

February 2013 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 ‘No Bugs’ Top Five C++ Cooking Recipes
Sergey Ignatchenko shares five recipes.

7 Utilising More Than 4GB of Memory in 32-
bit Windows Process
Chris Oldwood presents techniques to provide
extra memory on Windows.

12 The Signs of Trouble: On Patterns,
Humbleness and Lisp
Adam Peterson considers the cognitive and social
value of patterns.

14 The Open–Closed Principle (OCP)
Nan Wang demonstrates how the Open-Closed
principle can minimise changes when
requirements and environments change.

16 Secrets of Testing WCF Services
Steve Love shows how to test a WCF app.

24 Letter to the Editor

OVERLOAD 113

February 2013

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simonsebright@hotmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 114 should be submitted
by 1st March 2013 and for
Overload 115 by 1st May 2013.

EDITORIAL FRANCES BUONTEMPO
The Good, The Bad and
The Discordant
There are several signs of bad code. Frances Buontempo
considers ugliness, stench and discord in a search for beauty.
First I must apologise. I have failed to write an
automatic editorial generator. I was distracted by
@TicBot on twitter and after many delightful chats
about biscuits, i t is clear I should write an
@OverloadBot and leave them to figure it out between
themselves. I will try harder for the next edition.

Meanwhile, I will step back and consider what makes something
delightful or indeed beautiful for motivation. Let us start by considering
its contrapositive. What makes something repulsive or ugly?

People frequently refer to code smells, indicating that the code in front of
their eyes falls somewhere between inducing a nervous tick or the desire
to run away screaming and inducing a sense of general, or specific,
wrongness. Referring to a smell produced by looking at something is
decidedly odd, though possibly traditional. Martin Fowler claims the
phrase was first coined by Kent Beck. Furthermore he says, “A smell is
by definition something that’s quick to spot” [Fowler]. Perhaps you can spot
things with your nose as well as your eyes, though our eyes will show us
the usual suspect smells including code duplication, long functions and
many similar subclasses. There are other types of code smells that we
neither sniff nor see, for example boredom: “Boredom is a smell that you
understand the problem well enough to automate a solution” [c2].

It is possible to extend the heuristic of bad smells for code analysis to other
senses. This brings to mind some mention of a program called CAITLIN,
‘musical program auralisation’ system for Pascal programs, mapping
program data to sound. [Vickers02] Many years ago in an attempt to speed
up a program running on an embedded device, a colleague and I inserted
beep statements in a loop to see how often a function was called. This was
a resounding success, though we were banished to the kitchen since the
rest of the team found it deeply annoying. I suspect CAITLIN goes further
than simply beeping. It draws on previous research that could be used to
represent C programs, and automatically maps loops and structures to
sound motifs or short tunes. The authors notice that a musical background
made no difference to the results. Regardless of musical expertise the
sound motifs seemed to help students detect bugs more quickly. Music
would appear to have deep roots in the psyche. Dara Ó Briain’s latest
Science Club program on BBC2 explored the science behind music,
noting that music, specifically the beat, could have a profound impact on
people suffering from Parkinson’s disease [Science Club]. The rhythm
helped them walk more stably, possibly by allowing a different path
through the brain to be formed, short circuiting the broken parts. Music

seems to form some kind of universal language and
can immediately cause visible delight in

young children. Analysing source code
aurally therefore seems like a very good
idea.

We have considered smells and discord to detect bad and ugly code. We
have also noticed that our eyes can tell us much about a code base.
Furthermore, there are many code metrics, which will summarise the code
space numerically, ranging from test coverage to complexity and beyond.
An obvious next step is to graph these, to provide a neat summary. A quick
google found NDepend’s Metric View [NDepend], which appears to
represent a code base as coloured rectangles. I would need to try this on
a code base or two to get a feel for what what counts as good or bad, from
this visual perspective.

What makes code good? Certainly it should be fit for purpose, and not
noticeably contain bugs. This doesn’t go far enough though. It is possible
to automatically generate code to perform tasks, but the generated code
is frequently ugly. Of course, we do not yet have a clear definition of ugly
though mentions of stinks and discord provide a vague idea. The time has
come to flip back our contrapositive and reconsider what is beautiful or
delightful. Recall the title of Knuth’s classic algorithms books, the art of
computer programming. Why does Knuth insist on using the word art,
considering so many of us frequently try to suggest we are computer
scientists or engineers? “We have seen that computer programming is an
art, because it applies accumulated knowledge to the world, because it
requires skill and ingenuity, and especially because it produces objects of
beauty” [Knuth74]. What on earth does it mean to claim a computer
program is beautiful? An acquaintance of mine is currently trying to learn
python and cannot see why I insist on suggesting different ways of doing
something. If it works, it works. Full stop, end of. No discussion
necessary. Which makes trying to discuss why I feel this matters
somewhat challenging. As a person with a background in pure
mathematics I have been trained to appreciate beauty. It is possible to write
a long, laborious and difficult to follow proof in analysis. Point proved,
QED, full stop, end of. However, it is often possible to prove the same
thing formulated in topological terms. Clearly, this is total waste of time
if you’re just trying to prove a point. Nonetheless, the topological version
will frequently be two or three lines long. The compactness is made
possible partly by the level of abstraction introduced. There is a fine
balance between terseness and elegance, and beauty sits firmly with
elegance and simplicity. Controversially, I would like to suggest spotting
beauty is learnt. People use phrase like a ‘trained eye’ or ‘trained ear’.
Perhaps experienced programmers develop a trained nose, to spot code
smells. Algebra is beautiful, but most school children cry dismay when
they first meet the subject, complaining that mathematics should be about
numbers rather than letters. The delight and joy that comes from
appreciating algebra is not innate; it tends to come from a long hard slog
and good mentors. So, to re-ask the question, Victor Norman asks “But,
what difference does it make that the code is ugly? If the code works
correctly, who should care that it is ‘ugly’?” [Norman]. As with my python

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer for over 12 years professionally, and learnt to program by reading the manual for her Dad’s
BBC model B machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | February 2013

EDITORIALFRANCES BUONTEMPO
learning friend complaining that if it just works that’s good enough, how
can we answer this point? Returning to musical program auralisation, most
children will engage with simple music, perhaps in the form of nursery
rhymes and will take a long time to appreciate other more complicated
musical motifs. Depressingly, many will stick with the simple obvious
forms and never progress on from the inane to the beautiful. Does this
matter? Almost certainly not, however, they are missing much joy and
delight, in the same way that people who never get the hang of algebra are
missing out.

Why does beauty matter? Perhaps it doesn’t really, though if something is
clear, elegant and simple it might be easier to work with. Let us return
Knuth again.

Alas, people these days rarely measure a computer scientist by
standards of beauty and interest; they measure us by dollars or by
applications rather than by contributions to knowledge, even though
contributions to knowledge are the necessary ingredient to make
previously unthinkable applications possible. [Knuth interview]

Perhaps we could argue beautiful code is easier to test and refactor and then
measure this in dollars. More abstractly, Norman [op cit] suggests that art
and computer programs are both about communication. We delved into
communication in Overload 112, though from the viewpoint of developing
software as communications rather than in a search for beauty. An expert
musician or artist will notice patterns and structures that a novice may miss
thereby failing to appreciate some of the elements of cleverness or joy in
the composition. Similarly the structure of a program may follow a design
pattern, which a newbie may not spot. Beauty goes beyond communication
though. Introducing a level of abstraction, through algebra, repeating
sound motifs or developing new data structures and algorithms can open
up new possibilities. Recall the surprise at the discovery of the possibilities
of template metaprogramming? Being able to read, write and think in a
specialist area, be it music, mathematics, code or even a human language
is the goal of a skilled artisan. “Fluency goes beyond reading and writing.
A fluent speaker of a language begins to be able to think in idiom”
[Armitage]. Armitage goes on to say of writing code:

A great deal of it is much more like sculpture. Data, technology,
code, as a slab of clay, to be manipulated, explored, felt between
your fingers, and slowly turned into something substantive. It’s
practically the opposite of engineering. It’s an artistic discipline:
beginning with sketching and exploring, and then building on those
sketches slowly through iteration, watching a final structure emerge.

Perhaps we should avoid the age-old debate about whether what we do is
engineering or not, but rather observe that taking pride in creating
something beautiful should be possible whichever side of the debate you
come down on. He then suggests that computers allow us to think new
thoughts. On the face of it, this is a remarkable claim. However, frequently
introducing new representations for ideas, in effect new languages and

levels of indirection, allows new ideas and new ways of solving problems
to emerge. Introduction of the calculus gave ways of expressing both old
and new problems in a different way. Would we have ‘e’ without Newton
or Leibniz?

Code can be good, bad or ugly. Indeed, correct code, fulfilling user
requirements can be good, bad or ugly. Trying to define ‘good’ code is
difficult, but bad and ugly code is easy to spot. It smells. It makes a
discordant racket. It possibly burns your skin or tastes like wallpaper paste,
though we haven’t yet seen a way of mapping it to touch or taste. Certainly,
it looks ugly. It could be long and lumbering functions, with slightly more
boolean flags wedged in than you would expect, or using two such flags
to describe three possible states and so on. It is easy to list bad and ugly
traits shared by bad and ugly code. Instead, let us end by considering good
traits shared by beautiful code. I suggest it should be as simple as possible,
but no simpler. If it leaves you excited and wanting to play with an idea
further it might be a masterpiece. Trying to form a definitive list of what
makes something beautiful or even good may be an impossible task, so I’ll
leave each reader to consider what they find beautiful.

Some programs are elegant, some are
exquisite, some are sparkling. My claim is
that it is possible to write grand programs,

noble programs, truly magnificent ones!
[Knuth74]

References
[Armitage] http://www.bbc.co.uk/news/technology-20764273

[c2] http://www.c2.com/cgi/wiki?BoredomIsaSmell

[Fowler] http://martinfowler.com/bliki/CodeSmell.html

[Knuth interview] http://www.simple-talk.com/opinion/geek-of-the-
week/donald-knuth-geek-of-the-week/

[Knuth74] ‘Computer Programming as an Art.’ Communications of the
ACM 1974 pp 667–673
http://delivery.acm.org/10.1145/370000/361612/a1974-
knuth.pdf?ip=139.149.31.231&acc=OPEN&CFID=243683453&C
FTOKEN=93039526&__acm__=1357131190_a70eb5ac6b56861b
b9cf8cada5c18e9f

[NDepend] http://www.ndepend.com/Doc_Treemap.aspx

[Norman]
http://cs.calvin.edu/documents/christian/BeautyCompProg.pdf

[Science Club] http://www.bbc.co.uk/mediacentre/proginfo/2013/01/
dara-o-briain-science-club.html

[Vickers02] Vikers & Alty ‘When bugs sing’ Paul Vickers, James L. Alty
2002 http://hdl.handle.net/2134/3357
February 2013 | Overload | 3

http://www.bbc.co.uk/news/technology-20764273
http://www.c2.com/cgi/wiki?BoredomIsaSmell
http://martinfowler.com/bliki/CodeSmell.html
http://www.simple-talk.com/opinion/geek-of-the-week/donald-knuth-geek-of-the-week/
http://www.simple-talk.com/opinion/geek-of-the-week/donald-knuth-geek-of-the-week/
http://delivery.acm.org/10.1145/370000/361612/a1974-knuth.pdf?ip=139.149.31.231&acc=OPEN&CFID=243683453&CFTOKEN=93039526&__acm__=1357131190_a70eb5ac6b56861bb9cf8cada5c18e9f
http://www.ndepend.com/Doc_Treemap.aspx
http://cs.calvin.edu/documents/christian/BeautyCompProg.pdf
http://www.bbc.co.uk/mediacentre/proginfo/2013/01/dara-o-briain-science-club.html
http://www.bbc.co.uk/mediacentre/proginfo/2013/01/dara-o-briain-science-club.html
http://hdl.handle.net/2134/3357

FEATURE SERGEY IGNATCHENKO
‘No Bugs’ Top Five
C++ Cooking Recipes
Developers often have a few favourite tricks for solving
problems. Sergey Ignatchenko shares his five top recipes.
Disclaimer: as usual, the opinions within this article are those of ‘No
Bugs’ Bunny, and do not necessarily coincide with the opinions of the
translator or the Overload editor. Please also keep in mind that
translat ion diff icult ies from Lapine (l ike those described in
[Loganberry04]) might have prevented providing an exact translation.
In addition, both the translator and Overload expressly disclaim all
responsibility from any action or inaction resulting from reading this
article.

oday, I’ve decided to recall that I’m a developer (at least at heart), and
pause my usual philosophical blabber about the place of developers
in the Universe to talk about actual programming a little bit.

