

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

June 2017 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 Allocator for (Re)Actors with Optional
Kinda-Safety and Relocation
Sergey Ignatchenko proposes an allocation scheme
for Reactors.

9 Initialization in C++ is Bonkers
Simon Brand reminds us how many problems
uninitialised variables can cause.

12 Vulkan and you – Khronos’ successor to
OpenGL
Andy Thomason unravels the mysteries of the 3D
Graphics API Vulkan.

16 Kotlin for C++ Developers
Hadi Hariri tells us what Kotlin offers for C and C++
developers.

18 Getting Tuple Elements with a Runtime
Index
Anthony Williams demonstrates how to access
tuples dynamically.

20Afterwood
Chris Oldwood shares what makes programming
fun for him.

OVERLOAD 139

June 2017

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael@accu.fi

Klitos Kyriacou
klitos.kyriacou@gmail.com

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Anthony Williams
anthony@justsoftwaresolutions.co.uk

Matthew Wilson
stlsoft@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication
in Overload 140 should be
submitted by 1st July 2017 and
those for Overload 141 by
1st September 2017.

EDITORIAL FRANCES BUONTEMPO
I am not a number
When is a number not a number? Frances Buontempo
counts the ways this happens.
Distracted by my sister’s photographs of her recent
trip to Portmeirion [Portmeirion] recently, I am
reminded of the phrase from the television
programme, The Prisoner, which was filmed there; “I
am not a number. I am a free man.” In numerical
computing we often see data that claims it is not a

number, perhaps leaking NaNs to your front end in the process, or
littering your log files. I once noticed that the Transport for London
website was claiming it took NaN minutes to get from one stop to another.
These things should be caught and hidden from your front end. Log files
can fill up with NaNs too if you are not careful. They tend to propagate
through calculations, like a virus changing all your numbers into
complaints. People make mistakes when confronted with these curious
beasts, a common one being trying to discover if a number is not in fact
a number by trying something like comparing the number against NaN.

 float do_some_maths()
 {
 return NAN;
 }
 int main() {
 float quiet_nan = NAN;
 float answer = do_some_maths();
 if (quiet_nan != answer)
 std::cout << "Is a number\n";
 }

As I hope all our readers know since a NaN is not a number it does not
equal any number, furthermore it does not equal itself, so we should in
fact compare answer != answer, or better yet, use standard functions
like isnan, or double.IsNaN, or math.isnan or similar depending
on your language.

There are many different types of NaN, at least in IEEE 754 [IEEE754],
including signalling and quiet versions, and a sign, positive or negative,
which may or may not mean something. I believe JavaScript just has one
NaN, but the function isNaN can be applied to things like "123ABC"
wherein it will tell you they are not a number and yet the empty string is
a number. The Mozilla developer network [MDN] goes into glorious
detail. A ‘more robust’ function, Number.isNaN() exists which
indicates if the value is a NaN and its type is numeric, in other words it’s
a number that is not a number. No wonder non-technical people have
such a hard time understanding what we are talking about.

If you read a file, say a csv with 0s or 1s in the
columns, and add it using logstash to an
index in elasticsearch1 you might be

surprised if you try to do an aggregation
such as sum on a term or field, and are

told the data needs to be numeric. How is a 0 or 1 not numeric? What is
the world coming to if 0 or 1 is not a number? Mathematics is impossible,
at least on a computer, if this is really the case. It turned out, as I expect
you have already guessed, that you have to tell logstash to mutate a field
if you want it to treat input as numeric rather than as a string. True story,
though if I’d read the manual more carefully it would have been apparent
in advance. Many newbie mistakes stem from typing a number and
ending up with a string. This is unintuitive. When I type 10 I expect it to
be 10, not 2 let alone "10". The majority of small children have an idea
what a number is, but if you start trying to discuss strings with most
adults, you are in danger of talking at cross purposes. And even after an
attempt at disambiguation, the description of a small rope might not help.
In one case the rope is cordage for tying things together, larger than a
string in circumference, and smaller than a cable, while in the other case
a rope data structure is a tree (ok, that will send us further down the rabbit
hole) made of smaller strings. I am not aware of a cable data structure.
Even with a clear idea of needing to be clear when a variable is a number,
and being aware of the different numeric data types in your chosen
language still leaves space for confusion and mistakes. To the uninitiated,

 int x = 1,000,000;

looks perfectly reasonable, and yet a C++ compiler might complain about
expecting an identifier and syntax error: "constant". Say, what?! Ah,
a comma is a non-numeric character so cannot be used to initialise a
number without first parsing it. Yet we are used to writing numbers with
separators to make them easier for us to parse. Of course, the specific
character used depends on the locale, which in turn can cause problems
if we write something to a file a human wants to look at and then read it
back in with a computer. I recently discovered that different locales tend
to use different characters as separators in, erm, ‘comma’ separated
variable files. You could attempt to take advantage of user defined literals
if you wished to express troublesome numbers in your code, or indeed
use the C++14 digit separator, to say int x = 1'000'000; instead.
Crawl et al provide further details in N3781 [Crawl13]. Java
programmers will be laughing at this point, since they use _ instead.
Well, from 7 onwards. Commas make things hard to parse, it seems.

Numbers and strings differ, though it is possible to express numbers as
strings, and to express some strings as numbers. We should steer clear of
different types of strings and numbers otherwise we will be here forever.
If you do wish to find the string equivalent of a number, we have already
strayed into different locales, though just digit separators. Python draws
a distinction between the repr() and str() functions. The former,
giving a representation of the object, can be useful for the debugger, and

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.

1 For non-hipsters, see https://www.elastic.co/
2 | Overload | June 2017

https://www.elastic.co/

EDITORIALFRANCES BUONTEMPO
could be passed to the evaluate function eval to rebuild the object. It may
also contain the object’s address, thereby ensuring uniqueness between
different objects. In contrast, the str() function is designed to be slightly
more friendly for humans; maybe adding some formatting to make it
easier to read, or dropping extraneous information such as an object’s
address. Just to keep you on your toes, if you have a container of objects
on which you call str() be aware that result will use repr() on the
contained objects. If we return to C++, or C even, one thing which catches
people out is pointers. Given int * y suitably initialised, printing y will
(probably) yield something very different to printing the contents of y.
Many beginners end up printing the address of the pointers rather than that
to which it points. Why have I got this number rather than that number? I
have not got the right number. Programmers more used to C# or Java may
also tend to new objects to raw pointers and print the address by mistake.
Representations, locales or idioms, if you will, change as the geography
changes. Many young people complain in distress when they progress on
from arithmetic in mathematics lessons to algebra, suggesting maths has
no right to end up being about letters. As you gain more experience, you
realise this abstraction allows you to build up general rules and discover
more patterns. Furthermore, it allows programmers to write a function
which takes a number using a signature like int forward(int x);
The function takes a number, which we will refer to by a letter. Madness.
We should clearly use a string like step instead, since single letter
parameters or variable names can be a little too terse.

Let us consider integers and some basic maths. What happens when you
start with int x = 0; and then add one, over and over. If you do this
100 times, what happens? What about a million? As we know, this rather
depends or more specifically the point at which the overflow happens
depends on the compiler. Is it 16-bit? 32-bit? 64-bit? Something else?
Those who are paying attention will realise that had we started with an
unsigned integer we would have been on safer ground, since these wrap
round when they overflow, but signed integers overflowing is undefined
behaviour. We can never get to +Inf by adding one over and over again.
Adding one to any (unsigned) number always yields a number, but
possibly a smaller one than you started with. Robert Ramey introduced a
safe numerics library in a previous Overload [Ramey] to catch this and
related issues. What happens if we initialise our int x with 1 and keep
halving? How low can we go? Ah. Perhaps we need to make it a double
or float instead. So many numbers, and so many types of numbers. What
happens if we try these experiments in different languages? Can you count
up to a googol in your chosen language? (Or perhaps multiply up to, since
it is rather large). The general point is that the numbers you can express
out of the box vary between languages. If you need larger or more precise
numbers, you need to find a library, or roll your own representation.

As I am sure I have observed before, in most languages a "literal"
constant, such as 5 is put inline in the code. FORTRAN puts 5 in memory
which means you can change its value, for details of how see
[Gorgonzola]. This is, perhaps, an extreme case of everything being an
object, or at least reference. Other languages claim everything is an
object. Such languages often have a toString() and hashCode()
function for every object, the former of which returns a string, and the
latter a number. Presumably these are both also objects, or perhaps
immutable value types, or primitive data types. A talk about equality in
various languages at the 2011 ACCU conference observed that Java may
end up with 1,000 != 1,000, though equals returns true [Orr, Love].
Programming languages are odd. Programmers can be odd too, but we are

all humans. We are not numbers, or resources, whatever the project plan
or HR department says.

Those who use a flavour of agile may be familiar with story "points".
These appear to be numeric, in fact in the sense that they provide some
form of order, at least in the sense of saying this is bigger, or smaller, than
that. They tend to follow a Fibonacci type sequence, rather than a linear
progression to avoid a fuss over whether something is an 11 day or 12 day
job. If you can choose from 1, 2, 3, 5, 8, 13 then that attempt at "precision
guessing" is circumvented. Once it’s got that big you could argue it’s
beyond hope and needs breaking down, before the team has a breakdown.
A different set of cards by Lunar Logic are available just consisting of 1,
TFB and NFC meaning 1, too flipping big, and no flipping chance [Lunar
logic], which many readers will have come across many times before. The
inexperienced will often try to convert the story points directly into days
or hours, or arrange your story post-it notes into a Gantt chart. They will
learn, eventually. The idea of numbers or even symbols being used to
order something rather than provide a metric is important. A topology
gives you relative positions; think of the London underground map,
showing you which stops appear in which order along a line. In contrast,
a metric gives you a "distance" (or cost or time or, erm, metric); think of
the Paris metro map which shows the distance between the stations.
Topologies and metrics can both use numbers, but they mean something
very different. Numbers can give us an ordering, a count, a way to
compare. They can also give us a description, from how many, to intensity
or mass or other ideas with units; scalars versus vectors if you will.
Numbers can be useful. They can be misused. They can be represented in
various ways. I wonder if you can use user defined literals to cope with
Roman numerals? I wish I hadn’t thought of that! People, on the other
hand, are neither resources nor numbers. They can be represented by
numbers, say in a race, or numbers and letters, for a
user id, but that is for simplicity rather than a deeper
truth. I am not a number, and I still haven’t written an
editorial.

