RF
Engineer CV. We’re a web services company – that’s a no then. Job web
pages seem pretty mixed – some seem to work, but some are just too big
and unfocused. In my area we have a good ‘networking’ site and jobs
email that has been very useful over the years. And of course, targeted
mailing lists such as accu-contacts are good at getting to a lot of very good
people (although they therefore tend to be well looked after and settled in
their current job...)
Now we get the CVs flooding in. Sadly they will be of variable quality,
and you need to filter them so you don’t waste too much time. Some will
be badly written and full of typos which could be taken as an indicator of
sloppiness – it is their most important document after all, and everyone
should get someone to proof read it or at least run a spell checker over it.
In this age of the internet and international mobility, you can often get CVs
from many parts of the world. Interestingly different cultures seem to have
different approaches to CV writing – some seem to list every tiny detail
of the technologies they’ve used (or just heard about!), others are
remarkably terse and shy away from ‘selling’ themselves. Whatever the
style, what you’re actually trying to do is get an idea of the person behind
the CV, what their abilities actually are and can they do the job and
contribute to the team. This is a non-trivial exercise, and at this stage you
should really be just be cutting down the numbers of applicants to a
manageable amount.
From here on, it is very important to do several things. One is to try very
hard to be fair to each applicant so they have an opportunity to be seen in
their best possible light. This includes things such as having interview
‘scripts’ so we ask roughly similar questions, have multiple people
involved at each stage, and have the same people involved for each of the
candidates. This tries hard to achieve consistency between candidates. It
is also important to keep notes, partly so that you can remember what
people said, as when you’re doing five interviews, it easy to lose track of
who said what. It’s also important as it leaves a paper trail of what
happened so your decisions can be justified.

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | April 2010

EDITORIALRIC PARKIN
At this stage there are many different techniques for finding out more
about the applicants. We sometimes send them a quick programming
question or two for them to answer. The idea is that it should be nothing
very onerous, and is more about finding out their attitude and
understanding rather than syntax details. An example we’ve used is a
simple string class with poor resource handling, and get them to comment
on it. This is mostly useful for weeding out those people who aren’t really
serious about their applications – the sort who use a scatter-gun approach
to sending out CVs.

Then we have a quick 10–15 minute telephone chat. This shouldn’t go into
much detail, but allows us to explain what the company does, what sort
of thing we’re looking for and find out a bit more about the person, perhaps
by getting them to talk about something on their CV. This last can really
show whether they truly understand what they’ve done, and can
communicate it to someone else (after all, I say that a large part of software
development is communication, whether it’s finding out requirements,
writing a good bug report, or expressing a design in code). At the end of
this you know whether the applicant is still interested in the role and
whether it’s worth going ahead.

At this point we sometimes set a quick home programming task (or get
them in if they haven’t the facilities at home). This should be self-
contained, take no more than a few hours, and yet be complex enough that
they have to make some interesting design decisions and use various
language and library facilities. This is remarkably hard to set well, so make
sure you get feedback from them about it, and try it yourself. When you
get the results, get several people to go over them to make comments on
the coding style, bugs, alternative approaches etc. This can very very
revealing about the person’s background and programming habits, for
example whether they learnt C++ in the 90s before techniques such as
RAII and exception-safety were widely understood. Unless the code is
really bad, we then get them in for a face-to-face interview.

This usually lasts a couple of hours – more then that and people tend to
get too tired (including the interviewer – it is quite hard work listening
carefully and taking notes), so if you want to do more, a second interview
may be the best option. In this we have various parts, with a general chat
with someone from HR, a development manager to talk about
methodologies, some technical discussions, and a session discussing their
programming test to find out the ‘why’ of their decisions, what their
attitudes are, and what sort of things they thought about but rejected. It’s
very important here to not treat this as an opportunity to catch the candidate
out, or to show off your own technical knowledge – you’re here to find
out about them.

Once that’s done, it’s a good idea to have a quick meeting immediately
with the people who have been involved in the interviewing. Collect
people’s opinions, and see if there’s a consensus. It’s usual pretty obvious
if it’s a Yes or a No, but sometimes there will be a split. If there’s even a
single strong No vote then that is probably a good reason to reject – a bad
hire can be extremely costly, so better to reject the occasional good
candidate. But if it’s more nuanced, then perhaps a further interview may

clarify – a good question to ask is what else people would like to find out
and what questions would help. If people can’t answer that, it can show
that there may not be any point going further.
Finally, after HR has negotiated on salary and an offer been made and
accepted, you must then make sure that there’s the right equipment and a
place to sit. I strongly recommend having a rethink of everyone’s locations
at this stage, to make sure they will be near the people that they will talk
to most, and can help them get up to speed. Again, this is an issue of
arranging your team so that you foster the desired communications
channels, as per Conway’s Law [Conway]. And make sure you’ve decided
on a suitable project to help them find their feet and become productive
as soon as possible, ideally something small enough that they don’t have
to understand too much too soon.
This whole procedure takes up a lot of effort. I’d estimate to fill each post
it took about a third of my time over a three week period, and a couple of
days input each from the rest of the development team (and we’re a small
company where we can make decisions pretty quickly as we don’t need
to get input from lots of people.) But because of that effort we now have
two good new team members working productively – well worth it in my
eyes.

The C++0x Standard draft
In a major piece of news, the final committee draft for the upcoming
C++0x has been accepted. This has taken longer than originally hoped,
and has only been achieved by taking out some controversial features and
a lot of effort. What remains now is a few months of review and minor
fixes, voting by national bodies, and the final text should be voted on next
March. It will be interesting to see how fast compilers start to implement
the new features. For full details, see Herb Sutter’s blog and the links from
there [Sutter].

References
[Conway] http://www.melconway.com/law/

index.html
[Sutter] http://herbsutter.com/2010/03/13/trip-report-

march-2010-iso-c-standards-meeting/

We have received word from station X: After the successful
decryption of their mechanical rotary cipher at last year’s conference,
our enemy has adopted an electronic encryption system.
One of their machines has fallen into our hands and our boffins are
currently busy examining its circuitry. At this year’s conference we
shall once again call upon the ACCU to assist in our decryption
efforts. Those who bravely step forward with a donation to Bletchley
Park and the Museum of Computing, will compete for the kudos of
being crowned this years Crypto Champion in these very pages.
Dismissed!

Attention!
April 2010 | Overload | 3

http://www.melconway.com/law/index.html
http://www.melconway.com/law/index.html
http://herbsutter.com/2010/03/13/trip-report-march-2010-iso-c-standards-meeting/
http://herbsutter.com/2010/03/13/trip-report-march-2010-iso-c-standards-meeting/

FEATURE RICHARD HARRIS
The Model Student: A Game of
Six Integers (Part 2)
What are the properties of the Numbers Game?
Richard Harris continues his analysis.
n the first part of this article we introduced the Countdown numbers
game [Countdown]. Part of the longest running game show on UK
television and one of the longest running in the world, it involves

picking 6 numbers from a choice of 4 large and 20 small numbers, being
the integers 25, 50, 75 and 100 and 2 of each of the integers from 1 to 10
respectively.
The contestants must then seek to construct a formula using the binary
operators of addition, subtraction, multiplication and division with each of
these 6 numbers no more than once, and with no non-integer intermediate
values, that evaluates to a randomly selected target between 1 and 999.

Reverse Polish Notation
In order to simplify the automatic generation of formulae, we introduced
Reverse Polish notation, or RPN, a notation for arithmetic formulae
supremely suited to programmatic manipulation.
Unlike the more familiar infix notation, RPN places operators immediately
to the right, rather than between, their arguments. For example the infix
expression 3+4 would be written as 3 4 + in RPN.
RPN utilises a stack to keep track of the intermediate values in a
calculation, and in doing so makes explicit the order in which operators
are applied, making parentheses redundant.
Every time a number appears in the input sequence it is pushed on to the
stack. Every time an operator appears it pops the arguments it requires off
of the stack and pushes its result back on to it. If there are not enough
arguments on the stack for an operator, or if there is more than one value
on the stack at the end of the RPN formula, an error occurs.
For example, Figure 1 illustrates the state of the stack after each term in
the RPN formula 3 4 × 2 +

Formula templates
Rather than enumerate the set of valid formulae in any possible Countdown
numbers game directly, we instead decided to generate templates into
which we could substitute operators and arguments. Acting as place-

holders for the operators and arguments we used the o and x symbols
respectively.
We described an algorithm for generating the set of all formula templates
with up to a given number of arguments in which, starting with a single x
symbol, recursively replaced x symbols with the symbols xxo. Since both
the former and the latter result in a single value on the stack, we cannot
therefore create an invalid formula by doing so.
In general, this approach could generate some formula template more than
once, so we kept track of the generated templates with a set of strings.
The declaration of the all_templates function that implements this
algorithm is:
 std::set<std::string> all_templates(
 size_t arguments);

Since each substitution introduces 1 additional argument, we can ensure
that we terminate the recursion when we have exhausted the available
arguments by subtracting 1 from their number with each substitution and
stopping when we reach 0.
Figure 2 gives the complete set of formula templates for up to 5 arguments
in order of increasing length, as calculated using these functions.

Evaluating RPN formula templates
We concluded by implementing a mechanism by which we could evaluate
a given formula template for a given set of operators and arguments. The
first step was to implement an abstract base class to represent arbitrary
RPN operators and concrete classes derived from it to represent the four
valid binary operators of the Countdown number game. The base class and
the declarations of the operators are provided in Listing 1.
Note that since the standard stack class does everything we require of
an RPN stack, we very sensibly, or very lazily, opted to use it rather than
implement our own.
The definitions of the four operator classes are, with the exception of their
names, identical, so we provide just the definition of rpn_divide in
Listing 2.
Recall that we gave the operators themselves the responsibility for issuing
errors in the event that there are not enough arguments on the stack since
this allows us to implement operators that require any particular number
of arguments should we have cause to do so.

I

3 4 x 2 +

4 2

3 3 12 12 14

Figure 1

x xxo xxoxo xxxoo xxoxoxo xxoxxoo

xxxooxo xxxoxoo xxxxooo xxoxoxoxo xxoxoxxoo xxoxxooxo

xxoxxoxoo xxoxxxooo xxxooxoxo xxxooxxoo xxxoxooxo xxxoxoxoo

xxxoxxooo xxxxoooxo xxxxooxoo xxxxoxooo xxxxxoooo

Figure 2

Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and
numerical computing and is currently employed writing
software for financial regulation.
4 | Overload | April 2010

FEATURERICHARD HARRIS

we gave the operators themselves the
responsibility for issuing errors in the

event that there are not enough
arguments on the stack
The rpn_divide operator is something of a special case in that it is
undefined for some arguments. Specifically, for floating point calculations
the second argument must be non-zero and for integer calculations it must
wholly divide the first.
It is, therefore, the only one of the four operators that might return false
from its apply member function, indicating that an invalid intermediate
value resulted from its application.
We then implemented a simple structure to represent both the validity and
the value of the result of a calculation. Given in Listing 3, the
rpn_result structure is considered valid if it is constructed with a value
and invalid if it is not.

Finally, we implemented a function that, given a formula template
represented by a string of o and x characters, a vector of pointers to
rpn_operators and a vector of arguments, would substitute the latter
pair into the former to produce a result.
The rpn_evaluate function, the declaration of which is shown in
Listing 4, iterated over the formula template string, pushing the current
argument on to the stack of the current term is an x, and applying the
current operator if it is an o. We assert the correctness of the calculation
by throwing exceptions if there aren’t enough arguments or operators, or
if there is not exactly one value on the stack at the end.
Whilst this approach isn’t particularly useful as a general purpose RPN
calculator due to the separation of the formula template, the operators and
the arguments, it is particularly well suited to the programmatic evaluation
of formulae for precisely the same reason.