Most (if not all) of the stuff in this article is rather well-known, however,
such things are frequently overlooked, so I feel that they are worth
mentioning once again.

Recipe #5 – set<>, sort(), and ‘strict weak ordering’
With sets/maps/sorts there is a well-known headache: how to write a
compliant operator <() (or a functor). It is known that for classes
involved in map<>/set<>, operator <() must comply to a so-called
‘strict weak ordering’; if this is violated, all kinds of weird things can
happen (from identical multiple entries in a supposedly-unique collection,
to memory corruption). Unfortunately, looking at an arbitrary
operator <(), it is usually rather (or very) difficult to tell if it complies
with ‘strict weak ordering’. Recipe #5 shows how to cook an
operator <() which does comply with ‘strict weak ordering’ and
therefore can be safely used with sets/maps (and also with sorts etc.) –
see Listing 1.

operator <() in Listing 1 is guaranteed to comply with ‘strict weak
ordering’ (assuming that nobody has redefined comparison for strings).

If necessary, class members can also be included into the comparison
(provided that their respective operators <() are also compliant with
‘strict weak ordering’):

 bool yl = y < other.y;
 bool yg = other.y < y;
 if(yl || yg)// this is just a way to write
 // "y != other.y"
 return yl;

In addition, functions can also be used (as long as their arguments are
constant):

int fthis = f(i);
int fother = f(other.i);
if(fthis != fother)

 return fthis < fother;

Multi-parameter functions are also possible (as long as all arguments are
constant, and as long as they’re used exactly as shown below):

 int fthis = f(i, s);
 int fother = f(other.i, other.s);
 if(fthis != fother)
 return fthis < fother;

It is very important to note that while in any of the above examples, ‘strict
weak ordering’ is guaranteed, any deviations from the forms described
above, can be deadly. For example, if you replace return false; with
innocent-looking return true;, it would break the code (as for certain
a and b our operator <() would return that a < b is true, and
simultaneously that a > b is true, which is obviously wrong). In another
example, comparing f(i, j) with f(other.j, other.i) would be
risky (while comparing f(i, j) with f(other.i, other.j) is
guaranteed to be ok under the conditions stated above).

Recipe #4 – Measuring run-time performance
In production code, it is often desirable to gather statistics to measure code
performance under real conditions. The problem is how to gather statistics
without hurting performance too much. Here are a few tricks to help deal
with this issue.

First, for statistical purposes it is usually not necessary to use any kind of
thread synchronization. Yes, if you’re writing plain stats.nCalls++
without using mutexes or atomics, you might get an error if two threads
try to modify the same stats.nCalls simultaneously; however, if all
the statements modifying stats.nCalls, are incremental ones (like the
one above) the error from a single race condition cannot exceed 1. In
addition, the chance of race conditions is very slim (even if you try really
hard, getting more than 1/100 of assignments to have race conditions
would be difficult, and in practice it is usually more like 1e-4 to 1e-5 or

T

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 12+ years of industry experience, and
recently has started an uphill battle against common wisdoms in
programming and project management. He can be contacted at
si@bluewhalesoftware.com

Listing 1

class X {
 int i;
 int j;
 string s;
 Y y;
 ZZ zz;

 bool operator <(const X& other) const {
 if(i != other.i)
 return i < other.i;
 if(s != other.s)
 return s < other.s;
 //it is ok to ignore some fields
 return false;
 }
};
4 | Overload | February 2013

FEATURESERGEY IGNATCHENKO

if you have lots and lots of calls to your
function, it is often ok to take time

measurements using a low-precision timer
so). We can usually say (given enough calls) that statistical errors due to
race conditions are negligible.

Another issue which often arises in relation to measuring run-time
performance is time measurement. The problem here is the following:
usually the time frames to be measured are very small (often within a
microsecond), and high-precision methods available to measure time are
not always readily available. (For example, an x86 RDTSC instruction was
observed to provide incorrect results on certain multi-socket hardware due
to incorrect implementation of the motherboard.) So, what should you do
if you need to measure how long certain function takes (in microseconds),
but all you have is a very low-precision timer (like a 15-milliseconds
timer)? Apparently, if you have lots and lots of calls to your function, it is
often ok to take time measurements using a low-precision timer, and
simply add them up (using something like stats.callTime +=
deltaTime;. It might be even better to reduce performance impact, if(
__builtin_expect(deltaTime, 0)) stats.callTime +=
deltaTime; – potentially without synchronization, as described above).
If you’re measuring a time interval of 1.5 microseconds, and have a timer
which has precision of 15 milliseconds, you will get deltaTime == 0
in 99.99% of the cases, but apparently, after averaging a million such calls,
results are usually surprisingly precise (the precision I’ve observed in
practice was about ±20%, which is much better than one would expect
intuitively given the numbers above). While precision is not guaranteed
and your mileage may vary, if you don’t have any other options on the table
– for example, because RDTSC doesn’t work properly on your multi-
socket hardware – it is certainly worth a try.

Recipe #3 – _set_se_translator
There is only one thing which I think is fundamentally better with the
Microsoft Visual C++ compiler than with GCC, and it is the
_set_se_translator. In many heavily loaded server-side cases, it
really saved me from becoming a rabbit stew. The idea behind
_set_se_translator is to convert SEH exceptions (like access
violations, divisions by zero, etc.) into C++ exceptions, which then are
handled in the usual C++ way (with destructors called etc.); details can be
found on the MSDN page on _set_se_translator [MSDN].

In particular, such a thing is extremely useful if you have a state-machine-
based server processing incoming messages. If an access violation (or
division by zero) happens during the processing of one message, and it
doesn’t cause any memory damage (which is very common with access
violations and always happens with division by zero), it is usually perfectly
ok to ignore such a message and continue to serve the others without
crashing.

One should note that using _set_set_translator and catching
resulting C++ exceptions is very different from trying to catch SEH
exceptions with catch(...). When trying to catch SEH with
catch(...), no C++ destructors are called between the point where
SEH is raised and where it is caught; this can cause all kinds of weird
effects (and if you’re using destructors to remove mutex locks, forget
catching SEHs with catch(...)). On the contrary, when using

_set_se_translator, SEH is converted into a C++ exception right
where SEH occurs, so it is a C++ exception which is thrown. All
destructors from the point where SEH was raised, to the point where the
C++ exception is caught, are properly called, with much better results
(unless memory has already been corrupted by the point where SEH has
occurred).

Unfortunately, the last time I checked (which was admittedly a few years
ago) similar functionality was not available for *nix C++ compilers,
including GCC. Theoretically, it might be possible to throw a C++
exception from the signal handler, but this functionality is platform-
dependent and in practice, I wasn’t able to find a platform where it works
:-(.

Recipe #2 – Containers with ‘move’ semantics
Recipe #2 is admittedly a rather weird one, but every good cookbook
should contain at least one weird recipe, so here goes. In high-performance
code, there are scenarios, where you need to have a container which stores
complex objects (such objects including allocated storage etc.), but those
objects are only moved around and are never copied. Providing a copy
constructor for such objects can be either difficult (for example, if such an
object includes a file handle) or undesirable for performance reasons (if
such an object contains allocated memory, copying which would be
expensive). One common way to deal with this is to use some kind of
reference-counted pointer (or something similar to auto_ptr<>); this is
a viable option, but it has the associated cost of extra allocation/
deallocation, and in really high-performance code, this might be an issue.
In such cases, an approach similar to the following could help (rephrasing
a proverb, you could say that weird times require weird measures) – see
Listing 2.

While other operations on such a container may be added in a similar way,
it is extremely important to keep all such operations within this class, and
not to expose any operations of an underlying ‘shadow’ container to
outside world without ensuring the integrity of our StackOfX container.

Recipe #1 – asserts
And my top place goes to a very simple, but extremely useful, recipe,
related to asserts. In the C/C++ world, everybody knows about
asserts; the problem with a standard assert() is that it calls abort()
if assertion fails, which is often a bit too much.

The idea of this recipe is very simple – to create a MYASSERT macro which,
if violated, throws an exception.

 #define MYASSERT(cond) \
 (void)((cond) || (throw MyAssertException \
 (#cond, __FILE__, __LINE__), 0))

What exactly your MyAssertException class should be, where to place
it in the exception hierarchy, and how to use file name, line number, and
the assertion failure is up to you. For example, if you’re concerned about
revealing information about your code to the customer, you can easily omit
#cond in the production compile, and track what has happened in
February 2013 | Overload | 5

FEATURE SERGEY IGNATCHENKO
production based only on file/line. (You do have tags in your source
control for all the versions released to production, don’t you?)

Often, several such MYASSERTs are introduced (MYASSERT,
MYASSERT2, MYASSERT3, MYASSERT4, etc.) to indicate the level at
which the check is performed. For example, you can easily create a header

which would behave as follows: if you define MYASSERTLEVEL=2, then
all MYASSERTs with level <= 2 are checked, and all the others are
ignored:

 #if MYASSERTLEVEL >= 2
 #define MYASSERT2(cond) \
 (void)((cond) || (throw MyAssertException \
 (#cond, __FILE__, __LINE__), 0))
 #else
 #define MYASSERT2() ((void) 0)
 #endif

Apparently, it is often a good idea to leave at least some of the MYASSERTs
in the production code (especially if you run it on your own server or have
a mechanism to send logs back to you). If you find that occasionally certain
MYASSERTs in production mode fail, this clearly warrants an investigation.

In addition, if you’re using 3rd-party libraries which use the standard
assert() internally, it is often a good idea to replace the standard
assert() with MYASSERT() to avoid situations when the whole server
calls abort() because some assertion within a 3rd-party library has failed
(while recovery was still perfectly possible). How you do it depends on
the specifics of your project, but it usually can be done either via redefining
standard assert() and recompiling the 3rd-party library, or if
assert() calls some helper functionon your platform, this helper
function can often be replaced to achieve the desired effect. 

References
[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to

Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[MSDN] ‘_set_se_translator’ http://msdn.microsoft.com/en-us/library/
5z4bw5h5%28v=vs.110%29.aspx

Acknowledgement
Cartoon by Sergey Gordeev from

Gordeev Animation Graphics, Prague.

Listing 2

//class X is our complicated class

class StackOfX {
 // stack is just one example; any other type of
 // container (including maps, sets, lists, etc.)
 // can be written in a similar manner
 struct ShadowX { char data[sizeof(X)]; };
 typedef vector< ShadowX > ShadowV;
 ShadowV v;

 void push(/* move-in */ X& x) {
 ShadowX& sx = (ShadowX&)x;
 v.insert(v.end(), sx);
 }
 const X& operator[](int i) const {
 return (const X&)v[i];
 }

 void pop(/* move-out */ X& x) {
 ShadowV::iterator it = v.end() - 1;
 ShadowX& sx = (ShadowX&)x;
 sx = *it;
 v.erase(it);
 }

 ~StackOfX() {
 for(ShadowV::iterator it = v.begin();
 it != v.end(); ++it) {
 X& x = (X&)(*it);
 x.X::~X();
 }
 }
};
6 | Overload | February 2013

http://msdn.microsoft.com/en-us/library/5z4bw5h5%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/5z4bw5h5%28v=vs.110%29.aspx
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html

FEATURECHRIS OLDWOOD
Utilising More Than 4GB of Memory
in 32-bit Windows Process
Some applications require a vast amount of memory. Chris
Oldwood presents techniques to provide extra memory.
arge scale enterprise services like SQL Server and Exchange Server
can be memory hungry beasts. Given the chance, they will devour as
much RAM as you can feed them, using it for caching to reduce costly

I/O requests. This kind of service is often deployed on some Big Iron
hardware with the sole aim of allowing it free rein of the host machine –
its job being to serve clients, preferably as many as possible and in the
shortest possible time.

This article will outline the various memory constraints that affect 32-bit
processes on the Windows platform and the solutions that both Intel and
Microsoft provide for overcoming them through hardware, OS
configuration or API changes.