References
[Crawl13] ‘Single quotation mark as a digit separator’ Crawl, Smith,

Snyder, Vandervoorde 2013. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2013/n3781.pdf

[Gorgonzola] https://everything2.com/title/
Changing+the+value+of+5+in+FORTRAN

[IEEE754] http://grouper.ieee.org/groups/754/

[Lunar Logic] https://estimation.lunarlogic.io/

[MDN] https://developer.mozilla.org/en/docs/Web/JavaScript/
Reference/Global_Objects/isNaN

[Orr, Love] https://accu.org/content/conf2011/Steve-Love-Roger-Orr-
equals.pdf with more details in the Overload write up
https://accu.org/index.php/journals/1971

[Portmeirion] http://www.portmeirion-village.com/visit/the-prisoner/

[Ramey] ‘Correct Integer Operations with Minimal Runtime Penalties’
Overload 137, Feb 2017 https://accu.org/index.php/journals/2344
June 2017 | Overload | 3

FEATURE SERGEY IGNATCHENKO
Allocator for (Re)Actors with Optional
Kinda-Safety and Relocation
How do you deal with memory for (Re)Actors? Sergey
Ignatchenko proposes an allocation scheme.
Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Hare, and do not necessarily coincide with the opinions of the translators
and Overload editors; also, please keep in mind that translation difficulties
from Lapine (like those described in [Loganberry04]) might have prevented
an exact translation. In addition, the translator and Overload expressly
disclaim all responsibility from any action or inaction resulting from reading
this article.

What is it about
s it says on the tin, this article is about allocators within the context
of (Re)Actors (a.k.a. Reactors, Actors, ad hoc FSMs, Event-Driven
Programs, and so on).

The main benefits we get from our C++ allocator (with (Re)Actors and
proposed allocation model as a prerequisite), are the following:

 We have the option of having the best possible performance (same
as that of good ol’ plain C/C++)

 Without changing app-level code, we have the option of tracking
access to ‘dead’ objects via ‘dangling’ pointers (causing exception
rather than memory corruption in the case of such access)

 Again, without changing app-level code, we have the option of
having a compactable heap. Very briefly, compacting the heap is
often very important for long-running programs, as without
relocation, programs are known to fall victim to so-called ‘external
fragmentation’. Just one very common scenario: if we allocate a
million 100-byte small objects, we will use around 25,000 4K CPU
pages; then if we randomly delete 900,000 of our 100-byte objects,
we’ll still have around 24,600 pages in use (unable to release them
back to OS), just because it so happened that each of the remaining
24,600 pages has at least one non-deleted object. Such scenarios are
quite common, and tend to cause quite a bit of trouble (in the
example above, we’re wasting about 9x more memory than we
really need, plus we have very poor spatial locality too, which is
quite likely to waste cache space and to hurt performance).

 As a side note, many garbage-collected programming languages
have been using compactable heaps for ages; I’ve seen this
capability to compact used as an argument that garbage-
collected languages are inherently better (and an argument
against C++).

Let’s note that while what we’ll be doing allows us to achieve benefits
which are comparable to using traditional non-C++ mark-compact

garbage collectors, we’re achieving those benefits in a significantly
different manner. On the other hand, I don’t want to argue whether what
we’re doing really qualifies as ‘automated garbage collection’, or if the
name should be different. In the form described in this article, it is not
even reference-counted garbage collection (though a similar approach can
be applied to allocation models based on std::shared_ptr<> +
std::weak_ptr<> – as long as we’re staying within (Re)Actors).

What is important though, is to:

 Significantly reduce chances for errors/mistakes while coding.

 Within the proposed allocation model, there are no manual
deletes, which should help quite a bit in this regard.

 In addition, the handling of ‘dangling’ pointers is expected to
help quite a bit too (at least while debugging, but in some cases
also in production).

 Allow for best-possible performance when we need it, while
allowing it to be a little bit reduced (but still good enough for most
production code) if we happen to need to track some bugs (or to rely
on the handling of ‘dangling’ pointers).

 Allow for a compactable heap (again, giving some performance hit
compared to the best-possible performance – but the performance
hit should usually be mild enough to run our compactable heap in
production).

Message-passing is the way to go
Before starting to speak about memory allocation, we need to define what
those (Re)Actors we’re about to rely on are about (and why they’re so
important).

For a long while, I have been a strong proponent of message-passing
mechanisms over mutex-based thread sync for concurrency purposes
(starting from [NoBugs10]). Fortunately, I am not alone with such a view;
just as one example, the Go language’s concept of “Do not communicate
by sharing memory; instead, share memory by communicating” [Go2010]
is pretty much the same thing.

However, only after returning from ACCU2017 – and listening to a
brilliant talk [Henney17] – I realized that we’re pretty much at the point
of no return, and are about to reach a kinda-consensus that

Message-passing is THE way to implement concurrency at
app-level

(as opposed to traditional mutex-based thread sync).

The reasons for this choice are numerous – and range from “mutexes and
locks are there to prevent concurrency” (as it was pointed out in
[Henney17]), to “doing both thread sync and app-level logic at the same
time tends to exceed cognitive limits of the human brain” [NoBugs15].

For the time being, it is not clear which of the message passing
mechanisms will win (and whether one single mechanism will win at all)
– but as I have had very good experiences with (Re)Actors (a.k.a. Actors,
Reactors, ad hoc FSMs, and Event-Driven Programs), for the rest of this
article I will concentrate on them.

A

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
and Dmytro Ivanchykhin using the classic dictionary collated by
Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience,
including architecture of a system which handles hundreds of millions
of user transactions per day. He currently holds the position of
Security Researcher and writes for a software blog (http://ithare.com).
Sergey can be contacted at sergey@ignatchenko.com
4 | Overload | June 2017

http://ithare.com
[Loganberry04]

FEATURESERGEY IGNATCHENKO

whenever a (Re)Actor needs to
communicate with another (Re)Actor ... it

merely sends a message, and it is only this
message which will be shared
Setting
To be a bit more specific, let’s describe what I understand as (Re)Actors.

Let’s use Generic Reactor as the common denominator for all our
(Re)Actors. This Generic Reactor is just an abstract class, and has a pure
virtual function react():

 class GenericReactor {
 virtual void react(const Event& ev) = 0;
 }

Let’s name any piece of code which calls GenericReactor’s react() the
‘Infrastructure Code’. Quite often, this call is within the so-called ‘event
loop’:

 std::unique_ptr<GenericReactor> r
 = reactorFactory.createReactor(...);
 while(true) { //event loop
 Event ev = get_event();
 //from select(), libuv, ...
 r->react(ev);
 }

Let’s note that the get_event() function can obtain events from
wherever we want – from select() (which is quite typical for servers)
to libraries such as libuv (which is common for clients).

Also let’s note that an event loop, such as the one above, is by far not the
only way to call react(): I’ve seen implementations of Infrastructure
Code ranging from one running multiple (Re)Actors within the same
thread, to another one which deserialized the (Re)Actor from a DB, then
called react(), and then serialized the (Re)Actor back to the DB. What’s
important, though, is that even if react() can be called from different
threads – it MUST be called as if it is one single thread (=‘if necessary, all
thread sync should be done OUTSIDE of our (Re)Actor, so react()
doesn’t need to bother about thread sync regardless of the Infrastructure
Code in use’).

Finally, let’s name any specific derivative from Generic Reactor (which
actually implements our react() function), a Specific Reactor:

 class SpecificReactor : public GenericReactor {
 void react(const Event& ev) override;
 };

Also, let’s observe that whenever a (Re)Actor needs to communicate with
another (Re)Actor – adhering to the ‘Do not communicate by sharing
memory; instead, share memory by communicating’ principle – it merely
sends a message, and it is only this message which will be shared between
(Re)Actors.

Trivial optimization: single-threaded allocator
Armed with (Re)Actors, we can easily think of a very simple optimization
for our allocation techniques. As all the processing within (Re)Actors is
single-threaded, we can easily say that:

 (Re)Actor allocators can be single-threaded (i.e. without any thread
sync – and avoiding relatively expensive ‘compare-and-swap’
operations).

 One exception to this is those messages which the (Re)Actor
sends to the others – but classes implementing those messages
can easily use a different (thread-synced) allocator.

 For the purposes of this article, we’ll say that each (Re)Actor will
have its own private (and single-threaded) heap. While this
approach can be generalized to per-thread heaps (which may be
different from per-(Re)Actor heaps, in cases of multiple (Re)Actors
per thread) we won’t do that here.

Ok, let’s write it down that our (Re)Actor allocator is single-threaded –
and we’ll rely on this fact for the rest of this article (and everybody who
has written a multi-threaded allocator will acknowledge that writing a
single-threaded one is a big relief).

However, we’ll go MUCH further than this rather trivial observation.

Allocation model: owning refs, soft refs, naked refs
At this point, we need to note that in C++ (as mentioned, for example, in
[Sutter11]), it is impossible to provide compacted heaps “without at least
a new pointer type”. Now, let’s see what can be done about it.

Let’s consider how we handle memory allocations within our (Re)Actor.
Let’s say that within our (Re)Actor:

 We allow for three different types of references/pointers:

 ‘owning’ references/pointers, which are conceptually similar to
std::unique_ptr<>. In other words, if the ‘owning’
reference object goes out of scope, the object referenced by it is
automatically destroyed. For the time being, we can say that
‘owning’ references are not reference-counted (and therefore
copying them is prohibited, though moving is perfectly fine –
just as with std::unique_ptr<>).

 ‘soft’ pointers/references. These are quite similar to
std::weak_ptr<> (though our ‘soft’ references are created
from ‘owning’ references and not from std:shared_ptr<>),
and to Java WeakRef/SoftRef. However, I don’t want to call
them ‘weak references’ to avoid confusion with
std::weak_ptr<> – which is pretty similar in concept, but
works only in conjunction with std::shared_ptr<>, hence
the name ‘soft references’.

 Most importantly – trying to dereference (in C++, call an
operator ->(), operator *(), or operator[])
our ‘soft’ reference when the ‘owning’ reference is already
gone is an invalid operation (leading – depending on the
mode of operation – to an exception or to UB; more on
different modes of operation below).