Counting the number of formulae
We noted that in order to fully investigate the statistical properties of the
Countdown numbers game we should need a means to enumerate every
possible formula that might be expressed.
Recall that we proved that the total number of formulae that it is possible
to construct with the 4 binary operations and 6 of the 24 possible arguments
was

where 24C6 is the number of ways in which we can choose 6 from 24 items
when their order is not important, Ti is the number of formula templates
with i arguments, 4i-1 is the number of sets of binary operators that can
appear in a formula with i arguments, and 6Pi is the number of ways in
which we can choose i from 6 items when their order is important.
In light of this result, we concluded that in order to generate every possible
formula we would need to enumerate the 24C6 combinations of selected
numbers, the set of templates with up to 6 arguments, the 4n-1 sets of
operators required by formulae with n arguments and the 6Pn permutations
of n out of 6 arguments.
We closed with the suggestion that the standard next_permutation
function might be an excellent example to follow and it is at this point that
I mean to resume our study.

template<class T>
class rpn_operator
{
public:
 typedef std::stack<std::vector<T> > stack_type;

 virtual ~rpn_operator();
 virtual bool apply(stack_type &stack) const = 0;
};

template<class T> class rpn_add;
template<class T> class rpn_subtract;
template<class T> class rpn_multiply;
template<class T> class rpn_divide;

Listing 1

template<class T>
class rpn_divide : public rpn_operator<T>
{
 public:
 virtual bool apply(stack_type &stack) const;
};

Listing 2

template<class T>
struct rpn_result
{
 rpn_result();
 explicit rpn_result(const T &t);

 bool valid;
 T value;
};

Listing 3

template<class T>
rpn_result<T>
rpn_evaluate(const std::string &formula,
 const std::vector<rpn_operator<T> const *>
 &operators,
 const std::vector<T> &arguments);

Listing 4

C24
6 Ti

i 1=

6

∑× 4i 1– P6
i××
April 2010 | Overload | 5

FEATURE RICHARD HARRIS

We can improve matters somewhat by
first checking whether or not these
elements are already sorted
Evaluating every formula for a given template
Fortunately for us, we solved the second part of this task during our
analysis of knots in a previous study [Harris08]. The rotate_state and
next_state functions which we used to iterate through every possible
state of a set of sequential integer-like values are presented again in
Listing 5.
Since iterators behave in a sequential integer-like fashion, we can place
instances of our four RPN operators in a container and use next_state
with the iterators ranging over it to generate every possible set of operators.
The third part is a little more complicated. The standard library already
provides us with a function to iterate through every permutation of a
strictly ordered set of values in next_permutation. Unfortunately, it
does not give us a mechanism for iterating through the permutations of the
subsets of such a set, so we shall have to knock one together ourselves.
Since next_permutation enumerates the permutations of the elements
in the iterator range passed to it in lexicographical order, we can trick it
into jumping past permutations of the elements not in the subset of interest.
We do this by ensuring that they are in their lexicographically final order,
thus forcing the next permutation to be the one that enumerates the next
subset. Specifically we sort the spare elements in decreasing order, as
illustrated in Listing 6.
This new version of the next_permutation function thus enumerates
the permutations of mid-first elements from the iterator range first
to last in lexicographical order. Listing 7 shows how we would use this
function to enumerate the set of permutations of two elements from a
vector containing the integers 0 to 3.
The output of this code snippet is given in Figure 3 and, as you can see, it
correctly lists the permutations of two elements in lexicographically
increasing order.

Note that since we have implemented our new next_permutation
function in terms of the standard one, we are subject to its restrictions.
Specifically, the sequence cannot contain two or more elements with
equivalent ordering. This condition shall not necessarily be met by the
numbers we pick in the Countdown numbers game since there are two of
each of the integers from 1 to 10. We shall sidestep this by instead

template<class BidIt, class T>
bool
rotate_state(BidIt it, const T &lb, const T &ub)
{
 bool last = ++*it==ub;
 if(last) *it=lb;
 return last;
}

template<class BidIt, class T>
bool
next_state(BidIt first, BidIt last,
 const T &ub, const T &lb = T())
{
 BidIt it = last;
 while(it!=first && rotate_state(--it, lb, ub));
 return first!=last && (it!=first || *it!=lb);
}

Listing 5

template<class BidIt>
bool
next_permutation(BidIt first,
 BidIt mid, BidIt last)
{
 std::sort(mid, last);
 std::reverse(mid, last);
 return std::next_permutation(first, last);
}

Listing 6

std::vector<long> seq;
for(size_t i=0;i!=4;++i) seq.push_back(i);

std::vector<long>::iterator first = seq.begin();
std::vector<long>::iterator mid =
seq.begin()+2;
std::vector<long>::iterator last = seq.end();

do
{
 std::vector<long>::iterator it = first;
 while(it!=mid) std::cout << *it++ << " ";
 std::cout << std::endl;
}
while(next_permutation(first, mid, last));

Listing 7

 0 1
 0 2
 0 3
 1 0
 1 2
 1 3
 2 0
 2 1
 2 3
 3 0
 3 1
 3 2

Figure 3
6 | Overload | April 2010

FEATURERICHARD HARRIS

subsets that are distinguished only by the
elements that they contain and not by the

order of those elements
considering permutations of iterators from a sequence of the selected
numbers, which will guaranteed to be unique.
The major issue I have with this new overload is that it sorts the spare
elements at every step, despite the fact that in a series of calls to it they are
guaranteed to be sorted for all but the first call.
We can improve matters somewhat by first checking whether or not these
elements are already sorted. Assuming we have n unused elements, this is
at worst an n-step operation; hardly ideal, but certainly better than the worst
case of the call to sort which is greater by a factor of the base 2 logarithm
of n. We shall do this using another function, sorted, as illustrated in
Listing 8.1

Whilst I’m sure that with some thought we could come up with something
more efficient, the relative simplicity of this approach is enough to
convince me to stick with it.

Enumerating the choice of numbers
Well, we’re nearly ready to start investigating the properties of the
Countdown numbers game in detail.
All that remains to do is to implement a mechanism for enumerating every
way in which we might pick 6 numbers from the available 24. We don’t
care about their order since we shall be iterating through the permutations
of the chosen numbers when we evaluate each function template. Hence
we shall need to enumerate the combinations of 6 out of the 24 numbers.

We might as well shoot for a general purpose implementation along the
lines of our next_permutation overload, as illustrated by the
following declaration:
 template<class BidIt> bool next_combination(
 BidIt first, BidIt mid, BidIt last);

This function should transform the range first to mid to the
lexicographically subsequent combination of mid-first elements from
the range first to last. Furthermore, like next_permutation, it
should, upon having exhausted the set of combinations, leave the range in
a sorted state and return false.

An algorithm for enumerating combinations
Having trawled through my personal library for an algorithm to enumerate
combinations in such a fashion, I unfortunately emerged empty handed.
We shall therefore have to don the mantle of such luminaries as Knuth and
Cormen et al and come up with an algorithm of our own.
The first thing we should note in seeking an algorithm to enumerate the
combinations of a set is that combinations are subsets that are distinguished
only by the elements that they contain and not by the order of those
elements, as permutations are. To simplify their enumeration it therefore
makes sense to keep the elements of the combinations in a particular order;
specifically in increasing order.
To describe the algorithm, I shall use the example of enumerating the
combinations of four of the integers from 1 to 6. Since we want the
algorithm to act as much like the standard next_permutation function
as possible, and hence work for any elements that can be strictly ordered,
we must avoid all operations other than assignment, or strictly speaking
swapping, and the less than operator.
We shall represent a permutation as a sequence of elements, with a bar
separating the elements that are in the combination from those that are not.
For example, the lexicographically first combination of four from six
integers shall be represented as

1 2 3 4 | 5 6
The clue that nudges us in the direction of an effective algorithm is that
fact that if we rotate the last three elements of the sequence one to the left,
we generate the lexicographically subsequent combination

1 2 3 5 | 6 4
Doing so again generates the next combination

1 2 3 6 | 4 5
At this point applying the same operation will return us to a
lexicographically earlier combination; the very first as it happens.
Fortunately, we can identify that this is about to happen since the element
after the bar is now less than the element before it.
What we need to do next is return the sequence to its original order and
rotate the last four elements, yielding

1 2 4 5 | 6 3
1.The upcoming new C++ standard library will in fact have an
is_sorted function, but for now we must write our own.

template<class BidIt>
bool
sorted(BidIt first, BidIt last)
{
 BidIt next = first;
 if(next!=last) ++next;

 while(next!=last && !(*next<*first)) {
 ++first; ++next;}
 return next==last;
}

template<class BidIt>
bool
next_permutation(BidIt first, BidIt mid,
 BidIt last)
{
 if(!sorted(mid, last)) std::sort(mid, last);
 std::reverse(mid, last);
 return std::next_permutation(first, last);
}

Listing 8
April 2010 | Overload | 7

FEATURE RICHARD HARRIS

English is a pretty damn inconvenient
language in which to describe algorithms,
which is of course why Algol was invented
And herein lays the basic principal by which our algorithm shall
algorithmicate.
If the rotation of the last element in the combination would yield a
lexicographically earlier sequence, we iterate backwards through the
combination seeking an element for which we can rotate the following
elements to return it and them to their lowest lexicographical order. We
then rotate both it and them together to yield the lexicographically
subsequent combination.
As an example, let us consider the combination

2 4 5 6 | 1 3
As we iterate back through the elements of the combination we find that
the last element for which we can rotate subsequent the elements into an
increasing order is in fact the first. Choosing the lexicographically earliest
sequence we can thusly generate we have

2 3 4 5 | 6 1
Now rotating the first and subsequent elements yields

3 4 5 6 | 1 2
which is, as can easily be confirmed, the lexicographically next greatest
combination.
The full enumeration of our example combinations would proceed as
illustrated in Figure 4, in which we differentiate the valid combinations
from the intermediate steps with a bold font and we identify the elements
that we shall need to rotate by underlining them.

Implementing our algorithm in C++
Now English is a pretty damn inconvenient language in which to describe
algorithms, which is of course why Algol was invented. That said, this is
ostensibly a C++ article and so, Algol be damned, we shall formally
describe our algorithm in C++.
Before we can proceed to an implementation of the next_combination
function, however, we shall need some helper functions.
As we did in our next_permutation overload, we shall need to check
whether or not the input sequence represents a valid combination and if
not, rearrange its elements so that it does. Again, the reason for performing
the check first is that it is computationally less expensive than rearranging
the elements and the sequence will always be a valid combination after the
call to the function.
Specifically a valid combination will be sorted between first and mid,
and from mid to last will be a rotation of the sorted elements such that
either mid contains the next largest element than the one that precedes it,
or that every element in the range is smaller than it.
Listing 9 illustrates the function that we shall use to check whether or not
the sequence is a combination.
We make a sequence into a combination by sorting the elements between
first and mid and the elements between mid and last before finally
rotating the latter so that the smallest of them that is greater than the last
of the former is in mid.