32-bit process memory limits
When Windows NT was first being developed back in the early 1990s you
were lucky to find hard disks with a capacity over 2GB, let alone that much
physical RAM. The initial design decision was to split the 4GB virtual
address space that every 32-bit process would be limited to into two halves.
That meant 2GB was reserved for the system (or kernel space) and 2GB
for the application (or user space). Even today this address space limit of
4GB is still in effect for 32-bit processes. What the Windows engineers
have done instead is provide a variety of techniques to either shuffle the
kernel/user allocation ratio about or provide other APIs to allow larger
memory regions to be allocated and different portions of that to be mapped
into the process address space on demand [Russinovich].

Much of the confusion around this particular topic is due to the differences
between the following limits: the virtual address space that a process is
bound by, the amount of physical RAM that is defined by the hardware
and the disk-based virtual memory provided by additional page-files. In
some older articles the terms ‘memory’, ‘virtual memory’ and ‘address
space’ are used interchangeably, which only compounds the confusion. So,
to ensure consistency throughout this article I am going to provide clear
definitions of these key constraints.

Process virtual address space
A process lives within a 4GB virtual address space. The limit mirrors that
of a 32-bit pointer and is deemed ‘virtual’ because the address pointer does
not refer to physical memory but is actually a logical address. Instead, the
page belonging to the address can be mapped anywhere within physical
RAM or even inside a page-file. This is the classic ‘Level of Indirection’
at play.

Physical memory
Naturally this is the hardware you have within your machine. Desktop
editions of Windows have historically only allowed you to access up to
4GB, whereas the Data Centre Edition of Windows Server supports up to
64GB.

Page-files
The hard disk can also act as a temporary store for memory pages that are
not currently in use. This is called virtual memory because it can only be

used for page storage – the pages still have to be present in physical
memory to be accessed.

This total size of all paging files defines the virtual memory limit for the
entire machine; this can be smaller or larger than the per-process 4GB
limit.

Commit charge (total memory)
If you open the Task Manager and look at the ‘Performance’ tab you will
see a number of system memory figures quoted. One of them is labelled
‘Commit Charge’. This represents the sum of both the physical RAM and
any space allocated via page-files. It is the total amount of memory
available for all processes.

Reserved & committed process pages
Within a process the pages that constitute the virtual address space can be
in one of three states: Free, Reserved or Committed. Free pages are exactly
that – pages which have yet to be used. Committed pages are those that
are in use and count towards the process’s footprint as they must be backed
either by the page-file (for data) or the executable image (for code). The
intermediate state of Reserved is a half-way house used to put a region of
address space to one side without actually forcing the OS to commit any
physical resources to maintaining it (except for bookkeeping).

Reserved memory is a particularly tricky beast because it is invisible in
the Task Manager due to there being no physical overhead and yet it creates
contention and fragmentation that is difficult to observe without inspecting
the process directly.

Running out of memory
There are essentially two ways that you can run out of memory. The first
is to exhaust your own process’s virtual address space by utilising all the
pages within it, or making it impossible for the heap manager to find
enough free contiguous pages from which to satisfy a memory allocation
request. The second method involves consuming all available system
memory (i.e. both physical and virtual) so that the OS cannot allocate a
free memory page to any process. The implication of the latter is that a
different process is the cause of a memory allocation failure – you might
only be the victim.

To diagnose a process breaching its own limits you can monitor it with
PERFMON.EXE and watch the Process | Virtual Bytes and Process |
Private Bytes counters. The former represents the amount of virtual
address space that has ever been allocated for heaps, page-file sections,
executable code, etc. The latter is the number of Committed Pages which
represents the footprint of the process within the total memory available
to the system.

L

Chris Oldwood started out as a bedroom coder in the 80s, writing
assembler on 8-bit micros. These days it's C++ and C# on
Windows in big plush corporate offices. He is also the
commentator for the Godmanchester Gala Day Duck Race and
can be contacted via gort@cix.co.uk or @chrisoldwood
February 2013 | Overload | 7

FEATURE CHRIS OLDWOOD

Determining that the entire machine has hit
the buffers can be a much simpler affair
The Private Bytes counter can also be seen in Task Manager under the
confusingly named column ‘VM Size’. Alternatively Process Explorer, via
the Properties | Performance tab, provides a single dialog for a process that
contains all the important memory statistics. However, it uses the term
‘Virtual Size’ in place of ‘Virtual Bytes’. The following table maps the
terms between the various common tools:-

As we shall see later when discussing the mechanisms for breaking the
4GB barrier the column name ‘Commit Charge’ becomes less meaningful,
but it is a good first-order approximation.

The exact cause of the process’s exhaustion will likely need much closer
examination of the actual page usage, for which WinDbg can be of great
assistance. Another more recent tool from the Sysinternals stable, called
VMMap, can also be of use. The latter is more graphical in nature than
WinDbg so is easier for visualisation.

Determining that the entire machine has hit the buffers can be a much
simpler affair. Bring up the Performance tab in Task Manager and compare
the Commit Charge ‘Peak’ to the ‘Limit’ – if they’re the same you’ve
maxed out. Things will likely start going awry before this point though. If
for instance you’re making very heavy use of file or network I/O, you can
drain the number of System Page Table Entries, which is the pool from
which everything flows. The likely indicators here are the Win32 error
codes 1450 (‘Insufficient system resources exist to complete the requested
service’) and 1453 (‘Insufficient quota to complete the requested service’).
Perfmon is able to help you visualise the consumption of this vital system
resource via the Memory | Free System Page Table Entries counter. If
you’ve hit either of these two conditions then your problem is not going
to be solved by any of the solutions below; they may even make it worse!

Memory pressure solutions
There are a number of different options available for remedying a memory
bound 32-bit process that range from simple OS level configuration
changes to architectural changes via the use of certain Win32 APIs. Porting
to 64-bit Windows is mentioned here as well, but only out of completeness.

Configuration based remediation
We start with the OS/process configuration based solutions as they don’t
require any code changes per-se.

The /3GB or /USERVA boot.ini Flag
One of the simplest ways to increase the amount of memory a process can
use on 32-bit Windows is to enable the /3GB flag in the Windows’
boot.ini file. This has the effect of adjusting the kernel/user address
space split in favour of the application by 1GB, i.e. instead of a 2GB/2GB

split you have a 3GB/1GB split. The downside to this is that the kernel
address space is halved so there is less space for certain key kernel data
structures such as the number of System Page Table Entries mentioned
earlier. The /USERVA flag is an alternative to /3GB that allows for fine
tuning of this ratio.

Unfortunately this magic flag is no good by itself. The increase in
application address space means that all of a sudden an application could
start dealing with addresses above 0x7FFFFFFF. Signed pointer arithmetic
on memory allocated above this threshold could expose latent bugs that
may lead to subtle data loss instead of catastrophic failure. Consequently
an application or service must declare itself compatible with this larger
address space by being marked with the /LARGEADDRESSAWARE flag in
the executable image. This flag is accessible via the Visual C++ linker and
is exposed by the later editions of the Visual Studio IDE under System |
Linker | Enable Large Addresses. For .Net applications you currently need
to use a custom build step that invokes EDITBIN.EXE to set the flag.

To aid in testing your application’s compatibility with high addresses there
is a flag (MEM_TOP_DOWN) that can be passed to VirtualAlloc() to
force higher addresses to be allocated before lower ones (the default).

As an aside the more recent documentation from Microsoft on this topic
now uses the term 4-Gigabyte Tuning (4GT) [MSDN].

Physical address extensions (the /PAE boot.ini flag)
Extending the virtual address space of a single process overcomes one
limitation, but there is a second one in play on 32-bit Windows that affects
your ability to run many of these ‘large address aware’ processes, such as
in a Grid Computing environment. The maximum amount of physical
memory that could be managed by Windows was also originally 4GB. This
is still the case for the 32-bit desktop editions of Windows, but the server
variants are able to address much more physical RAM – up to 64 GB on
the Data Centre Server edition.

This has been achieved by utilising an Intel technology known as Physical
Address Extensions (PAE) which was introduced with the Pentium Pro. It
adds an extra layer to the page table mechanism and extends entries from
32-bits to 64-bits so that up to 128GB could theoretically be addressed.

The introduction of PAE means that kernel drivers would now also be
exposed to physical addresses above the 4GB barrier, something they may
not have originally been tested for. Windows tries to keep buffers under
the 4GB limit to aid reliability, but once again the enablement of the feature
must be a conscious one – this time via the /PAE switch also in boot.ini.
If the server hardware supports Hot Add Memory this flag is actually
enabled by default.

The danger of /3GB and /PAE
As always there is a cost to enabling this and the halving of the Page Table
Index from 10-bits to 9-bits via /PAE means that there are half as many
System Page Table Entries available for use. If you combine this with the
/3GB flag you will have significantly reduced this resource and may see

Tool Working Set Commit Charge Address Space

Task Manager Mem Usage VM Size N/A

Perfmon Working Set Private Bytes Virtual Bytes

Process Explorer Working Set Private Bytes Virtual Size
8 | Overload | February 2013

FEATURECHRIS OLDWOOD

the risk/reward for porting a line-of-
business application that is only in need of a

little more headroom may not be sufficient
to justify the cost and potential upheaval
the server straining badly under heavy I/O load, i.e. you could start seeing
those 1450 and 1453 errors mentioned earlier.

The other major casualty is the video adaptor [Chen], but this is often of
little consequence as application servers are not generally renowned for
their game playing abilities. Of course the rise in general-purpose graphics
processing units (GPGPU) puts a different spin on the use of such hardware
in modern servers.

Using 64-bit Windows to run a 32-bit process
Naturally all this /3GB and /PAE nonsense goes away under 64-bit
Windows as the total system address space is massive by comparison.
Although in theory you have 64-bits to play with, implementation
limitations mean there are actually only 48-bits to work with. Still, 256 TB
should be enough for anyone?

But, 64-bit Windows doesn’t just benefit 64-bit processes; the architecture
also changes the address space layout for 32-bit processes too. The kernel
address space now lives much higher up leaving the entire 4GB region for
the application to play with (assuming that your image is marked with the
/LARGEADDRESSAWARE flag as before).

Recompiling for 64-bit
The obvious solution to all these shenanigans might just simply be to
recompile your application as a 64-bit process. Better still, if you rewrite
it in .Net you have the ability to run as either a 32-bit or 64-bit process as
appropriate with no extra work. Only, it’s never quite that simple…

There are many issues that make porting to a 64-bit architecture non-trivial,
both at the source code level, and due to external dependencies. Ensuring
your pointer arithmetic is sound and that any persistence code is size
agnostic are two of the main areas most often written about. But you also
need to watch those 3rd party libraries and COM components as a 64-bit
process cannot host a 32-bit DLL, such as an inproc COM server.

The hardware and operating system will also behave differently. There are
plenty of ‘gotchas’ waiting to catch you out during deployment and
operations. In the corporate world 32-bit Windows desktops are still
probably the norm with 64-bit Windows becoming the norm in the server
space. So, whilst the 64-bit editions of SQL & Exchange Server are well
bedded-in, custom applications are still essentially developed on a
different platform.

Useable memory
Having a user address space of 2, 3, or even 4 GB does not of course mean
that you get to use every last ounce. You’ll have thread stacks and
executable image sections taking chunks out. Plus, if you use C++ and
COM you have at least two heaps competing, both of which will hold to
ransom any virtual address descriptors (VADs) that they reserve,
irrespective of whether they are in use or not. Throw in ‘Virtual Address
Space Fragmentation’ and you’re pretty much guaranteed (unless you’ve
specifically tuned your application’s memory requirements) to get less
than you bargained for.

The following table describes my experiences of the differences between
the maximum and realistic usable memory for a process making general
use of both the COM and CRT heaps:-

This kind of information is useful if you want to tune the size of any caches,
or if you need to do process recycling such as in a grid or web-hosted
scenario. To see the amount of virtual address space used by a process you
can watch the ‘Virtual Bytes’ Perfmon counter as described earlier.

Extending your footprint over 4GB
Those who went through the 16-bit to 32-bit Windows transition will no
doubt be overly cautious – the risk/reward for porting a line-of-business
application that is only in need of a little more headroom may not be
sufficient to justify the cost and potential upheaval straight away.