 ‘naked’ pointers/references. These are just our usual C/C++
pointers.
June 2017 | Overload | 5

FEATURE SERGEY IGNATCHENKO

the beauty of our memory model is that it
describes WHAT we’re doing, but doesn’t
prescribe HOW it should be implemented
 Our (Re)Actor doesn’t use any non-const globals. Avoiding non-
const globals is just good practice – and an especially good one in
case of (Re)Actors (which are not supposed to interact beyond
exchanging messages).

 Now, we’re saying that whatever forms the state of our (Re)Actor (in
fact – it is all the members of our SpecificReactor) MUST NOT have
any naked pointers or references (though both ‘owning’ and ‘soft’
references are perfectly fine). This is quite easy to ensure – and is
extremely important for us to be able to provide some of the
capabilities which we’ll discuss below.

 As for collections – we can easily say that they’re exempt from the
rules above (i.e. we don’t care how collections are implemented – as
long as they’re working). In addition, memory allocated by
collections may be exempt from other requirements discussed below
(we’ll note when it happens, in appropriate places).

With this memory allocation model in mind, I am very comfortable to say
that

It is sufficient to represent ANY data structure, both
theoretically and practically

The theoretical part can be demonstrated by establishing a way to
represent an arbitrary graph with our allocation model. This can be
achieved via two steps: (a) first, we can replace all the refs in an arbitrary
graph by ‘soft’ refs, and (b) second, there is always a set of refs which
make all the nodes in the graph reachable exactly once; by replacing
exactly this second set of references with our ‘owning’ refs, we get the
original arbitrary graph represented with our ‘owning refs’+‘soft refs’.

As for a practical part – IMO, it is quite telling that I’ve seen a very
practical over-a-million-LOC codebase which worked exactly like this,
and it worked like a charm too.

BTW,

most of the findings in this article are also applicable to a
more-traditional-for-C++11-folks allocation model of
‘shared ptr’+‘weak ptr’

(though for single-threaded access, so atomic requirements don’t apply;
also, we’ll still need to avoid ‘naked’ pointers within the state of our
(Re)Actor). However, it is a bit simpler to tell the story from the point of
view of ‘owning’ refs +‘soft’ refs, so for the time being we’ll stick to the
memory allocation model discussed above.

An all-important observation
Now, based on our memory allocation model, we’re able to make an all-
important

Observation 1. Whenever our program counter is within the Infrastructure
Code but is outside of react(), there are no ‘naked pointers’ to
(Re)Actor’s heap.

This observation directly follows from a prohibition on having ‘naked
pointers’ within (Re)Actor’s state: when we’re outside of react(), there
are no ‘naked pointers’ (pointing to the heap of our (Re)Actor) on the

stack; and as there are no non-const globals, and there are ‘naked pointers’
within the heap itself either – well, we’re fine.

Modes of operation
Now, let’s see what how we can implement these ‘owning refs’ and ‘soft
refs’. Actually, the beauty of our memory model is that it describes
WHAT we’re doing, but doesn’t prescribe HOW it should be
implemented. This leads us to several possible implementations (or
‘modes of operation’) for ‘owning refs’/‘soft refs’. Let’s consider some of
these modes.

‘Fast’ mode
In ‘F a s t ’ m o d e , ‘ ow n i n g r e f s / p o i n t e r s ’ a r e mo re o r l e s s
std::unique_ptr<>s – and ‘soft refs/pointers’ are implemented as
simple ‘naked pointers’.

With this ‘fast’ mode, we get the best possible speed, but we don’t have
any safety or reallocation goodies. Still, it might be perfectly viable for
some production deployments where speed is paramount (and crashes are
already kinda-ruled out by thorough testing, running new in production in
‘safe’ mode for a while, etc. etc.).

‘kinda-Safe’ mode
In a ‘kinda-Safe’ mode, we’ll be dealing with ‘dangling pointers’; the idea
is to make sure that ‘dangling pointers’ (if there are any) don’t cause
memory corruption but cause an exception instead.

First of all, let’s note though that because of the semantics of ‘owning
pointers’, they cannot be ‘dangling’, so we need to handle only ‘soft’ and
‘naked’ pointers, and references.

‘Dangling’ soft references/pointers
To deal with ‘dangling’ soft-pointers/references, we could go the way of
do u b l e - r e f e r e n c e - c o u n t i n g (s i m i l a r t o t he o n e do ne b y
std::weak_ref<> – which actually uses the ages-old concept of
tombstones), but we can do something better (and BTW, the same
technique might be usable to implement std::weak_ref<> too –
though admittedly generalizing our technique to multi-threaded
environment is going to be non-trivial).

Our idea will be to:

 Say that our allocator is a ‘bucket allocator’ or ‘slab allocator’.
What’s important is that if there is an object at memory address X,
then there cannot be an object crossing memory address X, ever.

 Let’s note that memory allocated by collections for their internal
purposes is exempt from this requirement (!).

 Say that each allocated object has an ID – positioned right before the
object itself. IDs are just incremented forever-and-ever for each new
allocation (NB: 64-bit ID, being incremented 1e9 times per second,
will last without wraparound for about 600 years – good enough for
most of the apps out there if you ask me).
6 | Overload | June 2017

FEATURESERGEY IGNATCHENKO
 Each of our ‘owning refs’ and ‘soft refs’, in addition to the pointer,
contains an ID of the object it is supposed to point to.

 Whenever we need to access our ‘owning ref’ or ‘soft ref’ (i.e. we’re
calling operator ->() or operator *() to convert from our
ref to naked pointer), we’re reading the ID from our ref, AND
reading the ID which is positioned right before the object itself – and
comparing them. If there is a mismatch, we can easily raise an
exception (as the only reason for such a mismatch is that the object
has been deleted).

 This approach has an inherent advantage over a tombstone-
based one: as we do not need an extra indirection – this
implementation is inherently more cache friendly. More
specifically, we’re not risking an extra read from L3 cache or,
Ritchie forbid, from main RAM, and the latter can take as much
as 150 CPU cycles easily. On the other hand, for our ID-reading-
and-comparing, we’ll be usually speaking only about the cost of
2–3 CPU cycles.

NB: of course, it IS still possible to use double-ref-counting/tombstones
to implement ‘kinda-Safe mode’ – but at this time, I prefer an ID-based
implementation as it doesn’t require an extra indirection (and such
indirections, potentially costing as much as 150 cycles, can hurt
performance pretty badly). OTOH, if it happens that for some of the real-
world projects tombstones work better, it is always still possible to
implement ‘kinda-Safe mode’ via a traditional tombstone-based
approach.

‘Dangling’ naked references/pointers
With naked references/pointers – well, strictly speaking, we cannot
provide strict guarantees on their safety (that’s why the mode is ‘kinda-
Safe’, and not ‘really-Safe’). However, quite a few measures are still
possible to both detect such accesses in debugging, and to mitigate the
impact if it happens in production:

 Most importantly, our allocation model already has a restriction on
life time of ‘naked’ pointers, which already significantly lowers the
risks of ‘naked’ pointers dangling around.

 In addition, we can ensure that within our (Re)Actor allocator, we
do NOT really free memory of deleted objects (leaving them in a
kind of ‘zombie’ state) – that is, until we’re out of the react()
function. This will further reduce risks of memory corruption due to
a ‘dangling’ pointer (just because within our memory allocation
model, all the dangling naked pointers will point to ‘zombie’ objects
and nothing but ‘zombie’ objects). As for increased memory usage
due to delayed reclaiming of the memory – in the vast majority of
use cases, it won’t be a problem because of a typical react() being
pretty short with relatively few temporaries.

 In debug mode, we may additionally fill deleted objects with
some garbage. In addition, when out of react(), we can detect
that the garbage within such deleted objects is still intact; for
example, if we filled our deleted objects with 0xDEAD bytes,
we can check that after leaving react() deleted objects still
have the 0xDEAD pattern – and raise hell if they don’t (messing
with the contents of supposedly deleted objects would indicate
severe problems within the last call to react()).

 In production mode, we can say that our destructors leave our
objects in a ‘kinda-safe’ state; in particular, ‘kinda-safe’ state
may mean that further pointers (if any) are replaced with
nullptrs (and BTW, within our memory allocation model,
this may be achieved by enforcing that destructors of ‘owning
pointers/refs’ and ‘soft pointers/refs’ are setting their respective
pointers to nullptrs; implementing ‘kinda-safe’ state of
collections is a different story, though, and will require
additional efforts).

 This can help to contain the damage if a ‘dangling’ pointer
indeed tries to access such a ‘zombie’ object – at least we
won’t be trying to access any further memory based on
garbage within the ‘zombie’.

‘Safe with relocation’ mode
In a ‘Safe with relocation’ mode, in addition to dealing with ‘dangling’
soft refs, we’ll be allowing to relocate our allocated objects. This will
allow us to eliminate dreaded ‘external fragmentation’ – which tends to
cause quite a bit of trouble for long-running systems – with lots of CPU
pages having a single object in them being allocated some memory (which
in turn, if we cannot possibly relocate those single objects, tends to cause
lots of memory waste).

To implement relocation, in addition to the trickery discussed for ‘Safe’
mode, we’ll be doing the following:

 All relocations will happen only outside of the react() function
(i.e. when there are no ‘naked’ pointers to the heap, phew)

 How exactly to relocate objects to ensure freeing pages is
outside the scope of this article; here, we are concentrating only
on the question of how to ensure that everything works after
we’re done relocating some of our objects

 Keep a per-(Re)Actor-heap ‘relocation map’ – a separate map of
object IDs (the ones used to identify objects, as discussed in ‘Safe’
mode) into new addresses.

 To keep the size of ‘relocation map’ from growing forever-and-
ever, we could:

 For each of our heap objects, keep a counter of all the
‘owning’ and ‘soft’ pointers to the object.

 Whenever we relocate object, copy this counter to the
‘relocation map’. Here, it will have the semantics of
‘remaining pointers to be fixed’.

 Whenever we update our ‘owning’ or ‘soft’ pointer as
described below, decrement the ‘remaining pointers to be
fixed’ counter (and when it becomes zero, we can safely
remove the entry from our ‘relocation map’).

 An alternative (or complementing) approach is to rely on
‘traversing’, as described below.