1 2 3 4 | 5 6
1 2 3 5 | 6 4
1 2 3 6 | 4 5
1 2 3 4 | 5 6
1 2 4 5 | 6 3
1 2 4 6 | 3 5
1 2 4 5 | 6 3
1 2 5 6 | 3 4
1 2 3 4 | 5 6
1 3 4 5 | 6 2
1 3 4 6 | 2 5
1 3 4 5 | 6 2
1 3 5 6 | 2 4
1 3 4 5 | 6 2
1 4 5 6 | 2 3
1 2 3 4 | 5 6
2 3 4 5 | 6 1
2 3 4 6 | 1 5
2 3 4 5 | 6 1
2 3 5 6 | 1 4
2 3 4 5 | 6 1
2 4 5 6 | 1 3
2 3 4 5 | 6 1
3 4 5 6 | 1 2
1 2 3 4 | 5 6

Figure 4

template<class BidIt>
bool
is_combination(BidIt first, BidIt mid, BidIt
last)
{
 if(mid==first || mid==last) return sorted(
 first, last);
 if(!sorted(first, mid)) return false;

 BidIt prev = mid; --prev;
 BidIt next = mid; ++next;

 while(next!=last && !(*next<*mid)
 && *prev<*mid) {++mid;++next;}

 if(next==last) return true;
 if(*mid<*prev) return false;
 ++mid; ++next;
 while(next!=last && !(*next<*mid)
 && !(*prev<*mid)) {++mid;++next;}

 return next==last;
}

Listing 9
8 | Overload | April 2010

FEATURERICHARD HARRIS

I’m not entirely convinced that this is the
most efficient possible algorithm
Listing 10 provides the definition of the function that rearranges the
elements into valid a combination.
The final helper function that we shall need is one to find the smallest
element in the range mid to last that is larger than the last in the range
first to mid that is smaller than any of them. We cannot use
upper_bound this time since the range will not, in general, be sorted.
Listing 11 illustrates the function that we shall use to locate the element
in question.
We are now ready to implement the next_combination as shown in
Listing 12. As you can clearly see, this is simply our algorithm directly
translated into C++, with a few extra conditions to cover the corner cases
of combinations of none or all of the elements in the sequence.
Note that, like next_permutation, this function can’t cope with
sequences that contain multiple elements with equivalent orderings and
will terminate before having enumerated the full set of combinations for
such sequences.

Once again, I’m not entirely convinced that this is the most efficient
possible algorithm. However, given that checking whether or not an input
sequence of n elements is a combination requires at best n operations, and
that our algorithm requires at worst a fixed multiple of n operations, I
suspect that it could only be bettered by some constant factor.
Figure 5 illustrates the result of enumerating the set of combinations of four
from the integers 1 to 6 using this function.

But does it actually work?
Now, it’s all well and good describing, implementing and demonstrating
our algorithm, but we cannot be certain that it will work for all possible
sets of combinations until we get on with the rather more tedious business
of proving it. Fortunately for us, it’s not too onerous a task.

template<class BidIt>
void
make_combination(BidIt first, BidIt mid,
 BidIt last)
{
 std::sort(first, mid);
 std::sort(mid, last);

 BidIt prev = mid;
 if(prev!=first)
 {
 std::rotate(mid, std::upper_bound(
 mid, last, *--prev), last);
 }
}

Listing 10

template<class BidIt, class T>
BidIt
min_greater(BidIt first, BidIt last, const T &t)
{
 BidIt result = last;
 while(first!=last)
 {
 if(t<*first && (
 result==last || *first<*result))
 result = first;
 ++first;
 }
 return result;
}

Listing 11

template<class BidIt>
bool
next_combination(BidIt first, BidIt mid,
 BidIt last)
{
 if(!is_combination(first, mid, last))
 {
 make_combination(first, mid, last);
 }

 if(mid==first || mid==last) return false;

 BidIt next = mid;
 BidIt prev = mid; --prev;

 if(!(*prev<*next))
 {
 BidIt target = last;
 while(target==last && prev!=first)
 {
 target = min_greater(mid, last, *--prev);
 }

 if(target==last)
 {
 std::rotate(first, mid, last);
 return false;
 }

 next = prev; ++next;
 std::rotate(next, target, last);
 }

 std::rotate(prev, next, last);
 return true;
}

Listing 12
April 2010 | Overload | 9

FEATURE RICHARD HARRIS

this has been a somewhat handwaving
attempt at a proof
The key point is in fact addressed by the is_combination function. If
we can demonstrate that whenever a sequence satisfies this condition, our
algorithm generates the lexicographically subsequent combination, and
that the sequence representing it also satisfies the condition, then our work
is done.
Representing a combination of r from n elements as

x0 x1 x2 ... xi ... xr-1 | xr ... xj ... xn-1

where the ith element is the last that is smaller than any of those in the range
r to n-1 and the jth is the smallest in that range that is larger than the ith.
Now if this is the very last combination, the elements r to n-1 must be
smaller than the elements 0 to r-1 and both ranges must be in increasing
order. Rotating the sequence so that the latter precede the former therefore
returns us to the first combination.
If i is equal to r-1, then since our condition is assumed to be satisfied, j
must be equal to r. Applying our algorithm therefore results in the sequence

x0 x1 x2 ... xr | xr+1 ... xn-1 ... xr-1

This is trivially the lexicographically subsequent combination and must
satisfy our condition. Indeed, if it did not, it would imply a contradiction
since the r-1th element would have to be greater than both the rth and the
n-1th.
Otherwise, we can be certain that the i+1th to the r-1th elements must all
be larger than the jth to the n-1th and that both sequences must be sorted
in increasing order.
The first rotation we perform must therefore return the sequence to the
lexicographically smallest with the ith element in its given position. Since
this previous combination could not have been the lexicographically last,
there must now be at least 1 element larger in the range r to n-1 that is larger
than those in the range 0 to r-1. Most importantly, the rth element must be
larger than the r-1th. The second rotation therefore results in the
lexicographically subsequent combination. Furthermore, it too must

satisfy our condition, since the before the second rotation the elements after
the ith were in increasing order up to some element after the r-1th and the
elements that follow those, if any, must be smaller than the ith.
QED.
I think.
I’ll freely admit that this has been a somewhat handwaving attempt at a
proof, and that I wouldn’t be terribly surprised to learn that I’ve missed a
corner case or two. Nevertheless, I believe that we can be reasonably
confident that our algorithm will correctly enumerate any set of
combinations and so we can happily use it to analyse the Countdown
numbers game.

Putting it all together
Note that our formula template evaluation function expects vectors of
pointers to rpn_operator objects and long integers, and we shall be
using our choice enumeration functions with sequences containing
iterators into these in order that their elements exhibit the strict ordering
and integer-like behaviour that they require.
We shall therefore need a pair of functions to convert to and from vectors
of values and vectors of iterators, as provided in Listing 13.
To simplify the gathering of various forms of information regarding the
numbers game, we shall take a leaf out of the STL’s book and build a
function template like the standard for_each to do the actual iteration
and forward on the calculation to a function passed in as an argument.
We shall build this in two parts, the first of which iterates through the
combinations of selections of numbers to work with, and the second of

1 2 3 4
1 2 3 5
1 2 3 6
1 2 4 5
1 2 4 6
1 2 5 6
1 3 4 5
1 3 4 6
1 3 5 6
1 4 5 6
2 3 4 5
2 3 4 6
2 3 5 6
2 4 5 6
3 4 5 6

Figure 5

template<class FwdIt>
void
fill_iterator_vector(FwdIt first, FwdIt last,
 std::vector<FwdIt> &vec)
{
 vec.resize(std::distance(first, last));
 std::vector<FwdIt>::iterator out = vec.begin();

 while(first!=last) *out++ = first++;
}

template<class FwdIt, class T>
void
fill_dereference_vector(FwdIt first, FwdIt last,
 std::vector<T> &vec)
{
 vec.resize(std::distance(first, last));
 std::vector<T>::iterator out = vec.begin();

 while(first!=last) *out++ = **first++;
}

Listing 13
10 | Overload | April 2010

FEATURERICHARD HARRIS

we shall be able to examine the properties of
both every possible game and any specific game
which iterates through every possible game that can be played with those
numbers. By doing so we shall be able to examine the properties of both
every possible game and any specific game.
Illustrated in Listing 14, the first of these functions expects four arguments.
The first and last arguments represent the numbers from which we
can choose our arguments, the args argument the number that we shall
choose and finally the f argument the function we wish to apply to the
result of every calculation.
This function simply iterates through the combinations of args from our
available numbers, passing the iterator range representing each of them
together with the function to be called on to the second version of the
function.
The second, significantly longer, function is illustrated in Listing 15. Note
that this enumerates the permutations of arguments for each formula
template using the iterator range representing the current choice of
numbers. Since the next_permutation function will eventually return

it to lexicographical order, we can be sure that at the end of this function,
the full range into which they point will once again represent a valid
combination.
The operation of this second function is reasonably straightforward.
Firstly, it constructs the full set of formula templates and a collection of
the available operators. It then iterates through every formula template,
argument choice and operator choice, calculating the result of each
function thus generated using temporary buffers into which the argument
and operator choices are dereferenced, and calls our statistics gathering
function for each valid result.
Unfortunately, however, I have spent so much time developing the tools
with which we shall perform our analysis that I have run out of time in
which we might actually do it.
So we shall have to wait until the next instalment before we can answer
the question that we originally posed.
Until then, dear reader, farewell.

Acknowledgements
With thank to Keith Garbutt for proof reading this article.

References and further reading
[Countdown] http://www.channel4.com/programmes/countdown
[Harris08] Harris, R., The Model Student: A Knotty Problem, Overload

84, 2008.

template<class BidIt, class Fun>
Fun
for_each_numbers_game(BidIt first, BidIt last,
 size_t args, Fun f)

{
 std::vector<BidIt> number_choice;
 fill_iterator_vector(first, last,
 number_choice);

 if(args>std::distance(first, last))
 {
 throw std::invalid_argument("");
 }

 std::vector<BidIt>::iterator first_choice
 = number_choice.begin();
 std::vector<BidIt>::iterator mid_choice
 = first_choice+args;
 std::vector<BidIt>::iterator last_choice
 = number_choice.end();

 do
 {
 f = for_each_numbers_game(first_choice,
 mid_choice, f);
 }
 while(next_combination(first_choice,
 mid_choice, last_choice));

 return f;
}

Listing 14

template<class BidIt, class Fun>
Fun
for_each_numbers_game(BidIt first_number_choice,
 BidIt last_number_choice,
 Fun f)
{
 typedef
 rpn_operator<long> const * operator_type;
 typedef
 std::vector<operator_type> operators_type;
 typedef
 operators_type::const_iterator
 operator_iterator;

 const size_t args =
 std::distance(first_number_choice,
 last_number_choice);

Listing 15
April 2010 | Overload | 11

http://www.channel4.com/programmes/countdown

FEATURE RICHARD HARRIS
 operators_type operators(4);

 const rpn_add<long> add;
 operators[0] = &add;
 const rpn_subtract<long> subtract;
 operators[1] = &subtract;
 const rpn_multiply<long> multiply;
 operators[2] = &multiply;
 const rpn_divide<long> divide;
 operators[3] = ÷

 std::vector<operator_iterator> operator_choice(
 args-1, operators.begin());
 const std::set<std::string> templates(
 all_templates(args));

 operators_type used_operators;
 std::vector<long> used_arguments;

 std::set<std::string>::const_iterator
 first_template = templates.begin();
 std::set<std::string>::const_iterator
 last_template = templates.end();

 while(first_template!=last_template)
 {
 const size_t template_args = (
 first_template->size()+1)/2;

Listing 15 (cont’d)

 do
 {
 fill_dereference_vector(first_number_choice,
 first_number_choice+template_args,
 used_arguments);

 do
 {
 fill_dereference_vector(
 operator_choice.begin(),
 operator_choice.begin()
 +template_args-1,
 used_operators);

 const rpn_result<long> result =
 rpn_evaluate(*first_template,
 used_operators, used_arguments);
 if(result.valid) f(result.value);
 }
 while(next_state(operator_choice.begin(),
 operator_choice.begin()+template_args-1,
 operators.end(), operators.begin()));
 }

 while(next_permutation(first_number_choice,
 first_number_choice+template_args,
 last_number_choice));
 ++first_template;
 }
 return f;
}

12 | Overload | April 2010

FEATUREOMAR BASHIR
Using Design Patterns to
Manage Complexity
Simpler programs are more reliable. Omar
Bashir sees how to make improvements.
onditional statements are used to alter the flow of control. Increase
in the number of variables in these statements, the number of
alternative branches or the depth of conditional statements add to the

complexity of sections of programs where these statements exist. Design
patterns can help manage this complexity by dividing these conditional
statements between different participants of the patterns used.