If it’s caching you need, and you don’t mind going out-of-process on the
same machine (or even making a remote call) then there are any number
of off-the-shelf products in the NOSQL space, such as the open source
based Memcached. However, if you’re looking to do something yourself
and you want to avoid additional dependencies, or need performance
closer to in-process caching, then there are two options: Address
Windowing Extensions and Shared Memory.

What you need to bear in mind though is that it’s not possible to overcome
the 4 GB address space limit, but what both these mechanisms allow is the
ability to store and access more than 4GB memory very quickly – just not
all at exactly the same time.

Address Windowing Extensions (AWE)
Windows 2000 saw the addition of a new API targeted specifically at this
problem, and it is the one SQL Server uses. The AWE API is designed
solely with performance in mind and provides the ability to allocate and
map portions of the physical address space into a process. As the name
implies you cannot directly access all that memory in one go but need to
create ‘windows’ onto sections of it as and when you need to. The number
and size of windows you can have mapped at any one time is still
effectively bound by the 4GB per-process limit.

Due to the way the AWE work there are some restrictions on the memory
that is allocated:

 The memory is non-paged.

 The application must be granted the ‘Lock Pages in Memory
Privilege’.

The API functions allow you to allocate memory as raw pages (as indicated
by the use of the term Page Frame Numbers) – this is the same structure
the kernel itself uses. You then request for a subset of those pages to be

Max User Address Space Useable Space

2.0 GB 1.7 GB

3.0 GB 2.6 GB

4.0 GB 3.7 GB
February 2013 | Overload | 9

FEATURE CHRIS OLDWOOD

you need to warn your System Administrators
about the massive rise in page faults that they
will see in the process stats
mapped into a region of the process’s restricted virtual address space to
gain access to it, using the previously returned Page Frame Numbers.

For services such as SQL Server and Exchange Server, which are often
given an entire host, this API allows them to make the most optimal use
of the available resources on the proviso that the memory will never be
paged out.

Page-file backed shared memory
There is another way to access all that extra memory using the existing
Windows APIs in a manner similar to the AWE mechanism, but without
many of its limitations: Shared Memory. Apart from not needing any extra
privileges the memory allocated can also be paged which is useful for
overcoming transient spikes or exploiting the paging algorithm already
provided by the OS.

Allocating shared memory under Windows is the job of the same API used
for Memory Mapped Files. In essence what you are mapping is a portion
of a file, though not an application defined file but a part of the system’s
page-file. This is achieved by passing INVALID_HANDLE_VALUE instead
of a real file handle to CreateFileMapping(). Listing 1 creates a
shared segment of 1MB.

At this point we have allocated a chunk of memory from the system, but
we can’t access it. More importantly though we haven’t consumed any of
our address space either. To read and write to it we need to map a portion
(o r a l l) o f i t i n to ou r a dd re s s space , wh i ch we do w i t h
MapViewOfFile(). When we’re done we can free up the address space
again with UnmapViewOfFile(). Continuing our example we require
the code in Listing 2 to access the shared segment.

Every time we need to access the segment we just map a view, access it
and un-map the view again. When we’re completely done with it, we can
free up the system’s memory with the usual call to CloseHandle().

Limitations of shared memory segments
This approach is not without its own constraints, as anyone who has used
VirtualAlloc() will know. Just as with any normal heap allocation the
actual size will be rounded up to some extent to match the underlying page
size. What is more restrictive though is that the ‘window’ you map to

access the segment (via MapViewOfFile) must start on an offset which
is a multiple of the ‘allocation granularity’. This is commonly 64K and can
be obtained by calling GetSystemInfo(). The length can be any size
and will be rounded up to the nearest page boundary. This pretty much
guarantees it’s only useful with larger chunks of data.

A more subtle problem can arise if you fail to match the calls to
MapViewOfFile with those to UnmapViewOfFile. Each call to
MapViewOfFile bumps the reference count on the underlying segment
handle and so calling CloseHandle will not free the segment if any views
are still mapped. If left unchecked, this could create one almighty memory
leak that would be interesting to track down.

Apart from the API limitations there is also the problem of not being able
to cache or store raw pointers to the data either outside or inside the
memory block – you must use or store offsets instead. The base address
of each view is only valid for as long as the view is mapped so care needs
to be taken to avoid dangling pointers.

One other operational side-effect of this technique that you need to warn
your System Administrators about is the massive rise in page faults that
they will see in the process stats. What they need to understand is that these
are probably just ‘soft faults’ where a physical page is mapped into a
process and not a ‘hard fault’ where a disk access also occurs. Although
the segment is officially backed by the system page-file if enough physical
RAM exists the page should never be written out to disk and so provides
excellent performance.

Real-world use
I have previously used shared memory segments very successfully in two
32-bit COM heavy services that ran alongside other services on a 64-bit
Windows 2003 server. One of them cached up to 16 GB of data without
any undue side effects, even when transient loads pushed it over the
physical RAM limit and some paging occurred for short periods.

I’m currently working on a .Net based system that is dependent on a 32-bit
native library and have earmarked the technique again as one method of

Listing 1

const size_t size = 1024 * 1024;

HANDLE mapping =
CreateFileMapping(INVALID_HANDLE_VALUE,
 NULL, PAGE_READWRITE,
 0u, size, NULL);

if (mapping == NULL)
 throw std::runtime_error
 ("Failed to create segment");

Listing 2

const size_t offset = 0;
const size_t length = 1024 * 1024;

void* region = MapViewOfFile(mapping,
 FILE_MAP_ALL_ACCESS, 0u, 0u, length);

if (region == NULL)
 throw std::runtime_error
 ("Failed to map segment");

// read & write to the region...

UnmapViewOfFile(region);
10 | Overload | February 2013

FEATURECHRIS OLDWOOD
overcoming out-of-memory problems caused by needing to temporarily
cache large intermediate blobs of data.

Research project – service-less caching
The ability to cache data in shared memory, which is effectively reference
counted by the OS, provided the basis for a prototype mechanism that
would allow multiple ‘engine’ processes running on the same host to cache
common data without needing a separate service process to act as a
gateway. This would avoid the massive duplication of cached data for each
process, which, as the number of CPUs (and therefore engine processes)
increased, would afford more efficient use of the entire pool of system
RAM.

The mechanism was fairly simple. Instead of each engine process storing
its large blobs of common data in private memory, it would be stored in a
shared segment (backed by a deterministic object name) and mapped on
demand. The use of similarly (deterministically) named synchronisation
objects ensures that only one engine needed to request the data from
upstream and the existence of a locally cached blob could be detected
easily too. This was done by exploiting the fact that creation of an object
with the same name as another succeeds and returns the special error
ERROR_ALREADY_EXISTS.

The idea was prototyped but never used in production as far as I know.

Summary
This article provided a number of techniques to illustrate how a 32-bit
Windows process can access more memory that the 2GB default. These
ranged from configuration tweaks involving the /3GB and /PAE flags
through to the AWE and Shared Memory APIs. Along the way it helped
explain some of the terminology and showed how to help diagnose
memory exhaustion problems. 

Credits
Thanks to Matthew Wilson for reciprocating and commenting on my first
draft, and to Frances Buontempo for her valuable feedback and
encouragement too.

References
[Chen] Raymond Chen, ‘Kernel address space consequences of the /3GB

switch’, http://blogs.msdn.com/b/oldnewthing/archive/2004/08/06/
209840.aspx.

[MSDN] ‘Memory Limits for Windows Releases’,
http://msdn.microsoft.com/en-gb/library/windows/desktop/
aa366778(v=vs.85).aspx

[Russinovich] Mark Russinovich and David Solomon, Windows Internals
4th edition

Software
Engineering
(part-time)

MSc in
February 2013 | Overload | 11

http://blogs.msdn.com/b/oldnewthing/archive/2004/08/06/209840.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/08/06/209840.aspx
http://msdn.microsoft.com/en-gb/library/windows/desktop/aa366778(v=vs.85).aspx

FEATURE ADAM PETERSEN
The Signs of Trouble: On Patterns,
Humbleness and Lisp
Patterns can be a controversial topic. Adam Petersen
considers their cognitive and social value.
Our challenge of humbleness
n his classic talk at the Turing awards, Dijkstra remarked that computer
programming is an “intellectual challenge which will be without precedent
in the cultural history of mankind” [Dijkstra72]. What is it that makes

software development so hard? Dijkstra himself gave the answer by
concluding that a “competent programmer is fully aware of the strictly limited
size of his own skull” [Dijkstra72]. It’s a reference made to the great
cognitive challenges of software development. Programming stretches our
cognitive abilities to a maximum and we need to counter with effective
design strategies to handle the complexity inherent in software.

One such strategy is to share knowledge and base our solutions on what
has been known to work well in the past. Since few designs are really novel
we often find that previous solutions, at least on a conceptual level, apply
to our new problem too. Another strategy recognizes the capacity limits
of our brain. Identifying ways to break those limits provide for more
efficient usage of our precious grayware.

Patterns incorporate both of these strategies. As software developer and
author of a technical book on patterns I obviously find value in the pattern
format. And as a psychologist I see the links to our cognitive capabilities
and the social value of patterns.

In this article I will detail my view on patterns and the value I see in them.
Since patterns are a controversial topic, I will build the article around the
criticism against patterns. Let the critics have the first word.

Misunderstood, misused or a sign of trouble?
A common view, expressed here by Jeff Atwood of Coding Horror fame,
is that “design patterns are a form of complexity” [Atwood07]. As such,
patterns should be avoided when simpler solutions would do.

Another view that tends to pop-up in discussions are patterns as
workarounds for missing language features. I will ignore for a moment that
patterns aren’t limited to the programming task itself – patterns have been
harvested in fields as diverse as testing, team organization, databases, etc
– and keep the discussion on the subset of patterns related to design.

Proponents of this view refer to Peter Norvig’s presentation on design
patterns in dynamic programming languages [Norvig98]. In his
presentation, Norvig classifies 16 of the 23 design patterns in the seminal
Design Patterns book [Gamma94] as simpler or even invisible in higher-
level languages. It’s an interesting read and a true testimony to the power
of the Lisp family of languages.

Paul Graham adds an interesting twist to the subject: “When I see patterns
in my programs, I consider it a sign of trouble” [Graham04]. Graham
continues to express that “a program should reflect only the problem it need

to solve” [Graham04] which brings us to the very essence of design. Since
I’m a Lisp programmer myself, I understand Graham’s view. I also think
he misses the most valuable part of what patterns really are.

The complexity of simplicity
Let me start by addressing Atwood’s claim since it’s more superficial than
Graham’s and provides a better starting point. I will work my way back
through the mists of misconceptions and valid criticisms of patterns to
finally take on Graham’s critique from the view of a fellow Lisp
programmer. But first we need to consider a more fundamental aspect: the
use and possible abuse of patterns.

Atwood has a point; patterns are indeed used in situations where they don’t
apply. Sometimes that’s a good sign. At least in a supportive environment.
A willingness to try something new is a sign of intrinsic motivation. It’s
an attempt to improve. We need to make those errors and learn from them.
The challenge is to provide an environment where the consequences are
controlled. A mix of mentoring and peer reviews has proven to be a
successful approach. Direct feedback is an important learning tool.

A worse problem than a motivated individual on a learning trail is over-
engineering. Patterns aren’t necessarily good. Used in the wrong context
where the forces are unbalanced they make the resulting context worse.
Patterns, like any other design choice, imply a trade-off. We buy flexibility
in one area traded for some other consequences. Unless the flexibility is
required we travel into the obscurity of speculative generality. A simpler
solution would probably serve both the business and the brain of the
maintenance programmer better. Or, as I put it in my book: “maintaining
an AbstractFactorySingletonDecoratorBuilderPrototypeFlyweight isn’t why
I went into programming” [4]. Believe me, I’ve been there. There’s just no
supplement to good taste.

But the story is not as simple as Jeff Atwood implies. A pattern doesn’t
equal some automatic increase in complexity. I tend to use patterns as
targets for refactorings. The reason I refactor is to get rid of accidental
complexity and adapt the design to an increased understanding of both
problem and solution space.

When used as targets of refactoring, patterns do shine. One of the reasons
is that the resulting context is well documented. It’s possible to reason
about the changes up-front and contrast them to the existing
implementation. A refactoring is an investment that we want to pay-off.
Any good pattern description acknowledges the weak sides of the pattern,
its trade-offs and hints at scenarios where the solution doesn’t apply.