 Exact implementation details of the ‘relocation map’ don’t
really matter much; as it is accessed only very infrequently,
search times within it are not important (though I am not saying
we should use linear search there).

 Whenever we detect access to a non-matching object ID (i.e. an
‘owning pointer’ or ‘soft pointer’ tries to convert to a ‘naked’
pointer and finds out that the object ID in heap is different from the
ID they have stored), instead of raising an exception right away,
we’ll look into the ‘relocation map’ using the object ID within the
pointer trying to access the object, and then:

 If the object with such an object ID is found in the ‘relocation
map’, we update our ‘owning pointer’ or ‘soft pointer’ to a new
value and continue.

 If the object with the ID within the pointer is not found, the
object has been deleted, so we raise exception to indicate access
attempt to a deleted object (just as for ‘safe mode’ above).

 If our relocation has led to a page being freed (and decommitted),
attempts to dereference ‘owning pointers’ or ‘soft pointers’ may
cause a CPU access violation. In such cases, we should catch the
CPU exception, and once again look into our ‘relocation map’ using
exactly the same logic as above (and causing either updating the
current pointer, or an app-level exception).

 To make sure that our system works as intended (and that all the
pointers can still rely on an object ID always being before the
object), we need to take the following steps:

 After decommitting the page, we still need to keep address
space for it reserved.

 In addition, we need to keep track of such decommitted-
but-reserved pages in a some kind of ‘page map’, and
make sure that if we reuse the same page, we use it only for
allocations of exactly the same ‘bucket size’ as before.
June 2017 | Overload | 7

FEATURE SERGEY IGNATCHENKO
 While this might sound restrictive, for practical x64
systems it is usually not a big deal because (as we’re
decommitting the page) we’ll be wasting only address
space, and not actual memory. As modern x64 OSs tend to
provide processes with 47-bit address space, this means
that for a program which uses not more than 100G of RAM
at any given time, and uses 100 different bucket sizes, in
the very worst case, we’ll waste at most 10000G of address
space, and this is still well below that 47-bit address space
we normally have.

Bingo! We’ve got (kinda-)safe implementation – and with the ability to
compact our heap too, if we wish.

Traversing SpecificReactor state
In spite of all our efforts discussed above, in certain cases, there might be
situations when the size of our ‘page map’ and especially ‘relocation map’
will grow too large. While I expect such situations to be extremely rare, it
is still nice to know that there is a way to handle them.

If we say that for every object within our class SpecificReactor, there
is a traverse() function (with traverse() at each level doing
nothing but calling traverse() for each of child objects) then after
calling traverse() for the whole SpecificReactor, we can be sure
that all the pointers have been dereferenced, and therefore were fixed if
applicable; as a result – after such a traverse() – our ‘relocation map’
is no longer necessary and can be cleaned (BTW, if we’re doing
traverse() frequently enough, we may avoid storing the reference
count, which was mentioned above in the context of cleaning up the
‘relocation map’).

Moreover, after such a call to SpecificReactor::traverse(), we
can be sure that there are no more pointers to decommitted pages, which
means that ‘page map’ can be cleaned too.

On the one hand, let’s note that
for (Re)Actors with a large
state, traversing the whole state
may take a while (especially if
the state is large enough to spill
out of the CPU caches) –
wh ich ma y be
undesirable for latency-
crit ical apps. On the
other hand, in such cases
it is usually possible to
implement traversing in
an incremental manner
(r e l y i n g o n t h e
observation that any
newly created objects

are not a problem) – but all methods I know for such incremental
traversals require us to be very careful about object moves (from a not-
traversed-yet into a supposedly-already-traversed area) and about
invalidating collection iterators. Still, it is usually possible and fairly easy
to write such an incremental traversal – albeit an ad hoc one (i.e. taking
the specifics of the app into account).

Further discussion planned
Actually, this is not the end of discussion about (Re)Actors and their
allocators. In particular, I hope to discuss how to use such allocators to
implement (Re)Actor serialization (and as mentioned in [NoBugs17],
serialization of the (Re)Actor state is necessary to achieve quite a few
(Re)Actor goodies, including such big things as Replay-Based Regression
Testing and production post-factum debugging). 

References
[Go2010] ‘Share Memory By Communicating’, The Go Blog,

https://blog.golang.org/share-memory-by-communicating

[Henney17] Kevlin Henney, ACCU2017, ‘Thinking Outside the
Synchronisation Quadrant’

[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[NoBugs10] ‘No Bugs’ Hare, ‘Single Threading: Back to the Future?’,
Overload #97–98, June–Aug 2010

[NoBugs15] ‘No Bugs’ Hare, ‘Multi-threading at Business-logic Level is
Considered Harmful’, Overload #128, Aug 2015

[NoBugs17] ‘No Bugs’ Hare, ‘Deterministic
Components for Interactive Distributed

Systems’, ACCU2017, http://ithare.com/
deterministic-components-for-

interactive-distributed-systems-
with-transcript/

[Sutter11] Herb Sutter, ‘Garbage
Collection Synopsis, and C++’.
https://herbsutter.com/2011/10/

25/garbage-collection-
synopsis-and-c/

Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague
8 | Overload | June 2017

https://blog.golang.org/share-memory-by-communicating
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://ithare.com/deterministic-components-for-interactive-distributed-systems-with-transcript/
http://ithare.com/deterministic-components-for-interactive-distributed-systems-with-transcript/
https://herbsutter.com/2011/10/25/garbage-collection-synopsis-and-c/

FEATURESIMON BRAND
Initialization in C++ is Bonkers
Uninitialised variables can cause
problems. Simon Brand reminds us
how complicated it can get.
pop quiz time: what are the values of a.a and b.b on the
last line in main of this program? (Listing 1)

The answer is that a.a is 0 and b.b is indeterminate, so reading it is
undefined behaviour. Why? Because initialization in C++ is bonkers.

Default-, value-, and zero-initialization
Before we get into the details which cause this, I’ll introduce the concepts
of default-, value- and zero-initialization. Feel free to skip this section if
you’re already familiar with these (Listing 2).

The rules for these different initialization forms are fairly complex, so I’ll
give a simplified outline of the C++11 rules (C++14 even changed some
of them, so those value-initialization forms can be aggregate
initialization). If you want to understand all the details of these forms,
check out the relevant cppreference.com articles, or see the standards
quotes at the bottom of the article.

 default-initialization – If T is a class, the default constructor is
called; if it’s an array, each element is default-initialized; otherwise,
no initialization is done, resulting in indeterminate values. [cppref1]

 value-initialization – If T is a class, the object is default-initialized
(after being zero-initialized if T’s default constructor is not user-
provided/deleted); if it’s an array, each element is value-initialized;
otherwise, the object is zero-initialized. [cppref2]

 zero-initialization – Applied to static and thread-local variables
before any other initialization. If T is scalar (arithmetic, pointer,
enum), it is initialized from 0; if it’s a class type, all base classes and
data members are zero-initialized; if it’s an array, each element is
zero-initialized. [cppref3]

Taking the simple example of int as T, global and all of the value-
initialized variables will have the value 0, and all other variables will have
an indeterminate value. Reading these indeterminate values results in
undefined behaviour.

Back to our original example
Now we have the necessary knowledge to understand what’s going on in
my original example. Essentially, the behaviours of foo and bar are
changed by the different location of =default on their constructors.
Again, the relevant standards passages are down at the bottom of the
article if you want them, but the gist is this:

Since the constructor for foo is defaulted on its first declaration, it is not
technically user-provided – I’ll explain what this term means shortly, just
accept this standardese for now. The constructor for bar, conversely, is
only defaulted at its definition, so it is user-provided. Put another way, if
you don’t want your constructor to be user-provided, be sure to write
=default when you declare it rather than define it like that elsewhere.
This rule makes sense when you think about it: without having access to
the definition of a constructor, a translation unit can’t know if it is going
to be a simple compiler-generated one, or if it’s going to send a telegram
to the Moon to retrieve some data and block until it gets a response.

The default constructor being user-provided has a few consequences for
the class type. For example, you can’t default-initialize a const-qualified
object if it lacks a user-provided constructor, the notion being that if the

C++

Listing 1

#include <iostream>

struct foo {
 foo() = default;
 int a;
};
struct bar {
 bar();
 int b;
};
bar::bar() = default;

int main() {
 foo a{};
 bar b{};
 std::cout << a.a << ' ' << b.b;
}

Listing 2

T global; //zero-initialization, then
 // default-initialization
void foo() {
 T i; //default-initialization
 T j{}; //value-initialization (C++11)
 T k = T(); //value-initialization
 T l = T{}; //value-initialization (C++11)
 T m(); //function-declaration
 new T; //default-initialization
 new T(); //value-initialization
 new T{}; //value-initialization (C++11)
}

//t is value-initialized
struct A { T t; A() : t() {} };
//t is value-initialized (C++11)
struct B { T t; B() : t{} {} };
//t is default-initialized
struct C { T t; C() {} };

Simon Brand Simon is a GPGPU toolchain developer at Codeplay
Software in Edinburgh. He turns into a metaprogramming fiend
every full moon, when he can be found bringing compilers to their
knees with template errors and writing posts for his blog at
blog.tartanllama.xyz. Contact Simon at simonrbrand@gmail.com
June 2017 | Overload | 9

FEATURE SIMON BRAND

Internalising this way of thinking about
initialization is key to writing unsurprising code
object should only be set once, it better be initialised with something
reasonable:

 //ill-formed, no user-provided constructor
 const int my_int;

 //well-formed, has a user-provided constructor
 const std::string my_string;

 //ill-formed, no user-provided constructor
 const foo my_foo;

 //well-formed, has a user-provided constructor
 const bar my_bar;

Additionally, in order to be trivial (and therefore POD) or an aggregate, a
class must have no user-provided constructors. Don’t worry if you don’t
know those terms, it suffices to know that whether your constructors are
user-provided or not modifies some of the restrictions of what you can do
with that class and how it acts.

For our first example, however, we’re interested in how user-provided
constructors interact with initialization rules. The language mandates that
both a and b are value-initialized, but only a is additionally zero-
initialized. Zero-initialization for a gives a.a the value 0, whereas b.b
is not initialized at all, giving us undefined behaviour if we attempt to read
it. This is a very subtle distinction which has inadvertently changed our
program from executing safely to summoning nasal demons/eating your
cat/ordering pizza/your favourite undefined behaviour metaphor.