Introduction
All programming languages contain conditional statements that are used
to alter the flow of control. Based on the values of certain variables, these
conditional statements determine the branch of the program that is
executed. Popular conditional statement constructs are IF, IF ELSE, IF
ELSE IF and SWITCH. While IF determines whether a certain branch of
the program is executed or not, alternative branches to be executed are
determined using IF ELSE, IF ELSE IF and SWITCH statements.
Complexity due to conditional statements depends on at least three factors,

1. Number of variables examined to determine which branch is to be
executed,

2. Number of alternative branches to be selected from,
3. Depth of nested conditional statements.

In each of the above mentioned cases, complexity arises due to the increase
in the number of conditions a developer needs to consider to implement
an algorithm correctly. Attempting to reduce complexity arising due to the
number of variables examined by rearranging conditional expressions
may, in certain cases, increase complexity by increasing the depth of
conditional statements. For example, consider the following,
 if (A && B){
 doThis();
 } else if (A && !B){
 doThat();
 } else {
 throwAnException();
 }

where A and B are conditional expressions that may also be considerably
complex. This can, however, be rearranged as follows, introducing
nesting,
 if (A){
 if (B){
 doThis();
 } else {
 doThat();
 }
 } else {
 throwAnException();
 }

Historically, complexity in programs arising due to the number of
conditional and iterative statements has been measured using the
cyclomatic complexity metric [McCabe1976]. As explained later in the
article, cyclomatic complexity of a program module is directly related to

the number of conditional and iterative statements within that module. It
has also been argued that higher cyclomatic complexity leads to higher
defects [McCabeEtAl1989] , [Sharpe2008], lower cohesion
[SteinEtAl2005] and larger number of unit tests for greater code coverage
[WatsonEtAl1996].
This article uses a simple example to demonstrate the management of
cyclomatic complexity through the application of design patterns
[GammaEtAl1995]. As conditional statements affect program behaviour,
some behavioural patterns can help design and implement modules with
lower complexities. These lower complexity modules are then connected
appropriately to provide the required behaviour.
After discussing cyclomatic complexity and its use in software
development, the article proceeds with an example of a class with moderate
cyclomatic complexity. The class in the example is refactored to the CHAIN
OF RESPONSIBILITY design pattern and later to the STRATEGY design
pattern to show reduced cyclomatic complexity in the participating classes.

Cyclomatic complexity
Cyclomatic complexity measures the amount of decision logic in a
program module as a function of the number of edges and nodes in a control
flow graph representing that module. The following rules provide a simple
mechanism to determine cyclomatic complexity of a module,

Each module without any control flow statements is assigned a
complexity measure of 1. For example, the following method,

 public static void main(String[] args){
 int operand1 = Integer.parseInt(args[0]);
 int operand2 = Integer.parseInt(args[1]);
 int sum = operand1 + operand2;
 System.out.println(
 operand1 + "+" + operand2 + "=" + sum);
 }

If there are only p binary predicates in a module, its cyclomatic
complexity is p+1. For example, the cyclomatic complexity of the
following method is 2.

 public static int abs(int in){
 int out = in;
 if (out < 0){
 out = -1 * out;
 }
 return out;
 }

C

Omar Bashir had his first experiences with programming
trying to interface devices in avionics systems over 15 years
ago. His interests in device interfacing have evolved from
networking to distributed systems and also architectures and
patterns. He is currently working as a software developer for
a financial services company..
April 2010 | Overload | 13

FEATURE OMAR BASHIR

complexity in programs arising due to the number of
conditional and iterative statements has been measured
using the cyclomatic complexity metric metric
Complexity is incremented for every boolean operator (e.g., AND,
OR) in a predicate. For example, the cyclomatic complexity of the
following method is 3.

 public static boolean isSingleDigitPositive(
 int in){
 boolean singleDigitPositiveFlag = false;
 if ((in >= 0) && (in < 10)){
 singleDigitPositiveFlag = true;
 }
 return singleDigitPositiveFlag;
 }

Cyclomatic complexity of multiway decisions is one less than the
number of edges out of the decision node. For example, the
cyclomatic complexity of the following method is 8. This includes
1 for method itself, 4 for the multiway if block (5 edges including
the last else, i.e., the default edge) and 3 for logical AND operators.

 public static double calculatePayment(
 int hoursParked){
 double parkingCharge;
 if ((hoursParked >= 1) && (hoursParked < 3)){
 parkingCharge = 1.25;
 } else if ((hoursParked >= 3) && (
 hoursParked < 6)){
 parkingCharge = 3.0;
 } else if ((hoursParked >= 6) && (
 hoursParked < 12)){
 parkingCharge = 7.5;
 } else if (hoursParked >= 12){
 parkingCharge = 15.0;
 } else {
 parkingCharge = 0.75;
 }
 return parkingCharge;
 }

Because this measure is based on the decision structure of the code, it is
completely independent of text formatting and is nearly independent of
programming languages as they usually contain the same fundamental
decision structures. Therefore, it can be applied uniformly across projects
[McCabeEtAl1989].
Cyclomatic complexity fundamentally focuses on the complexity of a
module. It has been ascertained that number of tests required to test all the
paths in a module is equal to the cyclomatic complexity of the module. It
has been widely suggested that cyclomatic complexity greater than 10
results in modules with higher defect rates thus implying this as a threshold
beyond which modules are considered complex [Glover2006].
Integration complexity is a measure that provides the number of
independent integration tests through an entire program but it depends on
the cyclomatic complexities of component modules [McCabeEtAl1989],
[WatsonEtAl1996]. While cyclomatic complexity of a particular module
can be lowered by further modularisation, overall complexity may rise

when considering integration complexity unless the process of
modularisation produces a considerable number of common, reusable
modules [McCabeEtAl1989]. Inheritance and polymorphism in object
oriented programs result in implicit control flow which is used to resolve
dynamic method invocation (i.e., deciding the concrete implementation of
an abstract method to be executed). This is considered to increase the
cyclomatic complexity and the number of tests required to perform
structured testing of a module containing a reference to an instance of a
class [WatsonEtAl1996]. However, in most circumstances, a program may
reference only a segment of a particular class hierarchy, thereby only
exercising a segment of the overall implicit control flow. It may, therefore,
be practical to only consider cyclomatic complexity arising from the
relevant segment of the implicit control flow and perform testing
accordingly.
Lower cyclomatic complexity as a consequence of modularisation is
desirable despite possibly increased integration complexity resulting in
higher overall number of tests. This is because lower cyclomatic
complexity results in higher cohesion and fewer anticipated defects within
modules [SteinEtAl2005]. Therefore, this article discusses, through the
application of design patterns, refactoring code with higher cyclomatic
complexity into a structure where constituents have lower individual
cyclomatic complexity.

Design patterns and their impact on cyclomatic
complexity
A design pattern describes a solution to a recurring software engineering
problem at the design level. Design patterns aim to promote reusability of
successful designs and architectures. A design pattern is identified by a
name, solves a particular problem, provides a general arrangement of
components in a representative solution and describes the consequences
of applying that pattern. Gamma et al have documented a catalogue of
general purpose design patterns which are often referred to as GoF (Gang
of Four) patterns [GammaEtAl1995]. They classify these patterns on the
basis of their purpose as well as scope. Purpose reflects what patterns do
whereas scope specifies whether the pattern applies primarily to classes or
objects.
Gamma et al suggest that patterns can have a creational, structural or
behavioural purpose. Creational patterns provide mechanisms for object
creation. Structural patterns suggest the composition of classes or objects.
Behavioural patterns describe the interaction of classes or objects and the
division of responsibilities among them.
Metsker et al provide an alternative and a finer grained classification of
GoF patterns on the basis of their purpose. They suggest classifying GoF
patterns on the basis of their intent into interface, responsibility,
construction, operation and extension pattern classes [MetskerEtAl2006].
Interface patterns provide convenient or appropriate interfaces to their
respective implementations or to a collection or composition of objects.
Responsibility patterns assign responsibility of operations to various
objects and also define mechanisms to determine the objects in the system
having the responsibility. Construction patterns define mechanisms to
14 | Overload | April 2010

FEATUREOMAR BASHIR

A design pattern describes a solution
to a recurring software engineering

problem at the design level
construct various objects. Operation patterns address the contexts in which
more than one method is needed in a design to perform similar operations
or variations of the same operation. Finally, extension patterns extend or
vary the fundamental operation of an object.
Other classifications of GoF patterns are also possible. Table 1 lists GoF
patterns with the two classifications mentioned above.
Although design patterns focus on reusability and extensibility, most
design patterns, particularly behavioural patterns, can assist in the
reduction of cyclomatic complexity. This is accomplished by organising
participants such that each solves a part of the problem resulting in simpler
control flows within each participant hence lowering their cyclomatic
complexity. Overall, each is more cohesive resulting in simpler testing.
The GoF’s description of some of the design patterns specifically mentions

simplification of the control flow in the resulting solution (e.g.,
STRATEGY).

Example – arithmetic calculator
Listing 1 shows a Java class that performs basic arithmetic calculations.
The main method of the program takes two operands separated by an
operator. These are used by the calculate method to perform the
operation related to the operator provided. The calculate method
employs a switch statement to determine the branch that contains the
statement to perform the required arithmetic operation. Cyclomatic
complexity of the calculate method is 6.

Refactoring arithmetic calculator using chain of responsibility
CHAIN OF RESPONSIBILITY consists of a chain of loosely coupled objects
with responsibilities between objects kept specific and minimal. These
include knowing the task they can perform and the next object in the chain
to which a message can be propagated if they cannot process the message.
Client objects need not know which object in the chain has to be sent a
message to perform a particular task. Instead, clients only know of the
object at the head of the chain and they send the message to it. That object
processes the message if it can otherwise it passes it on to the next object
in the chain.
The calculator shown in Listing 1 can be refactored into a CHAIN OF
RESPONSIBILITY as shown in Figure 1. Four classes, Adder ,
Subtractor, Multiplier and Divider perform respective
arithmetic operations (Listing 3). These classes inherit from an abstract
base class Processor (Listing 2). An instance of a Processor’s
subclass is an element in the CHAIN OF RESPONSIBILITY and maintains a
reference (successor) to another object of one of its subclasses. An
object of the Calculator class (Listing 4) acts as a client to an instance
of a Processor’s subclass, which is the head of the chain.
In the main method of the Calculator class, a chain of Adder,
Subtractor, Multiplier and Divider instances are created with the
Adder instance at the head of the chain. The Adder instance is then
assigned to the processor attribute of the Calculator instance by
passing it as a parameter to the setProcessor method on the
Calculator instance. To perform a calculation, a Calculator
instance calls the calculate method on the object referenced by its
processor attribute. The calculate method calls the canProcess
method to determine if that instance can perform the calculation. If it can,
it calls the process method to perform the calculation and return the
results. If it cannot and a successor exists in the chain (i.e., the value of
the successor attribute is not null), it calls the calculate method on
the successor.
In addition to CHAIN OF RESPONSIBILITY, Processor and its subclasses
also implement the TEMPLATE METHOD pattern. calculate method is
a concrete method in the Processor base class. However, both
canProcess and process methods are abstract methods, specialised
implementations of which exist in the subclasses of Processor.