Knowing the common patterns in your domain gives you a powerful
cognitive tool for large-scale refactorings.

Patterns as communication tools
Patterns have social value too. The format arose to enable collaborative
construction using a shared vocabulary. In Patterns in C I write on the
groundbreaking work of architect Christopher Alexander:

The patterns found in Alexander’s books are simple and elegant
formulations on how to solve recurring problems in different

I

Adam Petersen Combining degrees in engineering and
psychology, Adam tries to unite these two worlds by making his
technical solutions fit the human element. While he gets paid to
code in C++, C#, Java and Python, he’s more likely to hack Lisp
or Erlang in his spare time. Other interests include modern history,
music and martial arts.
12 | Overload | February 2013

FEATUREADAM PETERSEN
contexts. [...] His work is a praise of collaborative construction
guided by a shared language – a pattern language. To Alexander,
such a language is a generative, non-mechanical construct. It’s a
language with the power to evolve and grow. As such, patterns are
more of a communication tool than technical solutions. [Petersen12]

Patterns in the original sense are context-dependent and do not by some
work of magic provide universally ‘good’ designs. You can’t take the
human out of the design loop. This is why I get disappointed every time I
see someone offering a ‘patterns code library’ or expensive case tools that
come stacked with ‘UML pattern templates’. Reducing patterns to
mechanisms doesn’t tell the full story. The most interesting part of a pattern
is rarely the implementation.

I understand the marketing perspective but those ideas completely miss the
very essence and purpose of patterns. Sure, in software we are free from
the physics that constrained Christopher Alexander. We may take a natural
departure from Alexander’s idea and provide general parameterizable
implementations of specific patterns. If we do our job right that abstraction
may well be usable, yes, sometimes even re-usable. But the ROI is
diminishing fast.

Jeff Atwood falls into this trap as he labels the whole idea “a complex recipe
of design patterns” [Atwood07]. Design patterns are not a ‘recipe’ either
and were never intended as such. But Jeff’s view is an understandable
outcome of skimming through Design Patterns by the Gang of Four
[Gamma06]. One of the main problems I have with the Gang of Four book
is its prominent use of class diagrams. Open any pattern in the book. First
thing we see is a class diagram.

I addressed this in Patterns in C:

This has lead many developers to confuse the diagram with the
actual pattern. It’s not. At best, it’s one possible way to implement
the pattern in a certain language. Nothing more. A pattern is a
dynamic, generative entity. Depending on context, the applications
of a pattern may look radically different each time. It’s my firm belief
that much of the harm done to the design patterns movement could
have been avoided had the Gang of Four just excluded the section
on structure. [Petersen12]

Patterns for cognition
Patterns are primarily about communication. But the value of a shared
vocabulary goes beyond communication. Patterns are powerful reasoning
tools. Instead of reasoning about individual design elements and coding
constructs, patterns provide a way to group these concepts into a larger
unit. This has implications on our problem solving abilities.

In the introduction I quoted Dijkstra famously referring to the limits of our
skulls. One of the main factors behind the limitation is working memory.
Working memory is understood as the system that allows us to hold
information in our mind, integrate different parts, reason about them and
manipulate them. Working memory is what we use when we try to decipher
a macro in Lisp, understand the relationship between two Java objects, or
find a way to express a certain domain rule in Haskell.

Working memory is vital to our reasoning, problem solving, and decision
making. It’s also strictly limited in its capacity. Back in 1956, George
Miller made the first quantification of our working memory capacity.
Miller arrived at the now well-known heuristic of seven items, plus minus
two. Sub-sequent research has refined Miller’s number and distinguishes
between verbal and visual information. The latter is even more limited with
a mere four simultaneous items.

Given the few items we can hold in working memory simultaneously, it’s
no wonder that programming is hard; any interesting programming
problem has a multitude of fine-grained parameters and possible
alternatives. One way around this limitation is a process known as
chunking. Chunking is an encoding strategy where individual elements are
grouped into higher-level groups, chunks. While the limit on the number
of units still apply, each unit now holds more information.

Patterns are a sophisticated form of chunking. Their names serve as
handles to the vast knowledge stored in our long-term memory. Reading

the name of a known pattern activates the associated network of knowledge
and brings the ideas to conscious attention with economic usage of our
working memory.

Program close to the domain
Given all the benefits of patterns, why would Paul Graham consider them
“a sign of trouble” [Graham04]? Well, Graham doesn’t actually discuss
patterns. He mentions them in a more general discussion of the relative
power of different programming languages: “regularity in the code is a sign,
to me at least, that I’m using abstractions that aren’t powerful enough”
[Graham04].

So Graham discusses patterns in the repetitive semantic sense of the word.
And I completely agree. Repetitive patterns as in subtly duplicated code
that cannot be refactored away is a sure sign that the language lacks
expressive power. I often see that in Java (consider its dysfunctional try-
catch-finally pattern in versions prior to Java 7).

Patterns as a medium for sharing knowledge, ideas and used as reasoning
tools are a different story though. It has nothing to do with repetitive code.
The two cases are orthogonal.

In this sense, the interesting thing is not patterns within a program; it’s the
conceptual patterns between programs. Such patterns are a sign of
knowledge, learning and propagation of experience.

The patterns found in different languages will often differ. Design patterns
are a result of the transition from problem to solution domain. This is never
a perfect fit. If we can evolve and grow our language, like we do in Lisp,
we get closer to the problem domain. Using Lisp as building material for
domain-specific languages is a powerful strategy. It gives a much smother
transition now that the solution domain has been designed to express
precisely the specific problem at hand. At least on the surface. Our domain-
specific language, however high-level it may be, will have to bridge the
gap for us. The deeper we dive into the layers of the domain-specific
language, the further away we get from the problem domain. It is here that
documented patterns help. In case of Lisp, the patterns would focus on
language creation, capture common approaches and document the trade-
offs.

Level of scale
Patterns don’t have to be large and complex. They exist at all level of
scales. High-level languages grow their idioms too. One challenge of
learning a new language is to get accustomed with its idiomatic ways of
problem solving. By documenting the idioms we can provide guidance and
ease the learning curve for newcomers to our technologies. Experts may
benefit from the nuances and documented consequences present in all
well-written patterns. This is what I tried to explore in Patterns in C
[Petersen12].

Finally, it’s worth pointing out that the GoF book [Gamma94] was a
starting point, not the final word on patterns. The book is almost two
decades old and in desperate need of a second edition. It’s deliberately
focused on a limited sub-set of the design space available to programmers
(single-dispatch object-oriented design). Harvesting patterns in different
paradigms would certainly result in a different catalogue with different
implementation mechanisms. This journey is well worth embarking on. 

References
[Atwood07] Jeff Atwood (2007). Rethinking Design Patterns

[Dijkstra72] Dijkstra (1972). The Humble Programmer

[Gamma94] Gamma et al (1994). Design Patterns: Elements of Reusable
Object-Oriented Software

[Graham04] Paul Graham (2004). Hackers and Painters

[Norvig98] Peter Norvig (1998). Design Patterns in Dynamic Languages.

[Petersen12] Adam Petersen (2012). Patterns in C: Patterns, Idioms and
Design Principles.
February 2013 | Overload | 13

FEATURE NAN WANG

The Open–Closed Principle (OCP)
Changing requirements and environments can
require cascading changes through software.
Nan Wang demonstrates how the Open-Closed
principle can minimise changes
Software entities (classes, modules, functions, etc.) should be
open for extension but closed for modification. [APPP]

hen the requirements of an application change, if the application
confirms to OCP, we can extend the existing modules with new
behaviours to satisfy the changes (Open for extension). Extending

the behaviour of the existing modules does not result in changes to the
source code of the existing modules (Closed for modification). Other
modules that depend on the extended modules are not affected by the
extension. Therefore we don’t need to recompile and retest them after the
change. The scope of the change is localised and much easier to implement.

The key of OCP is to place useful abstractions (abstract classes/interfaces)
in the code for future extensions. However, it is not always obvious which
abstractions are necessary. It can lead to over complicated software if we
add abstractions blindly. I found Robert C Martin’s ‘Fool me once’ attitude
very useful [APPP]. I start my code with a minimal number of abstractions.
When a change of requirements takes place, I modify the code to add an
abstraction and protect myself from future changes of a similar kind.

I recently implemented a simple module that sends messages and made a
series of changes to it afterward. I feel it is a good example of OCP to share.

At the beginning, I created a MessageSender that is responsible for
converting an object message to a byte array and send it through a
transport.

 package com.thinkinginobjects;
 public class MessageSender {
 private Transport transport;
 public synchronized void send(Message message)
 throws IOException{
 byte[] bytes = message.toBytes();
 transport.sendBytes(bytes);
 }
 }

After the code was deployed to production, we found out that we sent
messages too fast for the transport to handle. However, the transport was
opt imised for handl ing la rge messages , so I modif ied the
MessageSender to send messages in batches of size of ten (Listing 1).

The solution was simple but I hesitated to commit to it. There were two
reasons:

1. The MessageSender class needs to be modified if we change how
messages are batched in the future. It violated the Open-Closed
Principle.

2. The MessageSender had a secondary responsibility to batch
messages in addition to the responsibility of converting/delegating
messages. It violated the Single Responsibility Principle.

Therefore I created a BatchingStrategy abstraction, who was solely
responsible for deciding how message are batched together. It can be
extended by different implementations if the batch strategy changes in the
future. In a word, the module was open for extensions of different batch
strategy. The MessageSender kept its single responsibility of
converting/delegating messages, which means it does not get modified if
similar changes happen in the future. The module was closed for
modification (see Listing 2).

The patch was successful, but two weeks later we figured out that we can
batch the messages together in time slices and overwrite outdated
messages with newer versions in the same time slice. The solution was
specific to our business domain of publishing market data.

More importantly, the OCP showed its benefits when we implemented the
change. We only needed to extend the existing BatchStrategy interface

W

Listing 1

package com.thinkinginobjects;
public class MessageSenderWithBatch {
 private static final int BATCH_SIZE = 10;
 private Transport transport;
 private List buffer = new ArrayList();
 private ByteArrayOutputStream byteStream
 = new ByteArrayOutputStream();

 public
 MessageSenderWithBatch(Transport transport) {
 this.transport = transport;
 }

 public synchronized void
 send(Message message) throws IOException {
 buffer.add(message);
 if (buffer.size() == BATCH_SIZE) {
 sendBuffer();
 }
 }

 private void sendBuffer() throws IOException {
 for (Message each : buffer) {
 byte[] bytes = each.toBytes();
 byteStream.write(bytes);
 }
 byteStream.flush();
 transport.sendBytes(byteStream.toByteArray());
 byteStream.reset();
 }
}

Nan Wang works as a software engineer in the financial sector. He
has designed and built various systems, from ultra low latency
exchange platforms to algorithmic trading and optimisation
frameworks. He is enthusiastic about object oriented design and
domain modelling. His blog is at http://www.ThinkingInObjects.com
and he can be contacted at nwang0@gmail.com
14 | Overload | February 2013

FEATURENAN WANG

The key of OCP is to place useful
abstractions (abstract classes/interfaces)

in the code for future extensions
with an different implementation. We didn’t change a single line of code
but just the spring configuration file. (Listing 3)

* For the sake of simplicity, I have left the message coalescing logic out
of the example.

Conclusion
The Open-Closed Principle serves as an useful guidance for writing a good
quality module that is easy to change and maintain. We need to be careful
not to create too many abstractions prematurely. It is worth deferring the
creation of abstractions to the time when the change of requirement
happens. However, when the changes strike, don’t hesitate to create an
abstraction and make the module to confirm OCP. There is a great chance
that a similar change of the same kind is at your door step. 

