

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

August 2017 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 The Path of the Programmer
Charles Tolman provides a framework personal
development.

6 A Usable C++ Dialect that is Safe Against
Memory Corruption
Sergey Ignatchenko continues his investigation
of allocators for (Re)Actors.

10 Metaclasses: Thoughts on Generative C++
Herb Sutter shows how metaclasses could
simplify C++ with minimal library extension.

12 A C++ Developer Sees Rustlang for the
First Time
Katarzyna Macias provides an introduction to
Rust for a C++ developer.

14 Portable Console i/o via iostreams
Alf Steinbach describes how his library fixes
problems streaming non-ASCII characters in
Windows.

22 A Functional Alternative to Dependency
Injection in C++
Satprem Pamudurthy showcases a functional
alternative to dependency injection in C++.

25 About the C++ Core Guidelines
Andreas Fertig shows us the C++ core guidelines.

28 Afterwood
Chris Oldwood reminds us to fix the problem,
not to blame.

OVERLOAD 140

August 2017
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Andy Balaam
andybalaam@artificialworlds.net

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael@accu.fi

Klitos Kyriacou
klitos.kyriacou@gmail.com

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Anthony Williams
anthony@justsoftwaresolutions.co.
uk

Matthew Wilson
stlsoft@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover art and design
Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication
in Overload 141 should be
submitted by 1st September 2017
and those for Overload 142 by
1st November 2017.

EDITORIAL FRANCES BUONTEMPO
Gnomes and Misnomers
What’s in a name? Frances
Buontempo decides some names
are better than others.
It is time, yet again, to attempt to write an editorial. Of
course, ‘editorial’ is something of a misnomer. We
are all aware that it should be the editor’s opinion on
a topical issue. I believe I have rigorously steered
clear of this so far, despite being accused of sailing a
bit close to the edge once in a while. As I consider

what an editorial is, I notice it has several synonyms, including feature,
commentary and write-up, yet I could only find one antonym; secondary
source [PT]. This is not to be confused with secondary sauce, which has
a very different flavour. Homophones, words that sound the same but
mean something very different can be the cause of confusion or fun. Do
not confuse your carets with carrots, or vice versa. More extremely,
homonyms appear the same when spoken or written but mean different
things. I saw a saw. I object to that object. Such ambiguity can lead to
dreadful puns, hilarious jokes or beautiful prose. Or long meetings with
fights over documentation, meaning and project or component names.
As programmers we are often stumped when searching for a good clear
name for something. I have been re-reading Jingo by Terry Pratchett
[Jingo], where we meet a character, Leonard de Quirm who bears more
than a passing resemblance to Leonardo da Vinci. He has created a metal
transport device that goes under water.
“Er... what is this thing called?” said Colon, as he followed the Patrician
up the ladder. “Well, because it is submersed in a marine environment
I’ve always called it the Going-Under-the-Water-Safely Device,” said
Leonard.
A footnote observes that “Thinking up good names was, oddly enough,
one area where Leonard Quirm’s genius tended to give up”. How do we
find names for our components, programs and projects? Some have long,
relatively precise titles. Microsoft Visual Studio 2017 springs to mind.
Others are designed to be unsearchable on the internet, perhaps by
accident; Q, R, C for starters. We also have many abbreviations and
acronyms, which end up feeling like whole words, and we forget some
people don’t know these. I know what RC means in a list of versions of
software downloads, but ‘release candidate’ may not spring to mind
immediately for everyone. Some acronyms are more natural that others.
Some are quite clearly backronyms, where words have been tortured into
spelling another, or TISA if you will. Some spring from a central idea.
Animals give us GNU, YACC, then Bison, and others. People choose
Greek gods, comic book characters, mythology. Having a theme can get
your imagination going. I wonder if it might sometimes alienate people

though. If your projects were all named after My
Li t t l e Pony ponies o r Jane Aus t in
characters, how would you feel? Or lesser