Fortunately, there’s a simple solution. At the risk of repeating advice
which has been given many times before, initialize your variables.

Seriously.

Do it.

INITIALIZE YOUR GORRAM VARIABLES.

If the designer of foo and bar decides that they should be default
constructible, they should initialize their contents with some sensible
values. If they decide that they should not be default constructible, they
should delete the constructors to avoid issues. (See Listing 3.)

Internalising this way of thinking about initialization is key to writing
unsurprising code. If you’ve profiled your code and found a bottleneck
caused by unnecessary initialization, then sure, optimise it, but you best
be certain that the extra performance is worth the possible headaches and
money spent to keep the code safe.

If you still aren’t convinced that C++ initialization rules are crazy-
complex, take a minute to think of all the forms of initialization you can
think of. My answers are below.

Done? How many did you come up with? In perusal of the standard, I
counted eighteen different forms of initialization1. Here they are with a
short example/description:

 default: int i;

 value: int i{};

 zero: static int i;

 constant: static int i = some_constexpr_function();

 static: zero- or constant-initialization

 dynamic: not static initialization

 unordered: dynamic initialization of class template static data
members which are not explicitly specialized

 ordered: dynamic initialization of other non-local variables with
static storage duration

 non-trivial: when a class or aggregate is initialized by a non-trivial
constructor

 direct: int i{42}; int j(42);

 copy: int i = 42;

 copy-list: int i = {42};

 direct-list: int i{42};

 list: either copy-list or direct-list

 aggregate: int is[3] = {0,1,2};

 reference: const int& i = 42; auto&& j = 42;

 implicit: default or value

 explicit: direct, copy, or list

Don’t try to memorise all of these rules; therein lies madness. Just be
careful, and keep in mind that C++’s initialization rules are there to
pounce on you when you least expect it. If you won’t listen to me, then
maybe you’ll listen to the illustrious authors of the C++ Core Guidelines
[cppcore], who also recommend always initializing your variables in item
ES.20. And if you ever fall in to the trap of thinking C++ is a sane
language, remember this:

In C++, you can give your program undefined behaviour by changing
the point at which you tell the compiler to generate something it was
probably going to generate for you anyway. 

Listing 3

struct foo {
 foo() : a{0} {} //initialize to 0 explicitly
 int a;
};

struct bar {
 bar() = delete; //delete constructor
 //insert non-default constructor which does
 // something sensible here
 int b;
};

1. Feel free to debate that some of these are different flavours of
initialization forms, or attributes of initialization rather than separate
concepts, I don’t really care, suffice to say there are a lot.
10 | Overload | June 2017

FEATURESIMON BRAND

In C++, you can give your program undefined
behaviour by changing the point at which you tell

the compiler to generate something it was
probably going to generate for you anyway
Live on-site C++ Training
by Leor Zolman

www.bdsoft.com • bdsoftcontact@gmail.com • +1.978.664.4178

Co
ur

se
s: Moving Up to Modern C++:

An Introduction to C++11/14/17 for experienced
C++ developers. Written by Leor Zolman.
3-day, 4-day and 5-day formats.

Effective C++:
A 4-Day “Best Practices” course written by Scott
Meyers, based on his Legacy C++ book series.
Updated by Leor Zolman with Modern C++
facilities.

An Effective Introduction to the STL:
In-the-trenches indoctrination to the Standard
Template Library. 4 days, intensive lab exercises,
updated for Modern C++.

n site C++ Training

Mention ACCU and receive the U.S. training
rate for any location in Europe!

Standards quotes
All quotes from N4140 (essentially C++14).

[dcl.fct.def.default]/5:

Explicitly-defaulted functions and implicitly-declared functions are
collectively called defaulted functions, and the implementation shall
provide implicit definitions for them (12.1 12.4, 12.8), which might
mean defining them as deleted. A function is user-provided if it
is user-declared and not explicitly defaulted or deleted on its
first declaration. A user-provided explicitly-defaulted function (i.e.,
explicitly defaulted after its first declaration) is defined at the point
where it is explicitly defaulted; if such a function is implicitly defined
as deleted, the program is ill-formed.

[dcl.init]/6-8:

To zero-initialize an object or reference of type T means:

 if T is a scalar type (3.9), the object is initialized to the value
obtained by converting the integer literal 0 (zero) to T

 if T is a (possibly cv-qualified) non-union class type, each non-
static data member and each base-class subobject is zero-
initialized and padding is initialized to zero bits;

 if T is a (possibly cv-qualified) union type, the object’s first non-
static named data member is zero-initialized and padding is
initialized to zero bits;

 if T is an array type, each element is zero-initialized;

 if T is a reference type, no initialization is performed.

To default-initialize an object of type T means:

 if T is a (possibly cv-qualified) class type (Clause 9), the default
constructor (12.1) for T is called (and the initialization is ill-
formed if T has no default constructor or overload resolution
(13.3) results in an ambiguity or in a function that is deleted or
inaccessible from the context of the initialization);

 if T is an array type, each element is default-initialized;

 otherwise, no initialization is performed. If a program calls for
the default initialization of an object of a const-qualified type T,
T shall be a class type with a user-provided default constructor.

To value-initialize an object of type T means:

 if T is a (possibly cv-qualified) class type (Clause 9) with either
no default constructor (12.1) or a default constructor that is user-
provided or deleted, then the object is default-initialized;

 if T is a (possibly cv-qualified) class type without a user-provided
or deleted default constructor, then the object is zero-initialized
and the semantic constraints for default-initialization are
checked, and if T has a non-trivial default constructor, the object
is default-initialized;

 if T is an array type, then each element is value-initialized;

 otherwise, the object is zero-initialized.

[basic.start.init]/2:

Variables with static storage duration (3.7.1) or thread storage
duration (3.7.2) shall be zero-initialized (8.5) before any other
initialization takes place. […]

References
[cppcore] https://github.com/isocpp/CppCoreGuidelines/blob/master/

CppCoreGuidelines.md#Res-always

[cppref1] value-initialization http://en.cppreference.com/w/cpp/
language/value_initialization

[cppref2] default-initialization http://en.cppreference.com/w/cpp/
language/default_initialization

[cppref3] zero-initialization http://en.cppreference.com/w/cpp/language/
zero_initialization

This article was previously published at http://blog.tartanllama.xyz/
c++/2017/01/20/initialization-is-bonkers/
June 2017 | Overload | 11

http://en.cppreference.com/w/cpp/language/value_initialization
http://en.cppreference.com/w/cpp/language/value_initialization
http://en.cppreference.com/w/cpp/language/default_initialization
http://en.cppreference.com/w/cpp/language/default_initialization
http://en.cppreference.com/w/cpp/language/zero_initialization
http://en.cppreference.com/w/cpp/language/zero_initialization
http://blog.tartanllama.xyz/c++/2017/01/20/initialization-is-bonkers/
http://blog.tartanllama.xyz/c++/2017/01/20/initialization-is-bonkers/
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-always
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-always

FEATURE ANDY THOMASON
Vulkan and you – Khronos’
successor to OpenGL
Various graphics APIs exist. Andy Thomason unravels
the mysteries of Vulkan, the latest 3D Graphics API
from Khronos, the custodians of OpenGL.
 love it when you get a new toy, unwrapping the box and staring for
hours at the instructions while you try to put it together. Vulkan, the
new graphics API from the lovely people at Khronos was a bit like that

a year ago when I started to get to grips with it and like an self-assembly
wardrobe, it took a lot of head scratching before it finally clicked and I
was able to start making some real applications. I would not call myself
an expert yet, but I may be able to explain how it works to someone who
is just getting started like I was.

If you feel enthusiastic, the real reference to this is the Vulkan Spec which
comes in several flavours including this one with extensions:
https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/
vkspec.html

Vulkan is derived from the latest OpenGL standard. Early versions of
OpenGL used a fixed function pipeline and this kind of code (now
obsolete) will have been familiar:

 glBegin(GL_TRIANGLES); // Begin drawing triangles
 glVertex3f(-1, -1, 0); // Add a vertex
 glVertex3f(0, 1, 0);
 glVertex3f(1, -1, 0);
 glEnd();

Later versions of OpenGL moved from fixed function pipelines to
programmable shaders and the vertices moved into buffers held on the
GPU and the shader parameters became uniforms: values that stayed the
same for the whole object we are drawing.

 glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
 glEnableClientState(GL_VERTEX_ARRAY);
 glVertexPointer(3, GL_FLOAT, sizeof(Vertex),
 (void*)0);
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,
 indexBuffer);
 glDrawElements(GL_TRIANGLES, 3,
 GL_UNSIGNED_SHORT, (void*)0);

Vulkan’s history started in 2014 when after a meeting at Valve, Khronos
announced the project at Siggraph. Since then it has had contributions
from Samsung, AMD and ARM to name but a few. Vulkan makes
OpenGL completely stateless, more like Microsoft's DirectX, so that
descriptions of objects can be made in memory and drawn in any order on
multiple CPU cores if necessary. Vulkan does very little that OpenGL
can't do, but it does everything in a much more modern way.

There is now the choice of a C interface (vulkan.h) or a modern C++
interface (vulkan.hpp). In my humble opinion I prefer the C++ interface,
but virtually all the examples on the internet use the rather verbose C API.
I have a library called Vookoo which uses the C++ API and adds a few

classes to make setting up Vulkan data structures a bit easier:
https://github.com/andy-thomason/Vookoo

The raison d’etre of Vulkan is to make as few calls as possible to the API
and this is achieved by wrapping mighty data structures up into single
objects. This is good for performance but can be very daunting to new
users. Vookoo is designed to let beginners get used to the Vulkan API in
stages, taking more responsibility as time goes by.

3D graphics 101
For those of you who don’t work in 3D graphics, here is a helpful
introduction.

The one thing that Call of Duty and Angry Birds have in common is that
everything is made of triangles. That is absolutely everything, the
characters, the environment, the text displaying the scores, everything.
This makes it very easy to understand 3D graphics because once you can
draw one triangle, you can draw everything.