Pattern
Classification

on Purpose
Classification

on Intent

ABSTRACT FACTORY Creational Construction

BUILDER Creational Construction

FACTORY METHOD Creational Construction

PROTOTYPE Creational Construction

SINGLETON Creational Responsibility

ADAPTER Structural Interface

BRIDGE Structural Interface

COMPOSITE Structural Interface

DECORATOR Structural Extension

FAÇADE Structural Interface

FLYWEIGHT Structural Responsibility

PROXY Structural Responsibility

CHAIN OF RESPONSIBILITY Behavioural Responsibility

COMMAND Behavioural Operation

INTERPRETER Behavioural Operation

ITERATOR Behavioural Extension

MEDIATOR Behavioural Responsibility

MEMENTO Behavioural Construction

OBSERVER Behavioural Responsibility

STATE Behavioural Operation

STRATEGY Behavioural Operation

TEMPLATE METHOD Behavioural Operation

VISITOR Behavioural Extension

Table 1
April 2010 | Overload | 15

FEATURE OMAR BASHIR

lower cyclomatic complexity
results in higher cohesion and
fewer anticipated defects
The code in listings 2 to 4 results in more classes than the code in listing
1 but these classes are more cohesive and have lower individual cyclomatic
complexities. The cyclomatic complexities of all methods of Adder,
Subtractor and Multiplier classes are 1 whereas that of the
process method of the Divider class is 2. The cyclomatic complexities
of all instance methods of the Calculator class are also 1. The main
method of the Calculator class and the calculate method of the
Processor class have the highest cyclomatic complexities of 3.
Although it may be argued that this exercise has increased the number of
classes in the application, each of these classes is far less complex than the
original program. Specialised behaviour of these classes allows developers
to conveniently focus on the functionality of the class being developed and
an extension to the application (e.g., a class to provide the remainder, i.e.,
modulus operation) only requires developing a new class and adding its
instance to the end of the chain in the main method of the Calculator
class. Techniques like dependency injection [Fowler2004] allow creation
of such chains via application configuration rather than directly in code.
Furthermore, each class can be tested independently with simpler unit
tests. These advantages, especially in more complicated applications (e.g.,
message handling in a communications application or update handling in

a GUI based on the OBSERVER pattern), may offset the increased
integration complexity due to an increased number of classes in the
application.

Refactoring arithmetic calculator using Strategy
The STRATEGY pattern allows the definition of a family of algorithms such
that they are interchangeable within an application. Thus it lets algorithms
vary independently from the clients that use it. STRATEGY is typically used
to configure a class with one of many behaviours, when different variants
of an algorithm are needed or when a class defines may behaviours and
these appear as multiple conditional statements in its operations
[GammaEtAl1995].
Figure 2 is the class diagram of the calculator application implemented
using a variation of the STRATEGY pattern. The Processor interface
represents the abstract strategy in the application:
 package calculator;
 public interface Processor {
 double process(double operand1,
 double operand2);
 }

Figure 1
16 | Overload | April 2010

FEATUREOMAR BASHIR

refactoring code with higher cyclomatic
complexity using design patterns can lead to

flexible, configurable and extensible systems
Its implementations, Adder, Subtractor, Multiplier and Divider
(Listing 5) form concrete strategies for the application. Calculator
class (Listing 6) is the context. However, it differs from the context in the
GoF’s description of the STRATEGY pattern as it contains a collection of
concrete strategy instances from which it selects the appropriate strategy
instance on the basis of the operation requested.
Adder, Subtractor, Multiplier and Divider (Listing 5) contain
only one method, process . For Adder , Subtractor and
Multiplier, this method has a cyclomatic complexity of 1 whereas for
the Divider, it has a cyclomatic complexity of 2. The constructor of the
Calculator class creates a mapping between arithmetic operators and
instances of the corresponding implementations of the Processor
interface (the processors attribute of the Calculator class). The
calculate method determines, using the operator parameter, if an
instance of an implementation of the Processor interface has been
mapped to this operator. If such a mapping exists, that instance of the
implementation of Processor interface is accessed and its process
method called to perform the requested operation. If such a mapping does
not exist, an exception is thrown. Cyclomatic complexity of the
calculate method of the Calculator class is 2 whereas that of the
main method is 3.
Like the CHAIN OF RESPONSIBILITY implementation of the calculator, this
implementation also requires an initialisation step, which is performed in

the constructor of the Calculator class. As mentioned earlier, this can
also be delegated to a dependency injector. Individual classes are more
cohesive than the original implementation of calculator which, as
mentioned earlier, is usually preferred even at the cost of possible higher
integration complexity.

Conclusions
The cyclomatic complexity of a program module is determined by
examining the control flow within the module. It has been suggested that
complicated control flows in a single module may also have an adverse
impact on developers’ productivity through cognitive overload
[Klemola2000]. Thus, quantification of cyclomatic complexity provides
an opportunity to reduce module complexity by delegating parts of control
flow to other modules. This leads to lower individual cyclomatic
complexities with possibly higher integration complexity. However,
reduction of cyclomatic complexity also leads to higher cohesion which
is proven to be a key aspect of well designed software.
This article discusses the reduction of cyclomatic complexity in a method
of a class through the application of design patterns. It has been
demonstrated, with a simple example, that refactoring code with higher
cyclomatic complexity using design patterns can lead to flexible,
configurable and extensible systems. However, it can also be seen that such
refactoring increases the structural complexity of the solution due to more

Figure 2
April 2010 | Overload | 17

FEATURE OMAR BASHIR

some behavioural patterns can help
design and implement modules with
lower complexities
number of resulting classes with possible coupling between them.
Therefore, the application of these techniques may be more appropriate in
systems where conditional statements allow selection from several
elaborate and complex branches with a possibility of variation in these
branches in the future versions of the system. This variation can be in the
number of these branches as well as functionality within each branch. A
typical example may be of a message receiver in a data communications
application communicating many different types of messages. Each

message type may be handled by a separate message handler. These
message handlers can be arranged in a CHAIN OF RESPONSIBILITY or a
STRATEGY. Not only is each message handler more cohesive but the
resulting application is also extensible in handling newer message types.

References
[Fowler2004] M. Fowler (2004), ‘Inversion of Control Containers and the

Dependency Injection Pattern’, http://martinfowler.com/articles/
injection.html.

[GammaEtAl1995] E. Gamma, R. Helm, R. Johnson, J. Vlissides (1995),
Design Patterns – Elements of Reusable Object Oriented Software,
Pearson Education.

[Glover2006] A. Glover (2006), ‘In Pursuit of Code Quality: Monitoring
Cyclomatic Complexity’, http://www.ibm.com/developerworks/
java/library/j-cq03316/

[Klemola2000] T. Klemola (2000), ‘A Cognitive Model for Complexity
Metrics’, Proceedings of the 4th International Workshop on
Quantitative Approaches in Object Oriented Software Engineering.

package calc;
import java.lang.IllegalArgumentException;
public class Calculator {
 public double calculate(double operand1,
 double operand2, char operator){
 double result = 0.0;
 switch(operator){
 case '+':
 result = operand1 + operand2;
 break;
 case '-':
 result = operand1 - operand2;
 break;
 case '*':
 result = operand1 * operand2;
 break;
 case '/':
 if (Math.abs(operand2) > 0.0){
 result = operand1 / operand2;
 } else {
 throw new ArithmeticException(
 "Numerator is zero.");
 }
 break;
 default:
 throw new IllegalArgumentException(
 operator + " unknown.");
 }
 return result;
 }
 public static void main(String[] args){
 double operand1
 = Double.parseDouble(args[0]);
 double operand2
 = Double.parseDouble(args[2]);
 char operator = args[1].charAt(0);
 double result = new Calculator().calculate(
 operand1, operand2, operator);
 System.out.println(operand1 + args[1]
 + operand2 + "=" + result);
 }
}

Listing 1

package calculator;
public abstract class Processor {
 protected Processor successor;
 public Processor(){
 successor = null;
 }
 public void setSuccessor(Processor successor){
 this.successor = successor;
 }
 protected abstract boolean canProcess(
 char operator);
 protected abstract double process(
 double operand1, double operand2);
 public double calculate(double operand1,
 double operand2, char operator)
 throws Exception {
 double result;
 if (canProcess(operator)){
 result = process(operand1, operand2);
 } else {
 if (null != successor){
 result = successor.calculate(
 operand1, operand2, operator);
 } else {
 throw new Exception("No successor set");
 }
 }
 return result;
 }
}

Listing 2
18 | Overload | April 2010

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://www.ibm.com/developerworks/java/library/j-cq03316/
http://www.ibm.com/developerworks/java/library/j-cq03316/

FEATUREOMAR BASHIR

reduce module complexity by delegating parts of
control flow to other modules
[McCabe1976] T. J. McCabe (1976), ‘A Complexity Measure’, IEEE
Transactions on Software Engineering, SE-2(4), December 1976, pp
308–320.

[McCabeEtAl1989] T. J. McCabe, C.W. Butler (1989), ‘Design
Complexity, Measurement and Testing’, Communications of the
ACM, December 1989, 32(12), pp 1415–1425.

public class Adder extends Processor {
 protected boolean canProcess(char operator) {
 return operator == '+';
 }
 protected double process(double operand1,
 double operand2) {
 return operand1 + operand2;
 }
}
public class Subtractor extends Processor {
 protected boolean canProcess(char operator) {
 return operator == '-';
 }
 protected double process(double operand1,
 double operand2) {
 return operand1 - operand2;
 }
}
public class Multiplier extends Processor {
 protected boolean canProcess(char operator) {
 return operator == '*';
 }
 protected double process(double operand1,
 double operand2) {
 return operand1 * operand2;
 }
}
public class Divider extends Processor {
 protected boolean canProcess(char operator) {
 return operator == '/';
 }
 protected double process(double operand1,
 double operand2) {
 double result;
 if (Math.abs(operand2) > 0.0){
 result = operand1/operand2;
 } else {
 throw new ArithmeticException(
 "Divide by zero.");
 }
 return result;
 }
}

Listing 3

package calculator;

public class Calculator {
 private Processor processor;
 public Calculator(){
 processor = null;
 }
 public void setProcessor(Processor processor){
 this.processor = processor;
 }

 public double calculate(double operand1,
 double operand2,
 char operator) throws Exception{
 return processor.calculate(operand1,
 operand2, operator);
 }

 public static void main(String[] args){
 Adder adder = new Adder();
 Subtractor subtractor = new Subtractor();
 Multiplier multiplier = new Multiplier();
 Divider divider = new Divider();
 adder.setSuccessor(subtractor);
 subtractor.setSuccessor(multiplier);
 multiplier.setSuccessor(divider);
 Processor processor = adder;
 Calculator calculator = new Calculator();
 calculator.setProcessor(processor);
 if (args.length != 3){
 System.out.println(
 "USAGE: java calculator operand1
 operator operand2");
 } else {
 double operand1
 = Double.parseDouble(args[0]);
 double operand2
 = Double.parseDouble(args[2]);
 char operator = args[1].charAt(0);
 try{
 double result
 = calculator.calculate(operand1,
 operand2, operator);
 System.out.println(operand1 + args[1]
 + operand2 + "=" + result);
 } catch (Exception exp){
 System.out.println(exp.toString());
 }
 }
 }
}

Listing 4
April 2010 | Overload | 19

FEATURE OMAR BASHIR

Not only is each message handler more
cohesive but the resulting application is
also extensible in handling newer
message types
[MetskerEtAl2006] S. J. Metsker, W. C. Wake (2006), Design Patterns in
Java, Pearson Education.