References:
[APPP] Agile Software Development, Principles, Patterns, and

Practices, Robert C Martin

Listing 2

package com.thinkinginobjects;
public class MessageSenderWithStrategy {
 private Transport transport;
 private BatchStrategy strategy;
 private ByteArrayOutputStream byteStream
 = new ByteArrayOutputStream();
 public synchronized void send(Message message)
 throws IOException {
 strategy.newMessage(message);
 List buffered = strategy.getMessagesToSend();
 sendBuffer(buffered);
 strategy.sent();
 }
 private void sendBuffer(List buffer)
 throws IOException {
 for (Message each : buffer) {
 byte[] bytes = each.toBytes();
 byteStream.write(bytes);
 }
 byteStream.flush();
 transport.sendBytes(byteStream.toByteArray());
 byteStream.reset();
 }
}
package com.thinkinginobjects;
public class FixSizeBatchStrategy
 implements BatchStrategy {
 private static final int BATCH_SIZE = 0;
 private List buffer = new ArrayList();
 @Override
 public void newMessage(Message message) {
 buffer.add(message);
 }
 @Override
 public List getMessagesToSend() {
 if (buffer.size() == BATCH_SIZE) {
 return buffer;
 } else {
 return Collections.emptyList();
 }
 }
 @Override
 public void sent() {
 buffer.clear();
 }
}

Listing 3

package com.thinkinginobjects;
public class FixIntervalBatchStrategy
 implements BatchStrategy {
 private static final long INTERVAL = 5000;
 private List buffer = new ArrayList();
 private volatile boolean readyToSend;
 public FixIntervalBatchStrategy() {
 ScheduledExecutorService executorService
 = Executors.newScheduledThreadPool(1);
 executorService.scheduleAtFixedRate
 (new Runnable() {
 @Override
 public void run() {
 readyToSend = true;
 }
 }, 0, INTERVAL, TimeUnit.MILLISECONDS);
 }
 @Override
 public void newMessage(Message message) {
 buffer.add(message);
 }
 @Override
 public List getMessagesToSend() {
 if (readyToSend) {
 List toBeSent = buffer;
 buffer = new ArrayList();
 return toBeSent;
 } else {
 return Collections.emptyList();
 }
 }
 @Override
 public void sent() {
 readyToSend = false;
 buffer.clear();
 }
}

February 2013 | Overload | 15

FEATURE STEVE LOVE
Secrets of Testing WCF Services
WCF services provide middleware for
applications but can be hard to test. Steve Love
describes a way to develop a testable app.
he Windows Communication Foundation, or WCF, is part of a
loosely related family of frameworks from Microsoft for developing
robust and reliable systems. I say loosely because WCF and the other

libraries can be used independently or in concert. The other main
frameworks are WPF for presentation, and WF for workflow. WCF is for
distributed and inter-process communications. Specifically, it is the
middleware that applications can use to talk to each other, whether they
are on the same machine, distributed over a LAN or even on the Internet.

There is a wealth of information about WCF on the MSDN [WCF,
MSDN], and in a whole range of books [Resnick08] which presents the
details of writing and configuring services and client applications. From
reading this documentation, one would be forgiven for thinking that the
‘W’ in WCF was ‘Web’ rather than ‘Windows’ because much of it covers
setting up a web-service, and using SOAP to establish communications
and discover services over HTTP. WCF is, however, the official
replacement for .Net Remoting Services, which itself superceded
Distributed COM. It’s my experience that WCF is actually really quite
good in this application space, even if the documentation (official and
otherwise) wants you, the developer, to think about web services and
SOAP instead of RPC.

In this article, I want to explore some of those almost-hidden secrets of
configuring and running WCF service- and client-applications. By going
off the beaten path blazed by the example code that is available on MSDN,
I hope to demonstrate how the resulting code can be more flexible and less
intrusive in your applications.

The full source code for this is available on github [Love]. It’s a Microsoft
Visual Studio 2010 solution in C#, but should work in VS2012. A wiki
page on the github site explains the different projects in the code.

A standing start
There are two main starting points from where discussion of using WCF
for applications might commence. The first is to begin with the premise
that the application will be distributed, that WCF has been chosen as the
facilitator for that, and so we would start with defining some service
contracts and definitions. The second scenario – which is probably much
more common – is to begin with the premise that there is some application
already in existence, for which WCF has been chosen as the technology
to turn it into a distributed application. Most of the MSDN introductions,
and many of the books on WCF follow the first scenario, but I’m now going
to introduce a third possibility.

I want to start with a new application that doesn’t use WCF in any way,
and turn it into a distributed application.1 The main reason for this is about
testing. Distributed applications that use technologies like WCF are
notoriously hard to test in an automated fashion. Testing the client usually
has to assume that a corresponding server is available, and the client must

be configured correctly to use it. Testing the server is notionally simpler
if you separate the communications code from the ‘server’ code (as it were)
internally, so you can at least automate testing the code that provides the
logic for your service, but it’s all rather messy. Which is probably why
discussion of this kind is conspicuously absent from MSDN examples and
books about WCF.

The example code for this article is a recipe book application for cocktails.
It isn’t terribly sophisticated, and the outline of the design ought to be clear
from Listing 1.

T

Listing 1

public interface RecipeBook : IDisposable
{
 IEnumerable< Drink > AllDrinks { get; }
 IEnumerable< string > AllIngredients { get; }
 void Add(params Drink [] newDrinks);
 IEnumerable< Drink > WithIngredients
 (params string [] selected);
}

public interface Drink : IEquatable< Drink >
{
 string Name { get; }
 string Method { get; }
 IEnumerable< Ingredient > Ingredients { get; }
}

public enum Measurement
{
 Fill, Measure, Drop, Tsp,
}

public sealed class Ingredient
 : IEquatable< Ingredient >
{
 public Ingredient(string name,
 Measurement mmt, int qty)
 {
 if(string.IsNullOrEmpty(name))
 throw new ArgumentNullException("name");
 Name = name;
 Amount = mmt;
 Qty = qty;
 }

 public string Name { get; private set; }
 public Measurement Amount { get; private set; }
 public int Qty { get; private set; }
}

Steve Love is an independent developer constantly searching for new
ways to be more productive without endangering his inherent laziness.
He can be contacted at steve@arventech.com 1 Yes, it’s cheating a bit, because it’s similar to doing scenario 1 and then

2 in sequence.
16 | Overload | February 2013

FEATURESTEVE LOVE

one would be forgiven for thinking that the ‘W’ in
WCF was ‘Web’ rather than ‘Windows’ because

much of it covers setting up a web-service
February 2013 | Overload | 17

One thing of note here, for the sake of brevity later, is that the Drink type
is an interface instead of a value-type like Ingredient. Consider it a
foresight of things to come in the design when we start considering
distributed communications.

In any case, there is nothing here, or in the implementing types, to do with
WCF or any kind of remoting. To make the example more interesting, let’s
introduce a new class that uses the recipe book, and adds some value.
Listing 2 uses the RecipeBook interface, and provides some simple
queries over those in RecipeBook. Lastly listing 3 has some unit tests
for the DrinksCabinet queries. In this test class you can see that the
concrete LocalDrink type is used; this is a value-like implementation
of the Drink interface mentioned previously. The DrinksCabinet
constructor takes a RecipeBook reference, and the test creates a
LocalRecipeBook which implements that interface using simple
collection types to store the data.

Clearly, we could use any implementation of RecipeBook to provide to
the DrinksCabinet object, which brings us neatly to the next section.

Pace yourself
Would it be possible to use the RecipeBook interface as the contract for
a remote service? If it is, then the service can implement it in some way,
and the client can use a proxy implementation to communicate. Well, we
can’t use the interface directly, but it would certainly be possible to modify
it in simple ways to operate as a WCF contract. However, let’s step back

Listing 2

public class DrinksCabinet
{
 public DrinksCabinet(RecipeBook recipes)
 {
 this.recipes = recipes;
 }
 public Drink Find(string name)
 {
 return recipes.AllDrinks.Single
 (d => d.Name == name);
 }
 public IEnumerable< string > Ingredients
 {
 get { return recipes.AllIngredients; }
 }
 public IEnumerable< Drink > NotContaining
 (params string [] selected)
 {
 var remain = Ingredients.Except(selected);
 return recipes.WithIngredients
 (remain.ToArray());
 }
 private readonly RecipeBook recipes;
}

Listing 3

[TestFixture]
public class DrinksCabinetTests
{
 private RecipeBook recipes;
 [SetUp]
 public void Start()
 {
 recipes = new LocalRecipeBook();
 }
 [TearDown]
 public void End()
 {
 recipes.Dispose();
 }
 [Test]
 public void EmptyCabinetHasNoIngredients()
 {
 var cabinet = new DrinksCabinet(recipes);
 var results = cabinet.Ingredients;
 Assert.IsFalse(results.Any());
 }
 [Test]
 public void CanLocateSpecificDrinkByName()
 {
 var cabinet = new DrinksCabinet(recipes);
 var expected = new LocalDrink("a", "",
 new[] { new Ingredient("1",
 Measurement.Tsp, 1) });
 var error = new LocalDrink("b", "", new[] {
 new Ingredient("2", Measurement.Tsp, 1)
 });
 recipes.Add(expected, error);
 var result = cabinet.Find(expected.Name);
 Assert.AreEqual(expected, result);
 }
 [Test]
 public void CanFilterDrinksOnNotSpecified()
 {
 var cabinet = new DrinksCabinet(recipes);
 var expected = new LocalDrink("a", "",
 new[] {
 new Ingredient("1", Measurement.Tsp, 1)
 });
 var error = new LocalDrink("b", "", new[] {
 new Ingredient("2", Measurement.Tsp, 1)
 });
 recipes.Add(expected, error);
 var results = cabinet.NotContaining("2");
 Assert.AreEqual(expected, results.Single());
 }
}

FEATURE STEVE LOVE

WCF imposes some restrictions on the way you
compose contracts. WCF requires those
contracts to explicitly attribute the interfaces,
methods and types used in the contract
for a moment. WCF can be used to provide network communications, as
well as inter-process, and should be less ‘chatty’ than a native interface.
A direct port may not be at all appropriate if it would introduce the need
for unnecessary communications between client and server. Adapting a
native interface to reduce the communications requires an intermediate
abstraction.

Additionally, WCF imposes some restrictions on the way you compose
contracts. WCF requires those contracts to explicitly attribute the
interfaces, methods and types used in the contract. Ideally, keeping these
WCF specific warts out of the way of application code would be a Good
Idea.

Listing 4 shows what a WCF contract version of the RecipeBook
interface might look like. It’s not a direct port from RecipeBook, partly
because I want to demonstrate adapting one interface to the other, but there
are other differences that are due to it being part of the WCF subsystem.
Also note the use of names such as IngredientDto (Dto indicates it’s
a DATATRANSFEROBJECT, see [Fowler, Fowler02]) instead of just
Ingredient. We could easily use the same names for the component
types as in the original RecipeBook interface that we’re adapting, and
namespaces would take care of clashes. However, the adapting code would
necessarily contain lots of explicit namespace qualification to distinguish
between the native and DTO versions, and it can get difficult to keep track
of which side of the WCF boundary you are on.

The AllIngredients and AllDrinks properties from RecipeBook
are methods in the contract. A ServiceContract is essentially a
collection of OperationContracts, which are required to be methods
(as opposed to properties). Another restriction is on the use of params

arrays, so these have become IEnumerable objects instead, which is
only a minor inconvenience really in any case.

Listing 5 shows the participating classes. Note that DrinksDto is not an
interface here, because it’s not a ServiceContract , i t’s a
DataContract. One other difference to note is that a DrinksDto
doesn’t directly expose its ingredients. The facility to associate ingredients
with drinks has moved up to the contract interface, in order to keep all the
OperationContract methods in one place. It also permits me to
illustrate some interface adapting between the contract and the native
interfaces 2.

Planning a route
Adapting between the RecipeBookContract and RecipeBook
interfaces is quite straightforward, but before getting to that, I want to
briefly show the implementations of the WCF service and corresponding
client applications, to illustrate some of the challenges with separating out
the needs of the application from the requirements of WCF.

There are three main components to any WCF service, known as the ABCs:

 A is the address

 B is the binding

 C is the contract

Listing 4

[ServiceContract]
public interface RecipeBookContract
{
 [OperationContract]
 IEnumerable< DrinkDto > AllDrinks();

 [OperationContract]
 IEnumerable< string > AllIngredients();

 [OperationContract]
 IEnumerable< IngredientDto > IngredientsOf
 (string drink);

 [OperationContract]
 void Add(DrinkDto drink,
 IEnumerable< IngredientDto > newIngredients);

 [OperationContract]
 IEnumerable< DrinkDto > WithIngredients
 (IEnumerable< string > ingredients);
}

2. It’s not entirely specious; the new interface allows ingredients to be
lazy-loaded on demand.

Listing 5

[DataContract]
public class DrinkDto
{
 [DataMember]
 public string Name { get; set; }

 [DataMember]
 public string Method { get; set; }
}

[DataContract]
public class IngredientDto
{
 public enum Measurement { Fill, Measure,
 Drop, Tsp, }

 [DataMember]
 public string Name { get; set; }

 [DataMember]
 public Measurement Amount { get; set; }

 [DataMember]
 public int Qty { get; set; }
}

18 | Overload | February 2013

FEATURESTEVE LOVE
We have already dealt with C, and the most flexible way of associating
the contract with the binding is through a configuration file, such as that
in listing 6.