known industrial bands? Or Old Testament prophets? Footballers? What
do your choices say about you, your company, or open source project?
This is touched on obliquely in REAMDE [Stephenson]. Correct Reamde,
not Readme; a deliberate word twist à la Skinny Puppy lyrics. In a fabled
cryptocurrency mining fantasy world, where character names are
predominantly in Western fonts, the Chinese hackers and crypto-coin
miners use character names that fit Western fiction, not just because they
can’t type their letters into many Western apps. In the real word, such
fantasy games might have groups of mythology or fantasy aficionados
that hail from, usually, Western tales. A Chinese hacker in the book
commented that he knew all about the mythologies, from comics and US
films. Nonetheless a rival group had sprung up who preferred modern,
bright colours and futuristic names. The party lines and allegiances might
not lie where you would naively expect them. Tribal behaviour and
exclusion is a topic for another day. The names we choose often say
something about us, either individually or as a group.
We do frequently draw on mythology for inspiration, or at least for
names. Viking and Norse history and mythology often provide. Take
Bluetooth, a king and wireless technology, bringing things together
[Bluetooth]. Consider Munin, one of Odin’s ravens, whose name means
memory, used for a monitoring tool [Munin]. We also see Gnome, the
open source desktop or a 16th Century ‘diminutive spirit’, who lives
underground [Gnome]. The Renaissance spirits don’t stop there. We have
Sprite: ‘a smaller bitmap composited onto another by hardware or
software’ or ‘legendary creatures such as elves, fairies and pixies’
[Sprite]. I am sure you can think of many I have missed. If you are
unfamiliar with the meaning of the names or the background they draw
from, this probably won’t detract from your ability to use or program
with something so named. Be aware that most fairy-type creatures are
troublemakers, as far as I can tell. We don’t stop there. We also have
daemons, running unobtrusively in the background. Or crashing or
spewing to a log file. Not to be confused with demons or dæmons, who
are benevolent, benign or downright bad, depending on which mythology
you are reading. There are those who say most computer programs are
benevolent, benign or downright bad as well. Jinn, djinn, or genie is
another matter entirely, each inspiring many acronyms. Mine’s a gin!
Along with names for programs and projects, we have some more
abstract words to describe design approaches or management processes.
These can help communication, but things tend to trend, dragging the
uninitiated on-board. Many teams claim to be agile, even rigidly agile.
True story. We find many misnomers, where a wrong or inappropriate
name is used. A speaker, I forget who, once quipped that a class under
consideration was more of an entire school then a class, since it had so
many members. Using and misusing words can distort or help your

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | August 2017

EDITORIALFRANCES BUONTEMPO
understanding. Sometimes you just need to work side by side for a bit to
gain a shared vocabulary. I had mentioned TDD a few times at work a
while ago, and it was only when I sat with a colleague she realised I did
really mean I wrote the test first. I was never sure what she thought I had
meant previously when I said ‘test first’. Obviously, it didn’t mean ‘test
first’ to her. Does your team have continuous integration, CI? Does it
actually have several different branches that haven’t been merged for
months? Do the scripts run ‘automatically, at the touch of a button’?
Another true story. We filter what people say to us through our own
experience and bias by default. Without the shared context of comics,
films or coding, misunderstandings abound. Inconceivable, you might
say. “You keep using that word, I do not think it means what you think it
means,” Inigo Montoya from the 1987 film The Princess Bride would
retort. Meme-tastic. Claiming you are agile, or promote based on merit
does not make it so. A log line claiming ‘ERROR:’ does not always mean
an actual error. Class names frequently sprout meme-like parts; builder,
factory, abstract. These should convey how they work but as we know
ending up with an AbstractFactoryBuilder or similar is
meaningless to the point of ridicule.
Aside from class names, consider namespaces or package names. How
many times do we get a ‘Utility’ package or module? Or even worse
‘Misc’. We often end up with a bucket of stuff since we are neither clear
what to call it or if it’s worth breaking things down into smaller related
groups. On a code level, I often end up with a snaky mess of ifs and
elses when I haven’t stopped to think about ways to define small, clear
functions that would stop the rot. I am continually improving at deleting
Boolean flags though. Sometimes you can’t find a way to do something,
or chose between options because you are doing it wrong. Being unable
to name a class is a sign. If you’re blocked, it’s time to step away from the
keyboard.
Many out-and-out misnomers exist. Does Excel excel at anything? How
easy is it to get at data in Access? How often do people claim they have
Big Data, which is less than a gigabyte (e.g. all of Shakespeare)? Do you
have any Smart devices? Almost anything with ‘giga’ or ‘nano’ in its title
falls in this category. Is your job title ‘Developer’ but you spend all day
in meetings or grepping log files? In my keynote for this year’s ACCU
conference, I observed that machine learning is almost certainly a
misnomer. The machines don’t learn anything, but we sometimes do from
the data analysis they perform. Furthermore, AI, artificial intelligence is
not clearly defined, beyond a Turing test assessment; you’ll know it when
you encounter it. I have heard the question “Can’t you make the AI more
intelligent?” in relation to a variety of applications recently. I think this
really means “Can’t you write a different algorithm?” when thought
about. Giving an amorphous collection of ideas or algorithms a single
name allows them to be discussed easily, but frequently conveys an
incorrect impression to people outside the subject area. Front ends and
user interfaces provide no end of places for trouble to happen from un-
thought-through wording. How many times have you been confronted by
a message box with ‘OK’ or ‘Cancel’ on, when it’s not ok and you’re not
sure what cancel will actually do. I have recently been working on
‘plugins’ for some security tools. One input plugin is more like a section
of regex in an ini file. Beware technical terms. You might be disappointed.
If you need a good book to get you thinking straight (and make you laugh)
consider Randall Munroe’s Thing Explainer. He strives to explain
complicated stuff with pictures and a very small vocabulary. One review
notes, “If you can’t explain something simply, you don’t really
understand it.”
Sometimes we pick names in the hope they will become true. Just setting
up a unit test project might encourage people to add unit tests. If you are
unfortunate, they may add code that isn’t strictly a unit test, running off to