[Sharpe2008] R. Sharpe (2008), McCabe ‘Cyclomatic Complexity: The
Proof in the Pudding’, http://www.enerjy.com/blog/?p=198

[SteinEtAl2005] C. Stein, G. Cox, L. Etzkorn, S. Gholston, S. Virani, P.
Farrington, D. Utley, J. Fortune (2005), ‘Exploring the Relationship
Between Cohesion and Complexity’, Journal of Computer Science,
1(2), pp 137–144.

[WatsonEtAl1996] A.H. Watson, T.J. McCabe (1996), Structured
Testing: A Testing Methodology Using the Cyclomatic Complexity
Metric, NIST (National Institute of Standards and Technology)
Special Publication 500-235.

public class Adder implements Processor {
 public double process(double operand1,
 double operand2) {
 return operand1 + operand2;
 }
}

public class Subtractor implements Processor {
 public double process(double operand1,
 double operand2) {
 return operand1 - operand2;
 }
}

public class Multiplier implements Processor {
 public double process(double operand1,
 double operand2) {
 return operand1 * operand2;
 }
}

public class Divider implements Processor {
 public double process(double operand1,
 double operand2) {
 double result;
 if (Math.abs(operand2) > 0.0){
 result = operand1/operand2;
 } else {
 throw new ArithmeticException(
 "Divide by zero");
 }
 return result;
 }
}

Listing 5

package calculator;
import java.util.Map;
import java.util.TreeMap;

public class Calculator {
 private Map<String, Processor> processors;

 public Calculator(){
 processors = new TreeMap<String,
 Processor>();
 processors.put("+", new Adder());
 processors.put("-", new Subtractor());
 processors.put("*", new Multiplier());
 processors.put("/", new Divider());
 }

 public double calculate(double operand1,
 double operand2,
 String operator) throws Exception{
 double result;
 if (processors.containsKey(operator)){
 result = processors.get(operator).process(
 operand1, operand2);
 } else {
 throw new Exception(
 "No processor for " + operator);
 }
 return result;
 }

 public static void main(String[] args){
 if (args.length != 3){
 System.out.println("Usage:java Calculator
 <operand1> <operator> <operand2>");
 } else {
 double operand1
 = Double.parseDouble(args[0]);
 double operand2
 = Double.parseDouble(args[2]);
 Calculator calculator = new Calculator();
 try{
 double result = calculator.calculate(
 operand1, operand2, args[1]);
 System.out.println(operand1 + args[1]
 + operand2 + "=" + result);
 } catch(Exception exp){
 System.out.println(exp.toString());
 }
 }
 }
}

Listing 6
20 | Overload | April 2010

http://www.enerjy.com/blog/?p=198

FEATURENIGEL EKE
The Predicate Student: A Game of
Six Integers
How easily can you solve puzzles?
Nigel Eke applies some logic.
um de dum de dum... boo doo, boo doo choo. Ah Countdown...
Thanks very much Richard Harris for bringing back memories of the
Countdown TV show [Harris]. I too became fixated by this TV

parlour game, back in the late nineties.
The mathematical section (finding an arithmetic formula using up to six
blindly selected numbers to equate to a random goal) became another of
my pet projects. Write a program which would be able to find an equation
before Carol1 did.
The approach taken was similar to Richard, but different enough that I
thought it worth writing up so that Overload readers can make a
comparison. The article also gives a taste of logic programming and, in
particular, the logic programming language of Prolog. It is a very quick
introduction though, and I would recommend The Art of Prolog [Sterling]
for a definitive, and much more detailed, description of the language.

Prolog facts
The Prolog language is based around stating facts, and then making queries
on those facts. The facts may be simple (yellow is a colour), or more
complex (person A is the granddaughter of person B if one of A’s parents
is the child of B and A is female). The queries are used for finding
unknowns, for example ‘who is Elizabeth’s father?’ or ‘let me know all
descendants of Elizabeth who have fair hair and were born between 1800
and 1900’. This simple approach is remarkably powerful and expressive
for a particular class of problems: those which require searching through
many combinations of possible solutions.
Let us start with our first Prolog program – declaring one fact, but
otherwise doing nothing:
 colour(yellow).

yellow is called an atom. colour is known as a fact or a predicate. There
are also built-in predicates, which we’ll come across later. The name
‘colour’ selected here is chosen simply so that it does not clash with the
built-in names.
How does this program get loaded and what does it mean to ‘run’ the
program? All the examples here are demonstrated in a Prolog interpreter
– SWI-Prolog [SwiProlog]. To load a program in SWI-Prolog from the file
colour.pl we do the following:
 ?- [colour].
 % colour compiled 0.00 sec, 492 bytes
 true.

Simple – and so is running the program:
 ?- colour(yellow).
 true.

 ?- colour(red).
 false.

Running the program is simply a matter of testing the stated facts or
predicates. Additional facts can be declared dynamically, but we do not
touch on this further here.
The first query confirms yellow is a colour by returning a true result. The
second query, however, shows that red is not a colour – false was
returned. This is because it has not been declared as a fact.
Let’s expand the source file, as shown in Listing 1, to declare the fact that
more than one colour exists, and make a query for all known colours
(Listing 2).
The query colour(X). demonstrates the Prolog convention that
variables start with an upper-case character. The output from this query
shows X being bound to each of the possible facts.
In this instance we do not go on to use the variable, so it could also have
been written as colour(_). However, it can only be determined that the
query found six results, but not what the results are.

1. Carol Vorderman – Countdown, 1982–2008

D

Listing 1

colour(yellow).
colour(cyan).
colour(magenta).
colour(red).
colour(green).
colour(blue).

Listing 2

?- colour(X).
X = yellow ;
X = cyan ;
X = magenta ;
X = red ;
X = green ;
X = blue.

?- colour(_).
true ;
true ;
true ;
true ;
true ;
true.

Nigel Eke has been in the software engineering industry since
stone-age man invented the wheel. He is currently a Senior BI
Consultant working Down Under with open source software
(Pentaho) in agile development environments. He can be
contacted at me@nigel-eke.com
April 2010 | Overload | 21

FEATURE NIGEL EKE

remarkably powerful and expressive for a
particular class of problems: those which
require searching through many
combinations of possible solutions
Deeper facts
The above examples provide an introduction to syntax and some of the
terminology used in the language. The next example shows facts with more
than one atom, e.g. mother(adam, allison), and conjoined
predicates e.g.
 grandmother(Child, Grandmother) :-
 parent(Child, X), mother(X, Grandmother).

Let’s take these one at a time.
mother(adam, allison) means the fact that ‘The mother of Adam is
Allison’. So why not write it this way – mother(allison, adam) –
and read it as ‘Allison is the mother of Adam’. Well, you can do that too,
but not in the same program. It is important to use consistent semantics
throughout. For the remainder of the family tree examples the semantic
meaning behind relation(A, B) is ‘B is the <relation> of A’.
So what about the statement:
 grandmother(Child, Grandmother) :-
 parent(Child, X), mother(X, Grandmother).

The :- means ‘if’ and the , is taken to mean ‘and’. So the statement reads
‘Grandmother is the grandmother of Child if someone (X) is the parent of
the Child and Grandmother is the mother of that someone (X)’. This is
known as a conjoined predicate.
To program the equivalent of ‘or’, e.g. the fact that a child’s grandparent
can be a grandmother or a grandfather, simply write each part of the ‘or’
as a separate statement.
 grandparent(Child, Grandparent) :-
 grandmother(Child, Grandparent).
 grandparent(Child, Grandparent) :-
 grandfather(Child, Grandparent).

Bounding along
One of the concepts in Prolog is binding. Variables get values bound to
them. What do we mean by binding and being bound? A variable is either
bound to a value, or it is not. The variable does not change its value once
bound. At least, it does not change until Prolog wants to see if any further
facts satisfy the predicate being queried. This happens when a predicate
fails or a statement has been fully tested. At this point Prolog steps back
through a tree of statement calls it has been recording, until such time it
can start creating a new branch of the tree and bind the next value.
Consider the three simple facts:
 fact(1,a).
 fact(2,b).
 fact(3,c).

The predicate can be tested with neither parameter bound, or with either
one or both parameters bound (Listing 3). In the case where neither
parameter is bound Prolog returns all facts. It initially returns the first fact,
binding the variables to the values found in that fact. Once that search has
been satisfied, i.e. all unbound variables have been bound to valid, self-
consistent values, Prolog backtracks, and looks for the next fact that fits

(indicated by the ; in Listing 3), and so on. Similarly for one bound
parameter. However, this time, it is possible that none of the facts fit the
bound part, in which case false is returned. Finally with both parameters
bound, a fact is either found or not found, in which case the original values
or false is returned respectively.

Making a query
You’ve already seen examples of queries. One was the explicit query for
all colours (colour(X)). The other was less obvious and embedded in
the fact:
 grandmother(Child, Grandmother) :-
 parent(Child, X), mother(X, Grandmother).

In this instance the query is to find X so that it satisfies the parent
relationship to Child and Grandmother is the mother of X. The previous
section on binding also shows simple queries being made with bound and
unbound variables. Now another more complex, and less abstract, example
is discussed around the subject of family trees.
Figure 1 shows a family tree, which is then defined in Listing 4 by
declaring facts about the people, their genders and immediate relationships
(only the first and last of each are shown for brevity). Listing 5 goes on to
show the remaining relationship predicates.
So what actually happens when a query is made? Prolog tries to bind any
unbound variables in a valid and self-consistent combination of the given
facts.
Listing 6 shows a query for all father / child relationships by binding valid
combinations to the variables Father and Child.

Listing 3

?- fact(A,B).
A = 1,
B = a ;
A = 2,
B = b ;
A = 3,
B = c.

?- C=1,fact(C,D).
C = 1,
D = a.

?- C=4,fact(C,D).
false.

?- E=1,F=a,fact(E,F).
E = 1,
F = a.

?- E=4,F=a,fact(E,F).
false.
22 | Overload | April 2010

FEATURENIGEL EKE
Listing 7 binds the variable P with the value chris before using the bound
value in the father query. This is done twice, once to find his father and
once to find his children. Note that P must be bound in each query
explicitly.
So far we have only used the simple facts stated in Listing 4, but none of
the relationships from Listing 5. The final examples of queries (Listing 8)
show all Clint’s grandparents, whether Dot is one of Clint’s grandparents
(which she is) or whether Alf is Clint’s grandparent (which he isn’t). As
you can see, the more complex predicates are used in just the same way
as the simpler facts.
You may have noticed the false following the Clint / Dot query. Why is
this? Even though Dot is Clint’s grandparent and it was even returned as
a valid result. Remember though that grandparent is either a grandmother
or a grandfather. So the first of the grandparent facts successfully
returns that Dot is a grandparent, i .e . when performing the
grandmother(Parent, Grandmother) part. But Prolog also goes

Figure 1

Listing 4

person(alf).
/* code removed */
person(chuck).

gender(alf, male).
/* code removed */
gender(chuck, male).

father(adam, alf).
/* code removed */
father(chuck, chris).

mother(adam, beatrice).
/* code removed */
mother(chuck, faith).