To draw a triangle we need two things, a set of points in 2D or 3D space
to tell us where the corners of the triangles are called ‘vertices’ and a
bunch of numbers to tell us which of the vertices to use called the
‘indices’. We have three indices per triangle we draw and can describe
everything from a sprite to Lara Croft using this model. When we want to
draw a 3D model on the 2D screen we use a little chunk of code that runs
on the GPU called a ‘vertex shader’ that converts these vertices and
indices to 2D triangles and calculates the lighting. After this, the GPU
takes three vertices and creates a bunch of pixels. The colour of each of
these is determined by a ‘fragment shader’ which is a function that returns
red, green and blue values for each pixel.

In the very early days of 3D graphics, we worked out the positions of the
vertices using graph paper, but now we have special tools like Blender to
do this for us. Listing 1 is the vertex shader for our triangle; Listing 2 is
the fragment shader for our triangle.

The pipeline
Graphics programming is all about the care and feeding of shaders. This
is the same in all APIs be it DirectX 12, OpenGL 4.5 or Apple’s

I

Andy Thomason Andy worked for Sony Computer Entertainment
on the Playstation compilers. He now teaches game programming
to aspiring developers and runs a consultancy analysing scientific
data. Contact Andy at a.thomason@gold.ac.uk
12 | Overload | June 2017

https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html
https://github.com/andy-thomason/Vookoo

FEATUREANDY THOMASON

You can use any Shader language ... to generate
SPIR-V ... the core specification works for all

Vulkan enabled hardware
proprietary Metal. The old OpenGL and DirectX APIs did a lot of their
work in software, but modern graphics APIs are about getting to the
hardware as quickly as possible without burning millions of cycles in
drivers. Vulkan works natively on pretty much every device except for
iOS and OSX but there is a proprietary adaptor from Vulkan to Metal
called Molten on these.

When you execute a draw command, the index buffer selects which
vertices from your model you want to assemble into a triangle and all
three vertices go through the vertex stage to get moved to the right place
on the screen. Say you have a model of a teapot, for example, then it
consists of a few thousand (x, y, z) positions for the vertices and a few
thousand indices such as (0, 1, 2). This instructs the pipeline to draw the
triangles in the right place to make the teapot show up on screen in the
right place.

The Vulkan pipeline is quite complex and has a few hundred parameters
such as the layout of the vertices in memory and how we handle
transparency. But we don’t need to worry about all the detail as there are
sensible defaults that just work.

SPIR-V
The shaders in Vulkan are defined by an intermediate language called
SPIR-V that deserves a whole article by itself as it is both at the sharp end

of Vulkan and forms the core of OpenCL, the Khronos GPU compute
API. SPIR-V is a binary format with a rigid specification and that makes
it easy for developers to write portable shaders. You can use any Shader
language, GLSL, HLSL, CG or even C++ via LLVM to generate SPIR-V
and once compiled, the core specification works for all Vulkan enabled
hardware. There is a tool called ‘glslangvalidator’ that comes with the
LunarG Vulkan SDK. This compiles GLSL shaders into SPIR-V binaries.

Shaders are fed with constants either through ‘Push constants’ or via
memory buffers with Uniform and Vertex buffers. Push constants are
good for small variables, buffers are for bigger things such as meshes or
arrays of matrices for skinning characters. Shaders can also write to
buffers via Storage buffers which support atomic variables. Textures are
a special kind of buffer that contain images that are formatted in an
opaque, optimal way such as a Hilbert curve layout to make memory
accesses more local when drawing 2D images.

In Vulkan, all the textures and buffers passed to the shaders are wrapped
up in a ‘Descriptor Set’ which is a list of handles to buffers that can be
passed as a single object to the GPU, reducing the number of calls to the
API.

A "hello triangle" example
This is a description of the "helloTriangle" example from Vookoo:
https://github.com/andy-thomason/Vookoo/blob/master/examples/
helloTriangle.cpp

You will need to install the Vulkan SDK from here:
https://www.lunarg.com/vulkan-sdk/

Before we can draw a triangle, we must set up the Vulkan API. In Vookoo
there is a convenient framework for the examples that will do this for you.
We also create a window using the GLFW framework. Later you can
explore how to do this yourself. There is a good tutorial on doing this here:
https://vulkan-tutorial.com/

 vku::Framework fw{title};
 if (!fw.ok()) {
 std::cout << "Framework creation failed"
 << std::endl;
 exit(1);
 }
 vku::Window window{fw.instance(), fw.device(),
 fw.physicalDevice(),
 fw.graphicsQueueFamilyIndex(), glfwwindow};

The vk::Device object (fw.device()) is a handle to a logical device
which we can use to create Vulkan objects and send commands to the
GPU. vk::PhysicalDevice (fw.physicalDevice()) is the actual
device and gives you information about resources available on your
graphics card or phone. Each logical device supports several queues
(fw.graphicsQueueFamilyIndex()) to send commands to the
GPU. Some queues are for graphics, some for transfer etc.

Next up we need to set up the shaders.

Listing 1

#version 450

layout(location = 0) in vec2 inPosition;
layout(location = 1) in vec3 inColour;
layout(location = 0) out vec3 fragColour;

void main() {
 // Copy 2D position to 3D + depth
 gl_Position = vec4(inPosition, 0.0, 1.0);
 // Copy colour to the fragment shader.
 fragColour = inColour;
}

Listing 2

#version 450

layout(location = 0) in vec3 fragColour;
layout(location = 0) out vec4 outColour;

void main() {
 // Copy interpolated colour to the screen.
 outColour = vec4(fragColour, 1);
}

June 2017 | Overload | 13

https://github.com/andy-thomason/Vookoo/blob/master/examples/helloTriangle.cpp
https://www.lunarg.com/vulkan-sdk/
https://vulkan-tutorial.com/

FEATURE ANDY THOMASON
 vku::ShaderModule vert_{device,
 BINARY_DIR "helloTriangle.vert.spv"};
 vku::ShaderModule frag_{device,
 BINARY_DIR "helloTriangle.frag.spv"};

These we load from binary files compiled by glslangvalidator.

 vku::PipelineLayoutMaker plm{};
 auto pipelineLayout_ = plm.createUnique(device);

The pipeline layout is a description of the descriptor sets used to pass
buffers to shaders. In this case, we don’t use one as we only pass vertices
to the vertex shader.

Next we define our vertex format and make the three corners of our
triangle.

 struct Vertex { glm::vec2 pos; glm::vec3 colour;
 };
 const std::vector<Vertex> vertices = {
 {{0.0f, -0.5f}, {1.0f, 0.0f, 0.0f}},
 {{0.5f, 0.5f}, {0.0f, 1.0f, 0.0f}},
 {{-0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}}
 };
 vku::VertexBuffer buffer(fw.device(),
 fw.memprops(), vertices);

Now we have a triangle, we build our pipeline. The Vulkan data structure
for doing this is a little verbose, so Vookoo has another helper object to
make this easy (see Listing 3).

The pipeline cache object holds the binary information that gets sent to the
GPU and can be saved to speed up the process of building pipelines in the
future. The renderPass object holds information about the frame buffer
we are drawing to, in this case a set of special images which will be copied
to the window. It describes how we clear the frame buffer, which images
we are rendering to and what to do with the frame buffer after we are done
drawing.

Instead of sending commands directly to the GPU, Vulkan records
commands in command buffers which are then put into queues for later
asynchronous execution on the GPU. Listing 4 is a code example for
setting up a command buffer to draw a single triangle using the C++
interface. We have omitted quite a bit of code for clarity.

Because Vulkan draws asynchronously, we usually use at least three
almost identical command buffers to draw up to three frames in advance.
Alternatively, we can allocate command buffers as we need them from a
pool.

Finally we can just submit our command buffer to a queue and wait for
the GPU to draw our triangle. This is done in the framework by the

window.draw() call which also handles the synchronisation you need
to do to prevent clashes on the GPU.

 while (!glfwWindowShouldClose(glfwwindow)) {
 glfwPollEvents();
 window.draw(fw.device(), fw.graphicsQueue());
 std::this_thread::sleep_for(
 std::chrono::milliseconds(16));
 }

If it works for you, you will be rewarded with this magnificent triangle:

The whole example is only 91 lines long, but the vku::framework and
vku::window objects hide a lot of complexity. Like DirectX, Vulkan is
challenging to set up at get started with but the reward is some very high
performance and little drain on the CPU.

Debugging
Vulkan development would be almost impossible with the debugging
layers that come with the SDK. If Vulkan encounters an error internally,
it will likely crash or worse still just display nothing on the screen.

Vulkan has a system of layers that make development a lot more pleasant.
You can add verification layers to detect errors in your setup or just warn
you. Once your code runs without warnings and errors, you can let it loose
and it will execute much faster. This is typical of the games industry
where intense testing is done before releasing a title so that we can shave
a few cycles off the frame time. These days with VR headsets, we want to
be running at 90 frames per second without hiccups and so don’t have
time for niceties like exceptions and runtime error checking. That means
that your game must do all the physics, AI, networking, gameplay and
rendering in 11ms or about 33 million cycles.

And so…
Vulkan is definitely fun once you have got past the pain of setting up the
API. I think that we can teach it to students instead of OpenGL now
despite the additional complexity. We hope that the remaining holdouts
will support Vulkan on consoles and devices so that we can all code to a
common standard.

Interestingly, Vulkan works especially well with Mobile devices as the
renderPass structure is well suited to tiled GPUs such as we find on
phones, tablets and increasingly TVs and VR headsets and so has a
brilliant future there.