The service name in the system.serviceModel element is the fully-
qualified type name of the implementing type of the contract (shown later
in listing 8). The contract attribute of the endpoint element is the fully-
qualified type name of the contract interface. Lastly for the configuration,
this example uses the basicHttpBinding type which defines the
communication method being exposed by the server.

One of the features of WCF is the ability to discover a service interface.
The tool for this is svcutil.exe, which is also exposed inside Visual
Studio as ‘Add Service Reference’ in the project tree. This tool is there to
allow you to reference not only WCF services, but SOAP services on other
platforms. Likewise, with certain restrictions, WCF services can be
exposed to other platforms to consume. This is achieved by setting up a
meta-data exchange (mex) endpoint in the service configuration, which
uses SOAP standards to ‘explain’ to the client the details of the contract.
svcutil generates the client-side configuration and proxy code to handle the
communication layer.

However, this is much more than this simple application needs, and where
all the communicating parts of an application are in .Net, a shared library
referenced by both client and server with the interface for the contract is
sufficient, and that’s what the example here uses. Besides which, I have a
phobia about generated code.

You can also add the base address for the server in the same configuration,
but for reasons of brevity – and because it’ll become useful later – the
address for this server is directly in the server application code. This is a
simple console application, shown in listing 7.

The heart of the application is the ServiceHost object, which uses the
application configuration to determine the binding (and any other
attributes which are defined in the configuration file), and to host the
service. The default behaviour of a WCF service host is to create a single-

t h r e aded i n s t ance o f t he con t r ac t imp le men ta t i on
(RecipeBookService, listing 8) for each call to the service. Other
hosting options are available, including single-instance and per-session.
Since this service is just using local collections to manage the objects to
be stored and retrieved, it’s important that successive calls to the service
communicate with the same instance. To achieve this, two things are
needed. First, the implementing class is attributed with the Single
instance mode, and secondly an actual instance of the type is passed to the
ServiceHost object, instead of a type for it to instantiate as it sees fit.

Finally, it’s time to show the contract implementation. Listing 8 shows an
example implementation of the RecipeBookContract service contract
interface in listing 4. Note that the IngredientDto and DrinkDto types
are already full classes – not interfaces – and can so be used directly.

The client application uses the same interface and data contract types to
communicate with the server. A configuration is still required to set up the
client-side WCF parts. The client configuration that corresponds to the
server configuration in listing 6 is shown in listing 9.

Listing 6

<system.serviceModel>
 <services>
 <service
 name="Shaker.Service.RecipeBookService">
 <endpoint binding="basicHttpBinding"
 contract=
 "Recipes.Contract.RecipeBookContract" />
 </service>
 </services>
</system.serviceModel>

Listing 7

class ShakerServiceProgram
{
 static int Main()
 {
 const string
 address = "http://localhost:5110";
 var recipes = new RecipeBookService();
 using(var host = new ServiceHost(recipes,
 new Uri(address)))
 {
 host.Open();
 Console.WriteLine
 ("Press [Enter] to close");
 Console.ReadLine();
 }
 return 0;
 }
}

Listing 8

[ServiceBehavior(InstanceContextMode
 = InstanceContextMode.Single)]
public class RecipeBookService
 : RecipeBookContract
{
 public RecipeBookService()
 {
 drinks = new List< DrinkDto >();
 ingredients = new Dictionary< string,
 List< IngredientDto > >();
 }
 public IEnumerable< DrinkDto > AllDrinks()
 {
 return drinks;
 }
 public IEnumerable< string > AllIngredients()
 {
 return drinks.SelectMany(d => IngredientsOf
 (d.Name))
 .Select(i => i.Name).Distinct();
 }
 public IEnumerable< IngredientDto >
 IngredientsOf(string drink)
 {
 return ingredients[drink];
 }
 public void Add(DrinkDto drink,
 IEnumerable< IngredientDto > i)
 {
 if(drinks.Any(d => d.Name == drink.Name))
 {
 throw new FaultException
 ("DuplicateDrink");
 }
 drinks.Add(drink);
 ingredients.Add(drink.Name, i.ToList());
 }
 public IEnumerable< DrinkDto > WithIngredients
 (IEnumerable< string > selectedIngredients)
 {
 var result = drinks.Where
 (drink => ingredients[drink.Name]
 .Any(dto => selectedIngredients.Contains
 (dto.Name)));
 return result;
 }
 private readonly List< DrinkDto > drinks;
 private readonly Dictionary< string,
 List< IngredientDto > > ingredients;
}

February 2013 | Overload | 19

FEATURE STEVE LOVE
The differences are subtle; instead of a services collection, there is a single
client section, and the endpoint definition has a name. This name is used
in the client program to identify the endpoint to which to connect.

Lastly, of course, we need code in the client application to set up the
channel, talk to the service and consume the results, such as that in listing
listing 10.

This code sets up a connection to the endpoint on which the server is
listening using the name of the client-side endpoint definition in the
configuration file, and uses the service contract. The ChannelFactory
is parameterised with the contract interface type, associates it with the
endpoint address specified, and uses the application config shown in
listing 9 to configure the channel.

Client and server are separate programs, using WCF to communicate with
each other. In this instance, they are console applications (for the server,
the correct terminology is ‘self-hosting’), but could be Windows Forms,
WPF or (for the server) an IIS-hosted web app.

S ince t hey s ha re t he s e rv i ce con t r ac t de f in i t i on i n t he
RecipeBookContract interface, it makes sense to create a shared
library which both console applications can reference. It would be possible
to have the contract definition as a class in the server application, and have
the client application reference the server assembly directly, but there are
many reasons why this would be a bad idea; having one executable directly
reference another is rarely a sign of good design.

Figure 1 shows the basic architecture of this application.

Back on track
Clearly, having the client side of the WCF application running as a process
is less than ideal with respect to using it from other parts of your codebase.
It would be better to make the client operate from a library. The problem
with that is the channel configuration. The ChannelFactory shown in
listing 10 is hard-wired to use the application configuration file. This is a
convenience for the supposed default case (where the client is the
applicaton), but is here exposed as a liability. The superficial answer to that
is to put all the WCF configuration into the app.config file of whatever
application is hosting the client, and this works. However, it pollutes the
application’s configuration, and means that the client must be hosted in an
executable.

An alternative to that would be to remove all configuration from the client-
side of the WCF channel. You can create a bare-bones channel, and set
properties on it within the code, thus removing the need for a configuration
file. This solution has some attractions, of course, but sometimes being
able to fiddle with the settings without having to recompile the code is
useful, perhaps even necessary.

For tuna t e ly , Mic roso f t p rov ide a so lu t i on . The
ConfigurationChannelFactory i s ve ry s i mi l a r t o

Listing 9

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <client>
 <endpoint name="ShakerService"
 binding="basicHttpBinding"
 contract=
 "Recipes.Contract.RecipeBookContract" />
 </client>
 </system.serviceModel>
</configuration>

Listing 10

static class ShakerClientProgram
{
 static int Main()
 {
 const string name = "ShakerService";
 const string address
 = "http://localhost:5110";

 using(var channel = new ChannelFactory
 < RecipeBookContract >(name))
 {
 var recipes = channel.CreateChannel
 (new EndpointAddress(address));
 recipes.Add(
 new DrinkDto{ Name = "G&T",
 Method = "Mix with ice and lime" },
 new[] {
 new IngredientDto{ Name = "Gin",
 Amount =
 IngredientDto.Measurement.Measure,
 Qty = 2 },
 new IngredientDto{ Name = "Tonic Water",
 Amount = IngredientDto.Measurement.Fill,
 Qty = 1 }
 });
 foreach(var d in recipes.AllDrinks())
 {
 Console.WriteLine(d.Name);
 }
 Console.WriteLine("Press [Enter] to exit");
 Console.ReadLine();
 return 0;
 }
 }
}

Figure 1

Listing 11

public class RecipeBookClient : Recipes.RecipeBook
{
 public RecipeBookClient(string address)
 {
 const string name = "ShakerService";
 var cfgMap = new ExeConfigurationFileMap
 { ExeConfigFilename
 = "RecipeBook.Client.Config" };
 var config = ConfigurationManager
 .OpenMappedExeConfiguration
 (cfgMap, ConfigurationUserLevel.None);
 channel = new ConfigurationChannelFactory
 < RecipeBookContract >
 (name, config,
 new EndpointAddress(address));
 recipes = channel.CreateChannel();
 }
 private readonly ConfigurationChannelFactory
 < RecipeBookContract > channel;
 private readonly RecipeBookContract recipes;
 }
}

20 | Overload | February 2013

FEATURESTEVE LOVE
ChannelFactory except that it accepts a System.Configuration
object in its constructor3. In conjunction with the almost impenetrable

interfaces to the .Net application configuration system – with which details
I shall not bore you – you can load any configuration file of the correct
format at runtime. Armed with this, a library assembly can have its own
configuration file, and load it internally to configure the WCF subsystem
for an implementation of the client-facing interface.

The constructor shown in listing 11 shows how the configuration is loaded
and associated with the channel. Setting the ExeConfigFileName
property of the filemap object instructs the system to look for the file in
the working directory. Other properties exist to tell it to look in various
profile folders. The remainder of the class, in listing 12, adapts the WCF
contract interface’s methods and objects into the client interface. All calls
to the WCF service are wrapped in a delegate call to a private method that
captures the common error handling.

Of more interest at this point is the implementation of the Drink interface
first shown in listing 1 used by the RecipeBookClient in listing 12 to
adapt between the native and contract interfaces. The implementation is
in listing 13. Precisely why this was an interface should now be clear.
Being able to implement it independently to communicate with a WCF
service has great benefits for efficiently and effectively exposing the
ServiceContract interface and its collaborators. Figure 2 shows the
new architecture.

It’s now possible to use the client code from anywhere – a hosting
executable, part of a library of shared code, or a test case in a DLL. It still
depends on having a running server process, so such a test isn’t really
stand-alone, but it does allow us to provoke the code that uses the server.
One of the benefits of this is that it is a test of the client configuration – a
reasonably novel concept.

3. It is not hard to argue that making this the default, or an overloaded
constructor on ChannelFactory, might be better than a separate type.

Listing 13

public class DrinkAdapter : Drink
{
 public DrinkAdapter(RecipeBookContract recipes,
 DrinkDto drinkDto)
 {
 this.recipes = recipes;
 Name = drinkDto.Name;
 Method = drinkDto.Method;
 }

 public string Name { get; private set; }
 public string Method { get; private set; }
 public IEnumerable< Ingredient > Ingredients
 {
 get { return recipes.IngredientsOf(Name)
 .Select(i => new Ingredient(
 i.Name,
 (Measurement)i.Amount,
 i.Qty)); }
 }

 private readonly RecipeBookContract recipes;
}

Figure 2

Listing 12

public IEnumerable< Drink > AllDrinks
{
 get { return Call(() => recipes.AllDrinks()
 .Select(d => new DrinkAdapter
 (recipes, d))); }
}

public IEnumerable< string > AllIngredients
{
 get { return Call(() =>
 recipes.AllIngredients()); }
}

public void Add(params Drink[] newDrinks)
{
 foreach(var drink in newDrinks)
 {
 Call(() =>
 recipes.Add(new DrinkDto {
 Name = drink.Name,
 Method = drink.Method },
 drink.Ingredients.Select
 (i => new IngredientDto {
 Name = i.Name,
 Amount =
 (IngredientDto.Measurement)i.Amount,
 Qty = i.Qty
 })));
 }
}

public IEnumerable< Drink > WithIngredients
 (params string[] s)
{
 return Call(() => recipes.WithIngredients(s)
 .Select(d =>
 new DrinkAdapter(recipes, d)));
}

public ResultType Call< ResultType >
 (Func< ResultType > method)
{
 var result = default(ResultType);
 Call(() => { result = method(); });
 return result;
}

public void Call(Action method)
{
 try
 {
 method();
 }
 catch(FaultException x)
 {
 switch(x.Message)
 {
 case "DuplicateDrink":
 throw new DuplicateDrinkException
 (x.Message);
 }
 throw;
 }
}

February 2013 | Overload | 21

FEATURE STEVE LOVE
Going off-road
The next step is to try and isolate the server code into a shared library. The
benefits here are largely about testing, but having the service code in a
shared library allows you to defer the decision on whether to host it in a
console application, a Windows Service or some other solution.