Listing 5

parent(Person, Parent) :- mother(Person, Parent).
parent(Person, Parent) :- father(Person, Parent).

daughter(Person, Daughter) :-
 gender(Daughter, female),
 parent(Daughter, Person).

son(Person, Son) :-
 gender(Son, male),
 parent(Son, Person).

child(Person, Child) :- parent(Child, Person).

grandmother(Person, Grandmother) :-
 parent(Person, Parent),
 mother(Parent, Grandmother).

grandfather(Person, Grandfather) :-
 parent(Person, Parent),
 father(Parent, Grandfather).

grandparent(Person, Grandparent) :-
 grandmother(Person, Grandparent).
grandparent(Person, Grandparent) :-
 grandfather(Person, Grandparent).

granddaughter(Person, Granddaughter) :-
 gender(Granddaughter, female),
 grandparent(Granddaughter, Person).

grandson(Person, Grandson) :-
 gender(Grandson, male),
 grandparent(Grandson, Person).

grandchild(Person, Grandchild) :-
 grandparent(Grandchild, Person).

Listing 6

?- father(Child, Father).
Child = adam,
Father = alf ;
Child = denise,
Father = clarie ;
Child = chris,
Father = clarie ;
Child = faith,
Father = ernie ;
Child = darlene,
Father = adam ;
Child = dawn,
Father = adam ;
Child = clint,
Father = chris ;
Child = chuck,
Father = chris.

Listing 7

?- P = chris, father(P, Father).
P = chris,
Father = clarie.

?- P = chris, father(Child, P).
P = chris,
Child = clint ;
P = chris,
Child = chuck.

Listing 8

?- P = clint, grandparent(P, Grandparent).
P = clint,
Grandparent = frida ;
P = clint,
Grandparent = dot ;
P = clint,
Grandparent = ernie ;
P = clint,
Grandparent = clarie.

?- P = clint, G = dot, grandparent(P, G).
P = clint,
G = dot ;
false.

?- P = clint, G = alf, grandparent(P, G).
false.
April 2010 | Overload | 23

FEATURE NIGEL EKE
on to try the second fact, which is determining if Dot is Clint’s grandfather
– which she isn’t – hence the false.
Is this a problem? The answer to that is ‘It depends’. It depends on the
predicate and if we know whether we need to check the remaining
predicate statements.

Cuts
In the case of the grandparent predicate we know that, if the first test
proves true then there is no point in checking further cases. This is
indicated by introducing a cut (!):
 grandparent(Person, Grandparent) :-
 grandmother(Person, Grandparent), !.
 grandparent(Person, Grandparent) :-
 grandfather(Person, Grandparent).

Now, when we check if Dot is Clint’s grandmother, we get the one
expected result:
 ?- P = clint, G = dot, grandparent(P, G).
 P = clint,
 G = dot.

Tree hugging
As Prolog has been solving the queries given to it, it builds a tree of possible
results. It is this tree building, walking and searching that makes it an ideal
candidate language for the original problem – the Countdown equation
finder.
The first search tree is to determine a list of all possible permutations of
the six numbers. This is not just permutations on the six numbers, but also
all combinations of five from the six, four from the six numbers and so on.
(Not all six numbers need to be used when deriving an equation).
The program works through each of these permutations, building a tree
representing an equation. Figure 2 depicts the trees for two equations (2
+ (3 x 4) [a] and (2 + 3) x 4 [b]). The root of each tree is an operator and
the left and right branches are the operands. Once a tree is built, the
program then tests to see if the equation equals the required goal.
Before we look at the actual program however, one final Prolog concept
needs to be introduced – lists.

Lists
Prolog’s list syntax uses the [and] characters to define the beginning and
end of a list, with the pipe | character delimiting one or more initial
elements and separating them from the remaining tail of the list. Also by
convention [] is the empty list.
Three predicates are shown in the program (Listing 9), all of which take a
list as an argument, but access it differently. The first just prints the object
(it could in fact be any object). The second and third extract one and two
head elements and print them separately before printing the remaining tail.
Listing 10 shows the output from calling these predicates with a simple
list, including the results of calling the predicates with a list shorter than
two elements.
Finally the built-in predicate findall is demonstrated, which finds
argument one, satisfying the predicate (argument two), and returns them

in a list (argument three). (For this example note the fact facts declared
at the start of the program).

Countdown to Countdown
At last we have enough Prolog behind us to allow us to look at the
Countdown program (Listing 11). The main two predicates that solve the
problem are operation and findTree. That’s seven statements, or

Figure 2

Listing 9

fact(a).
fact(b).
fact(c).
fact(d).
fact(e).
fact(f).

print_list(Ls) :-
 print(Ls),
 print('\n').

print_head1_list([H|Ls]) :-
 print(H),
 print('\n'),
 print(Ls),
 print('\n').

print_head2_list([H1,H2|Ls]) :-
 print(H1),
 print('\n'),
 print(H2),
 print('\n'),
 print(Ls),
 print('\n').

Listing 10

?- Xs=[1,2,3,4,5,6], print_list(Xs).
[1, 2, 3, 4, 5, 6]
Xs = [1, 2, 3, 4, 5, 6].

?- Xs=[1,2,3,4,5,6], print_head1_list(Xs).
1
[2, 3, 4, 5, 6]
Xs = [1, 2, 3, 4, 5, 6].

?- Xs=[1,2,3,4,5,6], print_head2_list(Xs).
1
2
[3, 4, 5, 6]
Xs = [1, 2, 3, 4, 5, 6].

?- Xs = [1], print_list(Xs).
[1]
Xs = [1].

?- Xs = [1], print_head1_list(Xs).
1
[]
Xs = [1].

?- Xs = [1], print_head2_list(Xs).
false.

?- findall(X, fact(X), Xs), print_head2_list(Xs).
a
b
[c, d, e, f]
Xs = [a, b, c, d, e, f].
24 | Overload | April 2010

FEATURENIGEL EKE
eleven lines of code. This shows the power of Prolog for this type of
problem solving.
In summary, we have the following predicates which form the entire
program:

subsets and subsets2 – finds all subsets of all combinations of
1 from 6, 2 from 6 through to all 6 numbers.
operation – performs each of the four arithmetic operations
permitted in the final equation.
findTree – finds all possible equation trees.
makeExpr and treeExpr – helper predicates to create the
equation text to be output.
delta_length – helper predicate to enable the shortest list of
numbers to get checked first and give the most efficient equation,
i.e. the one using the minimum number of numbers.
countdown – the real goal of the game.

Countdown and lift-off
So how do each of these predicates work?

subsets2
subsets2 enables us to find subsets of a set. subsets2 should be seen
as a ‘private predicate’ of subsets, and is not designed to be called by other
predicates1.
The first statement simply states a set (Xs) is a subset of itself.
The second statement gets all subsets (Ys) of length N-1 from set Xs
(length N). This is done with the help of the built-in predicate select,
which selects a member (not used, hence _) from Xs, giving the remaining
set Ys.
The final statement gets all subsets (Ys) of length N-n, where n > 1, from
set Xs (length N). First we get all subsets (Y1s) of length N-1 from set Xs,
as before, but then pass this result, recursively into subsets2, to get the
subsets of Y1s. It is as result of this recursion that we generate duplication
– which is removed in our subsets predicate.

subsets
Here we return a ‘set of sets’ (Xss). The ‘set of sets’ returned is actually
the set of subsets of Xs.
findall is used to find a temporary list of subsets (Yss) of all Xs which
match the predicate subset2. subsets2(Xs, Ys) binds each subset
of Xs to Ys. findall takes each result Ys, and adds it to its result list Yss.
We know, because of way subsets2 is written, that the list Yss contains
duplicate subsets. list_to_set is a built-in predicate that removes the
duplicates in Yss, binding the result we are after to Xss.

operation
Each of of the four allowed mathematical operations are handled here, with
operation(operand1, operand2, resultantValue,
operatorString). The operands are always bound when this predicate
is tested.
resultantValue gets bound to the result of the calculating the
operation. There is one circumstance when resultantValue is already
bound – which is discussed further when we look at the main countdown
predicate.
The string representing the operation (operationString) is also bound
on return from the predicate, in order to be used when printing out the final
equation.
The minus operation dismisses negative results. Although they could be
used as interim results in finding the final goal we know that a) the final
goal will always be positive, and b) the operands can be re-arranged with
the plus operator to achieve the same – and seemingly cleaner, as far as

1.As far as I’m aware, Prolog has no way to make predicates
private.

Listing 11

/* Helper function for subsets/2 */
subsets2(Xs, Xs).
subsets2(Xs, Ys) :- select(_, Xs, Ys).
subsets2(Xs, Ys) :- select(_, Xs, Y1s),
subsets2(Y1s, Ys).

/* Find all subsets 0 of N, 1 of N .. N of N for
the list Xs */
subsets(Xs, Xss) :-
 findall(Ys, subsets2(Xs, Ys), Yss),
 list_to_set(Yss, Xss).

/* Find value of each of the four arithmatical
operations */
operation(O1, O2, V, ' + ') :- V is O1 + O2.
operation(O1, O2, V, ' - ') :- V is O1 - O2, V >
0.
operation(O1, O2, V, ' * ') :- not(O1 = 1), not(O2
= 1), V is O1 * O2.
operation(O1, O2, V, ' / ') :- not(O2 = 1), M is
O1 mod O2, M = 0, V is O1 // O2.

/* Build equation trees from given list. If goal is
bound then only trees which match the goal are
deemed successful. */
findTree([], _, _) :- !, fail.
findTree([X|[]], value(X), X) :- !.
findTree(Xs, tree(O, TL, TR), V) :-
 append(L, R, Xs),
 not(compare(=, L, Xs)), findTree(L, TL, V1),
 not(compare(=, R, Xs)), findTree(R, TR, V2),
 operation(V1, V2, V, O).

/* Helper for building equation text. */
makeExpr(L, O, R, E) :-
 concat('(', L, E1),
 concat(E1, O, E2),
 concat(E2, R, E3),
 concat(E3, ')', E).

/* Return equation text for given operations tree.
*/
treeExpr(value(X), X).
treeExpr(tree(O, L, R), E) :-
 treeExpr(L, Le),
 treeExpr(R, Re),
 makeExpr(Le, O, Re, E).

/* Helper function to sort lists of subsets of the
choosen numbers based on list length. */
delta_length('<', Xs, Ys) :-
 length(Xs, XL),
 length(Ys, YL),
 compare(<, XL, YL), !.
delta_length('>', _, _).