Live long and prosper, as they say… 

Listing 3

vku::PipelineMaker pm{(uint32_t)width,
 (uint32_t)height};
pm.shader(vk::ShaderStageFlagBits::eVertex,
 vert_);
pm.shader(vk::ShaderStageFlagBits::eFragment,
 frag_);
pm.vertexBinding(0, (uint32_t)sizeof(Vertex));
pm.vertexAttribute(
 0, 0, vk::Format::eR32G32Sfloat,
 (uint32_t)offsetof(Vertex, pos));
pm.vertexAttribute(
 1, 0, vk::Format::eR32G32B32Sfloat,
 (uint32_t)offsetof(Vertex, colour));

auto renderPass = window.renderPass();
auto &cache = fw.pipelineCache();
auto pipeline = pm.createUnique(
 device, cache, *pipelineLayout_, renderPass);

Listing 4

vk::CommandBuffer cb = ...;
vk::CommandBufferBeginInfo bi{};
cb.begin(bi);
cb.beginRenderPass(rpbi,
 vk::SubpassContents::eInline);

cb.bindPipeline(vk::PipelineBindPoint::eGraphics,
 *pipeline);
cb.bindVertexBuffers(0, buffer.buffer(),
 vk::DeviceSize(0));
cb.draw(3, 1, 0, 0);
cb.endRenderPass();
cb.end();
14 | Overload | June 2017

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

FEATURE HADI HARIRI
Kotlin for C++ Developers
What could a language the originated on
the JVM possibly offer C or C++ devs?
Hadi Hariri tells us.
otlin is a programming language that was initiated by JetBrains,
makers of developer tools such as IntelliJ IDEA, CLion, ReSharper
et al. It started in 2010 as a need for JetBrains to use a language that

was less verbose than Java, had ‘modern’ constructs, good tooling, and
led to more maintainable code in the long run. After looking at the
alternatives at the time, a decision was made to write their own.

Fast-forward to February 2017 and Kotlin released version 1.1 which
targets not only the JVM but JavaScript. With an impressive growth in
adoption since the release of the first version in February 2016, Kotlin is
now being used by companies large and small, including Netflix, Gradle,
American Express, Expedia, Pinterest, Trello, BBC, just to name a few.

In March 2017, JetBrains, we, announced the first Technology Preview of
Kotlin/Native, which is Kotlin without any kind of virtual machine,
targeting via LLVM multiple platforms, including

 Mac OS X 10.10 and later (x86-64)

 x86-64 Ubuntu Linux (14.04, 16.04 and later), other Linux flavours
may work as well

 Apple iOS (arm64), cross-compiled on macOS host

 Raspberry Pi, cross-compiled on Linux host

Kotlin is a language that is designed to be used at industrial scale,
targeting any type of application development, be it backend, desktop,
front-end on the web as well as mobile. And of course, now with native,
other possibilities come into play such as embedded and Internet of
Things.

As a C or C++ developer though, what does Kotlin, and in particular
Kotlin/Native, have to offer? To answer that, let’s take a brief look at
some of the key features of the language.

Above all, pragmatism
The main principle behind Kotlin is pragmatism. While it is unfortunate
that at times that word is used to justify shortcomings, in the case of Kotlin
the purpose is to look at common situations we encounter as software
developers when using different languages and solving problems, and try
and address these.

To give some examples – in the business world we often use the concept
of data transfer objects, a class that holds some properties but really
doesn’t have much when it comes to behaviour. It does, however, require
certain things such as the ability to represent the data as a string, to copy
from one instance to another, or to compare two instances based on
properties. In Kotlin, all this can be done in a single expressive line of
code:

 data class Customer(val name: String,
 val email: String, val country: String)

This line provides a class with three properties, that are read-only (val
indicates read-only, var indicates writable), namely: name, email and
country. But in addition it provides a function toString, equals,
copy, and hashCode.

Conciseness appears in other ways, following the principle of not
repeating oneself, Kotlin doesn’t require explicit type declaration or
conversion when the compiler can easily infer things. For instance,
variables can be declared and initialised without explicitly declaring the
type

 val myString = "Something"

as opposed to the longer format

 val myString : String = "Something"

When performing type conversions, there’s no need to verify and cast
explicitly:

 If (myObject is Customer) {
 myObject.makeActive()

auto-casting takes place, as opposed to having to explicitly convert the
type

 If (myObject is Customer) {
 (Customer)myObject.makeActive()

Certain patterns, such as the SINGLETON pattern become extremely easy
to implement in Kotlin, as it has the concept of an object (a single
instance, not requiring instantiation from any class)

object Global {
 val version = "0.1"
 fun log(message: String) {
 println("LOG: $message")
 }
}

fun usingSingletons() {
 Global.log("A Message is sent")
}

Of course Kotlin isn’t only about conciseness, but also provides a series
of characteristics that allow for writing nice statically-typed DSLs. Being
a language that treats functions as first class citizens, it allows for higher-
order functions and lambda expressions

 val countryCapital = listOf("Madrid" to "Spain",
 "London" to "UK", "Berlin" to "Germany",
 "Washington DC" to "USA")
 val capitals = countryCapital.map {
 it.first
 }.sorted()

The combination of extension functions, which allow us to extend an
existing type with new functionality without having to inherit from it,

K

Hadi Hariri A developer and creator of many things OSS, his
passions includes Web Development and Software Architecture.
Has authored a couple of books, a few courses and has been
speaking at industry events for nearly 15 years. Currently at
JetBrains leading the Developer Advocacy team. Spends as much
time as he can writing code. Contact him at hadi@jetbrains.com
16 | Overload | June 2017

FEATUREHADI HARIRI

Kotlin is completely open when it comes to
tooling. You can use anything, be it the

command line compiler, which is simple, up
to a fully fledged IDE such as IntelliJ IDEA
lambda expressions, and a series of other features and conventions allow
us to create DSLs like the following:

 build {
 make {
 source = "*.kt"
 target = "/tmp"
 }
 }

where each of the elements are actual static identifiers.

Leveraging the platform
A language alone in isolation often doesn’t provide the productivity
someone needs. The focus on pragmatism in Kotlin also surfaces when
we’re speaking about interoperability with platforms and leveraging
existing libraries, frameworks and in general the ecosystem present. This
is demonstrated on the JVM with interoperability with Java and JVM
libraries, in JavaScript with interop with package managers, JavaScript
standards and of course when it comes to native, Kotlin also provides
interop with C.

The code in Listing 1 demonstrates how we can interact with C libraries,
in this case provide socket functionality.

Next steps
If you want to learn more about Kotlin, the best place to get started is with
the Kotlin Koans, which are a series of exercises that can be performed
online [https://try.kotlinlang.org] or offline [https://kotlinlang.org/docs/
tutorials/koans.html]. Kotlin is completely open when it comes to tooling.
You can use anything, be it the command line compiler, which is simple,
up to a fully fledged IDE such as IntelliJ IDEA (works in both the free
OSS Community Edition as well as the commercial Ultimate one). In
addition to IntelliJ IDEA, at JetBrains we also provide support for
Android Studio, Eclipse and Netbeans.

Summary
It is close to impossible to cover extensively any language in such a short
amount of space. Independently of this fact, however, I’ve personally
found that with Kotlin it is not about specific features that make it stand
out, but how all these different things fit in together to provide a better
experience when writing and reading code. And it is this experience that
can now be shared across multiple platforms with different developers of
different backgrounds. As a C or C++ developer, what Kotlin can provide
is a higher-level language abstraction, making code often easier to write,
and more importantly understand, while at the same time not losing the
power to interact with low-level constructs when needed.

Kotlin/Native still has a long way to go, but this first technology preview
itself is a big milestone. The focus for the Kotlin/Native team is to
continue to build on what is currently available, improving tooling,
providing support for more platforms and in general providing a
pleasurable development experience to all. 

Listing 1

import kotlinx.cinterop.*
import sockets.*

fun main(args: Array<String>) {
 if (args.size < 1) {
 println("Usage: ./echo_server <port>")
 return
 }

 val port = atoi(args[0]).toShort()

 memScoped {
 val bufferLength = 100L
 val buffer = allocArray<ByteVar>(bufferLength)
 val serverAddr = alloc<sockaddr_in>()
 val listenFd = socket(AF_INET, SOCK_STREAM, 0)
 .ensureUnixCallResult { it >= 0 }

 with(serverAddr) {
 memset(this.ptr, 0, sockaddr_in.size)
 sin_family = AF_INET.narrow()
 sin_addr.s_addr = htons(0).toInt()
 sin_port = htons(port)
 }

 bind(listenFd, serverAddr.ptr.reinterpret(),
 sockaddr_in.size.toInt())
 .ensureUnixCallResult { it == 0 }

 listen(listenFd, 10)
 .ensureUnixCallResult { it == 0 }

 val commFd = accept(listenFd, null, null)
 .ensureUnixCallResult { it >= 0 }

 while (true) {
 val length = read(commFd, buffer,
 bufferLength)
 .ensureUnixCallResult { it >= 0 }
 if (length == 0L) {
 break
 }

 write(commFd, buffer, length)
 .ensureUnixCallResult { it >= 0
 }
 }
}

June 2017 | Overload | 17

https://kotlinlang.org/docs/tutorials/koans.html
https://kotlinlang.org/docs/tutorials/koans.html
https://try.kotlinlang.org

FEATURE ANTHONY WILLIAMS
Getting Tuple Elements with a
Runtime Index
Accessing a tuple with a runtime index is a challenge.
Anthony Williams shows us his approach.
td::tuple is great. It provides a nice, generic way of holding a
fixed-size set of data items of whatever types you need. However,
sometimes it has limitations that mean it doesn’t quite work as you’d

like. One of these is accessing an item based on a runtime index.

std::get needs a compile-time index
The way to get the nth item in a tuple is to use std::get:
std::get<n>(my_tuple). This works nicely, as long as n is a
compile-time constant. If you’ve got a value that is calculated at runtime,
this doesn’t work: you can’t use a value that isn't known until runtime as
a template parameter.

 std::tuple<int,int,int> my_tuple=...;
 size_t index;
 std::cin>>index;
 int val=std::get<index>(my_tuple);//won't compile

So, what can we do? We need a new function, which I’ll call
runtime_get, to retrieve the nth value, where n is a runtime value.

 template<typename Tuple>
 ... runtime_get(Tuple&& t,size_t index){
 ...
 }

The question is: how do we implement it?

Fixed return type
The return type is easy: our function must have a single return type for any
given Tuple. That means that all the elements in the tuple must have the
same type, so we can just use the type of the first element.
std::tuple_element will tell us this, though we must first adjust our
template parameter so it’s not a reference.

 template<typename Tuple>
 typename std::tuple_element<
 0, typename std::remove_reference<Tuple>
 ::type>::type&
 runtime_get(Tuple&& t,size_t index){
 ...
 }

Note: C++17 includes std::variant, so you might think we could use
that to hold the return type, but that wouldn’t actually help us: to get the
value from a variant, you need to call std::get<n>(v), which requires
n to be a constant (again)!

OK, so the return type is just a reference to the type of the first element.
How do we get the element?

Retrieving the nth element
We can’t do a straightforward switch, because that requires knowing all
the cases in advance, and we want this to work for any size of tuple.