Moving the implementation of the RecipeBookContract from listing
8 into a shared library is easy enough: it can be copied as it stands, since
it doesn’t use any WCF objects directly.

As with the ChannelFactory in the original client
code (listing 10), the ServiceHost object in the server
code (listing 7) is hard-wired to use the app.config for
the WCF settings. There isn’t a corresponding
ConfigurationServiceHost class which can be
used in place of it, but we can derive from it and override
it’s default behaviour. Listing 14 shows the new class.

The constructor sets up the configuration in much the
same way as the RecipeBook-Client from listing 11.

T h e i m po r t a n t m e t ho d i s t he o ve r r i d d e n
ApplyConfiguration. This pulls the required WCF
settings out of the configuration object and calls the base
class’s LoadConfigurationSection to apply those
settings.

ApplyConfiguration is called from the InitializeDescription
invocation in the constructor. If this hasn’t been done before Open is
called, then the app.config is automatically loaded, so the order of
operations is crucial. This class can be used in a hosting application such
as that shown in listing 15, or (for example) a test case.

Figure 3 shows the architecture of the client/server portion now.

Listing 14

public class RecipeBookHost : ServiceHost
{
 public RecipeBookHost(string address)
 {
 var cfgMap = new ExeConfigurationFileMap
 { ExeConfigFilename =
 "RecipeBook.Server.config" };
 config = ConfigurationManager
 .OpenMappedExeConfiguration
 (cfgMap, ConfigurationUserLevel.None);
 var service = new RecipeBookService();
 InitializeDescription(service,
 new UriSchemeKeyedCollection(new Uri
 (address)));
 Open();
 }

 protected override void ApplyConfiguration()
 {
 var section =
 ServiceModelSectionGroup.GetSectionGroup
 (config);
 if(section == null)
 throw new ConfigurationErrorsException
 ("Failed to find service model
 configuration");
 foreach(ServiceElement service in
 section.Services.Services)
 {
 if(service.Name ==
 Description.ConfigurationName)
 base.LoadConfigurationSection
 (service);
 else
 throw new ConfigurationErrorsException
 ("No match for description in
 Service model config");
 }
 }
 private readonly Configuration config;
}

Listing 15

static class ShakerServiceProgram
{
 static int Main()
 {
 const string address =
 "http://localhost:5110";
 using(var host =
 new RecipeBookHost(address))
 {
 Console.WriteLine("v1 Shaker Service
 running. Press [Enter] to close");
 Console.ReadLine();
 }
 return 0;
 }
}

Figure 3

Listing 16

[TestFixture, Explicit, Category("Service")]
public class ClientServiceTest
{
 [Test]
 public void
 ClientAndServiceStartAndCanCommunicate()
 {
 const string address
 = "http://localhost:5110";
 using(var host = new RecipeBookHost
 (address))
 using(var recipes = new RecipeBookClient
 (address))
 {
 Assert.IsNotNull(host);
 Assert.IsNotNull(recipes);
 Assert.DoesNotThrow(() => {
 var x = recipes.AllDrinks; });
 }
 }
}

22 | Overload | February 2013

FEATURESTEVE LOVE
Tests
With the new server and client library code we’ve now developed, it’s
possible to write a truly automated test that has no requirements on external
running code. Just as importantly, we can test them independently of any
other code in an application (but not independently of each other - the client
code must have a server to talk to). listing 16 shows a very simple test that
creates an instance of the server, an instance of the client, and asserts that
they can communicate. This is effectively testing the configurations of
both client and server (an important thing, to be sure), but a much more
interesting test would be to reproduce the tests we performed at the very
beginning - by using the DrinksCabinet object.

Recall from listing 2 that DrinksCabinet accepts an instance of the
RecipeBook interface. Our new client code implements that interface,
and adapts it to the WCF contract. It’s now possible to reproduce the
DrinksCabinetTests from listing 3 but instead of using an instance
of LocalRecipeBook, use an instance of RecipeBook-Client, as
shown in listings 11 and 12.

Listing 17 shows the new tests using a locally running instance of the
server, and the WCF implementation of the RecipeBook interface. Of
course, the service implementation of the RecipeBook interface, and its
client-side counterpart, can be tested in a similar way.

Conclusion
In this article, I’ve described a simple application, beginning from a basic
native (and testable) interface and implementation, then showing how that
interface and its collaborators could be transposed into a WCF service
application. The flaws in the direct translation using a process to represent
the server and client sides were that the implementation code wasn’t
shareable easily with other applications, and that it wasn’t easily (and
automatically) testable. The solution to both of those problems involved
investigating WCF and by necessity, the .Net Configuration management
systems to allow both server implementation and the client proxy adapter

code to be exposed from their own shared assembly using their own
configurations for the WCF subsystem. Being able to automatically test
the WCF portions of your application should give you greater confidence
that it works correctly – including the fact that the configuration is correct
and sufficient – without having to run your application end-to-end to
provoke it. Of course, that shouldn’t stop you from performing end-to-end
testing! 

Acknowledgements
Many thanks to Frances Buontempo for reading and commenting on initial
drafts of this, and to Roger Orr and Chris Oldwood for valuable feedback
on it.

References and source
[Fowler] Martin Fowler. Data transfer object. Technical report,

http://martinfowler.com/eaaCatalog/dataTransferObject.html.

[Fowler02] Martin Fowler. Patterns of Enterprise Application
Architecture. AddisonWesley, 2002.

[Love] Source code at: https://github.com/essennell/WcfTestingSecrets

[MSDN] MSDN(WCF). Windows communication foundation reference.
Technical report, Microsoft, http://msdn.microsoft.com/en-us/
library/dd456779.aspx.

[Resnick08] Bowen Resnick, Crane. Essential Windows Communication
Foundation. Microsoft .Net Development Series. Addison Wesley,
2008. .Net 3.5.

[WCF] Microsoft(WCF). Windows communication foundation msdn
articles. Technical report, Microsoft, http://msdn.microsoft.com/en-
us/library/dd560536.aspx.

Listing 17

[TestFixture, Explicit, Category("Service")]
public class ServiceDrinksCabinetTests
{
 private RecipeBookHost host;
 private Recipes.RecipeBook recipes;
 [SetUp]
 public void Start()
 {
 const string address
 = "http://localhost:5110";
 host = new RecipeBookHost(address);
 recipes = new RecipeBookClient(address);
 }

 [TearDown]
 public void End()
 {
 recipes.Dispose();
 host.Close();
 }

 [Test]
 public void EmptyCabinetHasNoIngredients()
 {
 var cabinet = new DrinksCabinet(recipes);
 var results = cabinet.Ingredients;
 Assert.IsFalse(results.Any());
 }

 [Test]
 public void CanLocateSpecificDrinkByName()
 {
 var cabinet = new DrinksCabinet(recipes);
 var expected = new LocalDrink("a", "", new[] {
 new Ingredient("1", Measurement.Tsp, 1)
 });
 var error = new LocalDrink("b", "", new[] {
 new Ingredient("2", Measurement.Tsp, 1)
 });
 recipes.Add(expected, error);
 var result = cabinet.Find(expected.Name);
 Assert.AreEqual(expected, result);
 }

 [Test]
 public void CanFilterDrinksOnNotSpecified()
 {
 var cabinet = new DrinksCabinet(recipes);
 var expected = new LocalDrink("a", "", new[] {
 new Ingredient("1", Measurement.Tsp, 1)
 });
 var error = new LocalDrink("b", "", new[] {
 new Ingredient("2", Measurement.Tsp, 1)
 });
 recipes.Add(expected, error);
 var results = cabinet.NotContaining("2");
 Assert.AreEqual(expected, results.Single());
 }
}

February 2013 | Overload | 23

http://martinfowler.com/eaaCatalog/dataTransferObject.html
https://github.com/essennell/WcfTestingSecrets
http://msdn.microsoft.com/en-us/library/dd456779.aspx
http://msdn.microsoft.com/en-us/library/dd456779.aspx
http://msdn.microsoft.com/en-us/library/dd560536.aspx
http://msdn.microsoft.com/en-us/library/dd560536.aspx

FEATURE LETTERS
Letter to the Editor
Dear Editor,

I really enjoyed Cassio Neri’s article on ‘Complex Logic in the Member
Initialiser List’ as it’s a problem I’ve had to deal with several times. I was
surprised to learn that Listing 6 was valid, because I didn’t realise callers
of that constructor didn’t need access to the private ‘storage’ type to create
the default argument at the call site. On reflection I realised the caller
doesn’t have to name the type and that access checking in C++ is done on
names. I love an Overload article that makes me stop halfway through
reading to reach for the compiler and learn something new!

Despite discussing how some C++11 features help solve the problems
being discussed, I was surprised to notice the article didn’t mention one
of the new C++11 features that I find very useful for solving exactly those
sort of problems. The ‘delegating constructors’ feature allows one
constructor to invoke a different constructor, in order to avoid duplicating
logic in constructor bodies. This feature is useful when one constructor (the
delegating constructor) wants to process or munge its arguments somehow
and then pass them on to another constructor (the target constructor.) Using
delegating constructors allows Cassio’s Listing 6 to be rewritten like so:

class bar : public base {
 struct storage {
 storage(double d) : b(d * d) { }
 double b;
 };
 ...
 bar(double d, foo& r1, foo& r2, storage tmp);

public:
 bar(double d, foo& r1, foo& r2);
};

bar::bar(double d, foo& r1, foo& r2)
: bar(d, r1, r2, storage(d))
{ }

bar::bar(double d, foo& r1, foo& r2, storage tmp)
: base(tmp.b),
 x_(cos(tmp.b)), y_(sin(tmp.b)), ...
{ }

In this version of the code the user-accessible constructor doesn’t mention
the private ‘storage’ type, which separates the interface meant for users
from the implementation details of the complex constructor logic.
Additionally, I believe it solves several of the problems mentioned in the
article and makes the techniques shown in Listing 7 and Listing 8
unnecessary, and ultimately avoids the need to use a discriminated union
for this scenario.

Because the temporary ‘storage’ object is initialized in the member
initializer list, not the parameter list, there is no restriction on referring to
the function parameters, so ‘storage’ can be constructed with ‘d’ and can
have an arbitrarily complex constructor that can do any necessary
calculations. Because the delegating constructor doesn’t initialize any base
classes (that’s done by the target constructor) the ‘storage’ object is
guaranteed to be initialized before the target constructor is invoked so it
avoids any problems with order of initialization of base classes.

I think using delegating constructors for this problem is almost the ideal
solution. The ‘storage’ constructor allows the complex logic to be placed
in a separate function where it can be written more naturally (rather than
in a contrived function such as bar::init_base) and that function is
guaranteed to be executed at exactly the right time: after the user calls the
(delegating) constructor but before the invocation of the target constructor
that actually performs initialization of the base classes and members.

The only downside, which might be why they weren’t considered in the
original article, is that delegating constructors were not widely supported
until quite recently. Clang has supported them since version 3.0, GCC
since 4.7 and MSVC now supports them too as of the November 2012 CTP.

Yours,

Jonathan Wakely

Dear Jonathan,

Thank you for bringing this to our attention. Feel free to write in with
any further comments. Cassio tells me Jeff Snyder (who can be
found online as je4d) contacted him with similar remarks about
delegating constructors.

Frances – Overload editor
24 | Overload | February 2013

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

	Overload113_Final.pdf
	The Good, The Bad and The Discordant
	‘No Bugs’ Top Five C++ Cooking Recipes
	Utilising More Than 4GB of Memory in 32-bit Windows Process
	The Signs of Trouble: On Patterns, Humbleness and Lisp
	The Open–Closed Principle (OCP)
	Secrets of Testing WCF Services
	Letter to the Editor