/* Main predicate. Expects Vn and Goal to be bound
when called. */
countdown(V1, V2, V3, V4, V5, V6, Goal, E) :-
 subsets([V1, V2, V3, V4, V5, V6], Xss),
 predsort(delta_length, Xss, Yss),
 member(Ys, Yss),
 permutation(Ys, Y1s),
 findTree(Y1s, T, Goal), !,
 treeExpr(T, E).

countdown(_, _, _, _, _, _, _,
 'It''s impossible').
April 2010 | Overload | 25

FEATURE NIGEL EKE
the final equation appears – result. So, for A - (-B) the equivalent A + B
will also appear in the possible equation trees. Similarly for A + (-B),
which becomes A - B, i.e. we never have to deal with a negative B value.
The multiplication operation dismisses the uninteresting operand one
because 1 * N = N * 1 = N.
The division operation dismisses the uninteresting case where N / 1 = N.
It also makes sure that the result is non-fractional.

findTree
This is the crux of the program. The part that does the real work in finding
an equation to match the goal.
The format of the predicate is findTree(listOfOperands, tree,
value). The listOfOperands is always bound when the predicate is
tested. The tree will be a representation of the operation tree (see Figure 2).
value gets bound to the value of the result of the tree’s operations being
applied.
The first statement dismisses the empty list of operands, by failing straight-
away.
The second statement deals with the leaf of the tree. When there is only
one element in the list of operands (determined by [X|[]]) the ‘leaf’ gets
returned in the tree as value(X), and the actual value is clearly X.
The third statement deals with lists of more than one element, i.e. those
where operations can be applied. Note that we know this predicates is being
passed a list with more than one element, because the previous two
statements used the cut (!), to indicate the zero-length and unary length
cases have been fully dealt with.
We use the built-in predicate append to enable us to easily split the given
list into left and right branches of the tree.
Given the statement append(As,Bs,Cs), if As and Bs were bound then
Cs would be the concatenation of the previous two. However when Cs is
bound (as in this case with Xs) and the others are not, append returns all
the possibilities of As and Bs which, when concatenated, would form Cs.
Given two lists (L and R), we have operands that can go on to be used in
the left branch and right branch of the expression tree respectively. After
dismissing the case when L is Xs (R is empty), which would cause an
infinite recursion, the left tree (TL) is built up. This is done as a recursive
call on findTree, but this time just using part of the original list of
operands. Similarly the right tree (TR) is also built up.
Finally, given the two sub-trees TL and TR, all operations can be applied
on them, and we return their value V, and the string of the equation (O) that
is represented by that operation being applied on the subtrees. This all gets
magica l ly bound to the resul t t ree in the bound response
tree(O, TL, TR).

makeExpr
This is used by treeExpr when the program comes to print out the final
result. It concatenates a left expression string (L), operation string (O) and
right expression string (R), together with wrapping brackets, to bind to a
final expression, E.

treeExpr
This is called once the final result goal has been found, and will build up
an expression str ing from the result t ree. I t takes the form
treeExpr(treeOrLeaf, expressionString).
The first statement deals with the leaf case, where the value is simply
represented in string form.
The second statement deals with the tree. It calls itself recursively to find
the expression for the left and right branches of the tree (L and R
respectively). It then calls makeExpr to form the final expression from
the left branch’s expression (Le), the operation (O) at the root of the tree,
and the right branch’s expression (Re).

delta_length
delta_length is used at the start of the program so that the smallest sets
of numbers are initially checked to see if they can be used to form the goal.
It provides the compare(Operator, Operand1, Operand2)
interface that is required by the built-in predicate predsort (see later).
length(List, Length) is a built-in predicate that binds Length to
the length of List.
compare is a built-in predicate that, in this case, enables us to check if
Xs is shorter than Ys.
The second statement for delta_length always returns a greater than
operator, even in the cases when the lists are the same length, i.e. we are
not worried about sort order for equal length lists.

countdown
This predicate forms the control of the game. The first statement tries to
match the given goal. The second statement is the catch-all, if there is no
solution.
Taking the lines in the first statement one by one, the following is
performed:

1. Generate a list of all subsets (Xss) of the list of the six numbers
provided ([V1, V2, V3, V4, V5, V6]).

2. Sort the list of subsets into order based on the length of the subset.
The sorted list is Yss.

3. Take each subset (Ys) in turn.
4. For each of the subsets (Ys) we look at every permutation of

numbers (Y1s). Note that permutation is another built-in
predicate. We look at permutations of numbers because the order of
numbers in an expression is important, for example we need to try
A / B and B / A.

5. Now find a tree whose value matches the supplied goal. This is the
point mentioned earlier, where findTree is called with the already
bound Goal value. This step of the predicate fails when the
generated tree does not match the goal. Prolog then backtracks to try
the next tree. Failing to match all those trees the next permutation is
tried and, failing all permutations, the next subset of numbers.
If we do find a tree, whose value matches the goal we know the end
result has been found. We declare this with the cut (!), which stops
the program from trying the ‘It’s impossible’ statement.

6. Finally, having found an expression tree which will match the goal,
the expression string is generated so that the result can be seen in a
more human readable form.

A final note
SWI-Prolog provides interfaces through to C programs. The original
program provided a GUI interface enabling the user to enter the six
numbers and goal, before calling the Prolog logic to find the equation.
The program was even sent to the TV program for a mention but, alas, they
didn’t want to replace Carol by a computer. But then again, who would?

Acknowledgements
With much thanks to Mingyuan Mu and Jacqui Alexander for proof
reading this article, and to Ric Parkin and Richard Harris who provided
valuable feedback.

References and further reading
[Harris] Harris, R., ‘The Model Student: A Game of Six Integers [Part 1]’,

Overload 95, Feb 2010.
[Sterling] Sterling, L. & Shapiro, E., The Art of Prolog, MIT Press, 1986.

ISBN 0-262-69105-1.
[SwiProlog] http://www.swi-prolog.org/
26 | Overload | April 2010

http://www.swi-prolog.org/

FEATUREWALTER FOYLE
Bug Elimination – Defensive
Agile Ruses
Everyone thinks they understand bug economics.
Walter Foyle looks again.
popular work concerning project management is Fred Brooks’ The
Mythical Man-Month: Essays on Software Engineering. While it has
many interesting insights into the economics and process of creating

software, it is most often remembered for two specific observations, and
yet I believe both have been profoundly misunderstood. This is because
people are looking at it from a project management point of view, and are
missing the economic aspect where project budgets are far more important.
The most famous lesson people remember is that adding people to a late
project makes it later. While this is true if you myopically focus solely on
your current project, people tend to assume that this is necessarily a bad
thing. In fact, a more rounded project manager realises that by increasing
your developer count now, you will have a bigger project and hence
budget, so putting yourself in a much stronger position to get a more
prestigious project in the future. By a process of induction, it can be shown
that by repeatedly adding more developers, you can make the project
arbitrarily late until you reach the optimum size for you to get the next job.
The other main observation from Brooks is that the cost of fixing a bug
increases dramatically the later it is found (see Figure 1). Many have
jumped to the simplistic conclusion that this means we should strive to
detect and fix the bugs as early as possible. And yet most don’t realise the
more sophisticated truth that this in turn implies that by introducing the
bugs sooner, we have a better chance of detecting and fixing them when
they’re cheapest. In fact we can improve these chances further by moving
all the coding to before the design phase, which normally delays bug
detection and so can be thought of as a negative value activity. In addition,
delaying the release as far as possible into the future further improves the
opportunities for bug detection. Finally, moving testing to after the release
frees valuable developer time and has the bonus of reducing the observed
bug count.
This all assumes we are blessed with a team productively working on such
bugs. Unfortunately, there will often be people who slow down projects
rather than advance them. By assigning these people to the unproductive
yet politically essential Design Role (or the more trendy role of On Site
Customer), we can multiply a negative outcome (too much design delaying
implementation and thus delaying the bugs), with a negative ability to do
such a thing and thus produce a positive budget item. Just in case anyone
objects, the canny Project Manager can use the appropriate spreadsheet
magic and to package up these Customer Design Obligations and assign
to multiple ongoing projects, so spreading the project risk and making sure
that none of their project economies can possibly fail. Ideally these should
be stored in Write Only Memory[WOM] along with other Documentation
Artifacts to protect the project stability in the face of awkward questions.
Of course, sometimes the customer will insist on a meeting to ask when
the delivery will actually be. Unlike normal meetings, which are designed
to reduce risk by avoiding doing anything that might cause troublesome
progress, these meetings require a swift and firm response. I can
recommend sending a memo round immediately to reassure all interested
parties that everything is as it ought to be. Ideally this should merely sound
reassuring without actually promising anything, as in this masterful
example:

The meeting was productive and actions have been agreed by both
parties, commencing with early technical meetings this week, which
if carried through, should lead to the resolution of the issues.
Provided there is the expected progress during the coming weeks,
both parties are hopeful that it will be possible to indicate by the
middle of April the target date for trialling and then operating... [CEN]

By applying such techniques, we can ensure that our projects are large,
long, and avoid suffering at the hands of troublesome users.

References
[CEN] http://www.cambridge-news.co.uk/Huntingdon-St-Ives-St-Neots/

Date-for-opening-expected-after-busway-progress.htm
[WOM] http://en.wikipedia.org/wiki/Write_Only_Memory

A

Figure 1

Walter Foyle has been consulting on project management for
longer than anyone has noticed. By applying his unique
perspective on the project life cycle, he has a perfect record of
never being on a failed project. He is looking forward to staying on
one long enough to see the delivery phase.
April 2010 | Overload | 27

http://www.cambridge-news.co.uk/Huntingdon-St-Ives-St-Neots/Date-for-opening-expected-after-busway-progress.htm
http://www.cambridge-news.co.uk/Huntingdon-St-Ives-St-Neots/Date-for-opening-expected-after-busway-progress.htm
http://en.wikipedia.org/wiki/Write_Only_Memory

FEATURE TEEDY DEIGH
A Practical, Reasoned and
Inciteful Lemma for Overworked
and Overlooked Loners
Popular movements need a rallying cry.
Teedy Deigh offers a timely one.
t seems you can no longer promote an idea without framing it as a
manifesto of some kind or other. The Manifesto for Agile Software
Development [Agile] is ultimately to blame for this state of affairs.

Many have followed in its wake and its form, some more notable than
others, some more notorious. The Declaration of Interdependence
[DecInd], the Manifesto for Software Craftsmanship [Craftmanship], the
SOA Manifesto [SOA], the FAIL Manifesto [FAIL] and undoubtedly
countless others have all aped the basic style of the Agile Manifesto and,
similarly, without saying much that could be considered provocative.

Provocation, contradiction and taking a stand used to be what manifestos
and declarations were all about. It is perhaps time for another
proclamation, one that is likely to reach the core values of developers
everywhere, one that is a counterpoint to more thoughtful and considered
approaches. Individuals and interactions over processes and tools? This is
about individuals without interactions! This is a battle cry from the
trenches thrown together over coffee, refined during meetings as an
alternative to buzzword bingo and published as an afterthought during a
long build.

References
[Agile] Manifesto for Agile Software Development,

http://agilemanifesto.org
[Craftmanship] Manifesto for Software Craftmanship,

http://manifesto.softwarecraftmanship.org
[DecInd] Declaration of Independence, http://pmdoi.org
[FAIL] FAIL Manifesto, http://failmanifesto.org
[SOA] SOA Manifesto, http://soa-manifesto.org

I

Teedy Deigh sees herself as the lone voice of reason in the
cacophonous landscape of office politics, a radical and
revolutionary in the battle for the heart and mind of the
knowledge worker, someone prepared to stand against both
current and past thinking, or indeed any thinking that threatens
to change the way she does things. She’s not sure what her
colleagues see her as, or that it matters.

Coding over writing any documentation whatsoever

Debugging over unit testing

Singletons over carefully reasoned, loosely coupled design

Voice over IP

We have been putting in overtime and the code face and,
through non-reflective practice and missed deadlines,

have come to value:

That is, while the items on the right look like hard work and
sound quite boring, the items on the left offer identifiable

short-term gains and the promise of surprise, mystery and
continued employment in the longer term.
28 | Overload | April 2010

http://agilemanifesto.org
http://manifesto.softwarecraftmanship.org
http://pmdoi.org
http://failmanifesto.org
http://soa-manifesto.org

	Dealing with Growing Pains
	The Model Student: A Game of Six Integers (Part 2)
	Using Design Patterns to Manage Complexity
	The Predicate Student: A Game of Six Integers
	Bug Elimination - Defensive Agile Ruses
	A Practical, Reasoned and Inciteful Lemma for Overworked and Overlooked Loners