One way would be to have a recursive function that checked the runtime
index against a compile-time index, and then called the function with the
next compile-time index if they were different, but that would mean that
the access time would depend on the index, and potentially end up with a
deeply nested function call if we wanted the last element in a large tuple.

One thing we can do is use the index value as an array index. If we have
an array of functions, each of which returns the corresponding element
from the tuple, then we can call the appropriate function to return the
relevant index.

The function we need is of course std::get; it’s just a matter of getting
the function signature right. Our overload of std::get has the following
signature for const and non-const tuples:

 template <size_t I, class... Types>
 constexpr tuple_element_t<I, tuple<Types...>>&
 get(tuple<Types...>&) noexcept;
 template <size_t I, class... Types>
 constexpr const tuple_element_t<I,
 tuple<Types...>>&
 get(const tuple<Types...>&) noexcept;

so, we can capture the relevant instantiation of std::get for a given
tuple type Tuple in a function pointer declared as:

 using return_type=typename
 std::tuple_element<0,Tuple>::type&;
 using get_func_ptr=return_type(*)(Tuple&)
 noexcept;

The signature is the same, regardless of the index, because we made the
decision that we’re only going to support tuples where all the elements are
the same.

This makes it easy to build a function table: use a variadic pack expansion
to supply a different index for each array element, and fill in
std::get<N> for each entry (see Listing 1).

We need the separate redeclaration of the table to satisfy a pre-C++17
compiler; with C++17 inline variables it is no longer needed.

Our final function is then just a simple wrapper around a table lookup (see
Lising 2).

It’s constexpr safe, though in a constexpr context you could
probably just use std::get directly anyway.

So, there you have it: a constant-time function for retrieving the nth
element of a tuple where all the elements have the same type.

Final code
Listing 3 is the final code for a constant-time function to retrieve an item
from a tuple based on a runtime index. 

s

Anthony Williams Anthony is the author of C++ Concurrency in
Action. As well as working on multi-threading libraries, he develops
custom software for clients, and does training and consultancy.
Despite frequent forays into other languages, he keeps returning to
C++. He is a keen practitioner of TDD, and likes solving tricky
problems. Contact him at anthony@justsoftwaresolutions.co.uk
18 | Overload | June 2017

FEATUREANTHONY WILLIAMS
Listing 1

template<
 typename Tuple,
 typename Indices=std::make_index_sequence<std::tuple_size<Tuple>::value>>
struct runtime_get_func_table;

template<typename Tuple,size_t ... Indices>
struct runtime_get_func_table<Tuple,std::index_sequence<Indices...>>{
 using return_type=typename std::tuple_element<0,Tuple>::type&;
 using get_func_ptr=return_type (*)(Tuple&) noexcept;
 static constexpr get_func_ptr table[std::tuple_size<Tuple>::value]={
 &std::get<Indices>...
 };
};

template<typename Tuple,size_t ... Indices>
constexpr typename
runtime_get_func_table<Tuple,std::index_sequence<Indices...>>::get_func_ptr
runtime_get_func_table<Tuple,std::index_sequence<Indices...>>::table[
 std::tuple_size<Tuple>::value];

Listing 2

template<typename Tuple>
constexpr
typename std::tuple_element<0,typename std::remove_reference<Tuple>::type>::type&
runtime_get(Tuple&& t,size_t index){
 using tuple_type=typename std::remove_reference<Tuple>::type;
 if(index>=std::tuple_size<tuple_type>::value)
 throw std::runtime_error("Out of range");
 return runtime_get_func_table<tuple_type>::table[index](t);
}

Listing 3

#include <tuple>
#include <utility>
#include <type_traits>
#include <stdexcept>

template<
 typename Tuple,
 typename Indices=std::make_index_sequence<std::tuple_size<Tuple>::value>>
struct runtime_get_func_table;

template<typename Tuple,size_t ... Indices>
struct runtime_get_func_table<Tuple,std::index_sequence<Indices...>>{
 using return_type=typename std::tuple_element<0,Tuple>::type&;
 using get_func_ptr=return_type (*)(Tuple&) noexcept;
 static constexpr get_func_ptr table[std::tuple_size<Tuple>::value]={
 &std::get<Indices>...
 };
};

template<typename Tuple,size_t ... Indices>
constexpr typename
runtime_get_func_table<Tuple,std::index_sequence<Indices...>>::get_func_ptr
runtime_get_func_table<Tuple,std::index_sequence<Indices...>>::table[std::tuple_size<Tuple>::value];

template<typename Tuple>
constexpr
typename std::tuple_element<0,typename std::remove_reference<Tuple>::type>::type&
runtime_get(Tuple&& t,size_t index){
 using tuple_type=typename std::remove_reference<Tuple>::type;
 if(index>=std::tuple_size<tuple_type>::value)
 throw std::runtime_error("Out of range");
 return runtime_get_func_table<tuple_type>::table[index](t);
}

June 2017 | Overload | 19

FEATURE CHRIS OLDWOOD
Afterwood
What makes programming fun? Chris
Oldwood ponders what floats his boat.
ack in 1986, Fred Brooks published the seminal essay No Silver
Bullet: Essence and Accident in Software Engineering in which he
introduced us to the idea that there are two different kinds of

complexity which software engineers need to deal with. The first is
‘essential complexity’, which is complexity that is inherent in the problem
being solved. Before we can solve the problem, we humans need to
understand the problem domain and model it before we can think about
how we’re going to represent it in the solution domain. In the essay,
Brooks argues that there is little to really help us quickly get into and
understand the true essence of the problems we try to solve through
software. Yes, there have been some advances but nothing stellar.

The second kind of complexity which Brooks described, he coined
‘accidental complexity’. This exists in the solution domain and is the
complexity which exists as a by-product of the processes, tools and
technologies we use to solve our customer’s problems. This kind of
complexity could be perceived as being a problem of our own making, as
the programming languages and tools we use are imperfect and therefore
imprecise. These are the silver bullets which the essay is referring to.

Unfortunately, the choice of the term ‘accidental’ became a poor one as it
was often interpreted incorrectly. In his follow-up essay almost 10 years
later, No Silver Bullet Refired, he describes how it was often treated in the
sense of ‘misfortune’ rather than its alternative meaning of ‘incidental’.
As such, many rebuttals targeted the apparent incompetence of
programmers instead of the imperfections in the tooling, which missed the
point of the original essay.

In theory, as we make technological advances we should be reducing the
degree of accidental complexity – the ability to represent our solution for
the problem in computerised form – and instead spend more time focusing
on tackling the essential complexity. The growth of the Agile movement
which puts an emphasis on trying to ensure we ‘build the right thing’
before wasting time ‘building the wrong thing, in the right way’ has also
meant that the essential complexities are starting to get more of a look-in
before we get bogged down in the coding. This is probably not surprising
given that the latter part of No Silver Bullet lists the use of ‘incremental
development’ and the metaphor to ‘grow, not build’ software as probably
the most promising approach to tackling the problem.

No Silver Bullet was added to the Anniversary Edition of his book The
Mythical Man-Month: Essays on Software Engineering, which was
published 20 years later in 1995. The first essay in that book, and one I’m
personally very fond of, is ‘The Tar Pit’. It’s one of the shorter ones,
weighing in at just 6 pages, and provides a brief introduction to the rest of
book by exploring what systems programming is all about. Along the way
he looks at both the ‘joys’ and the ‘woes’ of the craft and suggests that for
most people ‘the joys far outweigh the woes’, which I reckon most

programmers would find little trouble agreeing with, even if on certain
days it feels like the latter might be true.

And so with the lay of the land firmly established I feel comfortable in
making my confession – it’s the accidental complexity that I find exciting.
That’s right, what floats my particular boat is solving the problems which
shouldn’t really exist but do because of those imperfections in the tooling
we use. The Internet is awash with advice on how we should get better at
understanding our customer’s needs and solve their problems more
efficiently but quite frankly that’s just not as interesting to me as trying to
dig yourself out of a technical hole which either you (or your predecessor)
got you into in the first place.

That doesn’t mean I actively go out of my way to be obtuse or pick
technologies that are unsuitable purely for the purposes of self-
gratification – on the contrary I still want to be professional and do the
best job I can – it’s just I personally often find more pleasure solving the
problems in the solution domain than solving the actual customer’s
problem.

One example of this would be the war stories that programmers like to
share over a pint or two in the bar at a conference. The ones I’m most fond
of hearing or reading about (and sharing) are those that involve one
person’s struggle against the technology. There are so many wonderful
tales about how people have managed to bend, twist and generally contort
one tool to make it do something it was never intended to. In An
Introduction to General Systems Thinking, Gerry Weinberg suggests that
you don’t really know a tool until you’ve abused it at least three times, so
perhaps there is a rite of passage where we have to embrace the gnarly
problems to truly grasp the very nature of accidental complexity so that
we can try to elude it in the future. As an aside, that book was originally
published at the same time as The Mythical Man Month (and 10 years
before No Silver Bullet).

My current best efforts to explain these pangs of guilt come from Vivek
Singh (@petmongrels) who recently tweeted “Programmer Stack Envy –
A belief that work at a lower level in the stack is intellectually more
challenging than at one’s own level”. I know that when I leave the ACCU
Conference every year, I am in awe of many of the people attending and
the things they’ve accomplished, especially as the C++ language grows
ever more complex with each new standard. But I wonder how many of
those people are also suffering from a form of Stockholm syndrome and
are in it largely because it is complex – an enigma to be solved in its own
right.

Secretly, I hope there will never be a silver bullet because when that day
comes I fear it’s the day the fun goes out of programming. 

B

20 | Overload | June 2017

Chris Oldwood Chris is a freelance programmer who started out as a bedroom coder in the 80’s writing assembler on
8-bit micros. These days it’s enterprise grade technology in plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted via gort@cix.co.uk or @chrisoldwood

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

	2009-07-01 Care About Code - online.pdf
	Slide 1

	Overload139.pdf
	I am not a number
	Allocator for (Re)Actors with Optional Kinda-Safety and Relocation
	Initialization in C++ is Bonkers
	Vulkan and you – Khronos’ successor to OpenGL
	Kotlin for C++ Developers
	Getting Tuple Elements with a Runtime Index
	Afterwood