a database and taking ages to complete. Clearly, ‘unit test’ is another
technical term that can lead to fights for hours. Some tests are better than
no tests, though. You have probably heard of nominative determinism:
‘people tend to gravitate towards areas of work that fit their names.’ [ND]
Mr Baker, the baker, and so on. Many cultures attached a great
significance to names. Children are given saints names, or called Hope or
similar, as though you are imparting a magic power to them. Having never
had kids, this is not a problem I’ve had to wrestle with. We do have a cat
though, and he is called Vim; another area where technical and non-
technical people might draw very different conclusions. You can’t call a
cat emacs, as far as I’m concerned. Well, not in our house.
Finally, we sometimes end up with names or words begging to be used for
something. I am glad to hear that Covfefe [Covfefe] has been applied to
an Act to preserve Mr Trump’s tweets [Independent]. If you are stuck on
a name for something, you might find you don’t have one coherent thing
to name, so need to refactor, carving things up differently. Or if you can’t
find a pronounceable acronym, perhaps you should draw on things you or
your team love, including stories or food or drinks or something inspiring.
If someone uses a term you think you understand, it might be worth
clarifying to avoid talking at cross-purposes. Names can help to
communicate, but can lead to misunderstanding and can convey a
demographic which might make some feel excluded. Names give us
power over things. We can talk about them more easily when we can
identify them. We can also get in a muddle if the names are unclear.
Cultural and contextual issues can add to our confusion. The essence of
what we do is communication, to other programmers, rather than the
machine; as Knuth said,

Instead of imagining that our main task is to
instruct a computer what to do, let us concentrate
rather on explaining to human beings what we
want a computer to do. [Knuth]

References
[Bluetooth] https://en.wikipedia.org/wiki/Harald_Bluetooth and https://

en.wikipedia.org/wiki/Bluetooth
[Covfefe] https://english.stackexchange.com/questions/391945/what-

does-covfefe-exactly-mean
[Gnome] https://www.gnome.org/ or https://en.wikipedia.org/wiki/

Gnome
[Independent] ‘US politician introduces the Covfefe Act’, Emily

Shugerman, June 2017 http://www.independent.co.uk/news/world/
americas/us-politics/covefe-act-trump-twitter-bill-introduced-
democrats-stop-president-deleting-tweets-a7786676.html

[Jingo] Jingo, Terry Pratchett, 1997.
[Knuth] Literate programming, 1992 (taken from

http://www.literateprogramming.com/)
[Munin] http://munin-monitoring.org/ or https://en.wikipedia.org/wiki/

Huginn_and_Muninn or indeed https://en.wikipedia.org/wiki/
Hugin_and_Munin_(Marvel_Comics)

[ND] https://en.wikipedia.org/wiki/Nominative_determinism
[PT] https://www.powerthesaurus.org/editorial/antonyms – though I

didn’t look very far.
[Stephenson] Neal Stephenson, Reamde, Atlantic Books, 2012.
[Sprite] https://en.wikipedia.org/wiki/Sprite_(computer_graphics) or

https://en.wikipedia.org/wiki/Sprite_(entity)
August 2017 | Overload | 3

https://en.wikipedia.org/wiki/Harald_Bluetooth and https://en.wikipedia.org/wiki/Bluetooth
https://en.wikipedia.org/wiki/Harald_Bluetooth and https://en.wikipedia.org/wiki/Bluetooth
https://english.stackexchange.com/questions/391945/what-does-covfefe-exactly-mean
https://english.stackexchange.com/questions/391945/what-does-covfefe-exactly-mean
https://www.gnome.org/ or https://en.wikipedia.org/wiki/Gnome
https://www.gnome.org/ or https://en.wikipedia.org/wiki/Gnome
http://www.independent.co.uk/news/world/americas/us-politics/covefe-act-trump-twitter-bill-introduced-democrats-stop-president-deleting-tweets-a7786676.html
http://www.independent.co.uk/news/world/americas/us-politics/covefe-act-trump-twitter-bill-introduced-democrats-stop-president-deleting-tweets-a7786676.html
http://www.independent.co.uk/news/world/americas/us-politics/covefe-act-trump-twitter-bill-introduced-democrats-stop-president-deleting-tweets-a7786676.html
http://www.literateprogramming.com/
http://munin-monitoring.org/
https://en.wikipedia.org/wiki/Hugin_and_Munin_(Marvel_Comics)
https://en.wikipedia.org/wiki/Hugin_and_Munin_(Marvel_Comics)
https://en.wikipedia.org/wiki/Nominative_determinism
https://www.powerthesaurus.org/editorial/antonyms
https://en.wikipedia.org/wiki/Huginn_and_Muninn
https://en.wikipedia.org/wiki/Sprite_(computer_graphics)
https://en.wikipedia.org/wiki/Sprite_(entity)

FEATURE CHARLES TOLMAN
The Path of the Programmer
Personal development is important.
Charles Tolman provides a framework
for looking at this.
he impetus for this talk1 came out of a chat I had with a friend, where
I was ranting – as I can do – about code, and then realized that of
course it is easy to rant about other people’s code. This prompted me

to look back at my own experience. I started coding for a living back in
1980 – a fact that doesn’t bear thinking about! – and have spent most of
my career implementing high data rate video editing systems. Until
recently I worked in a company that does TV and film effects and editing
systems, working on a large C++ system of more than 10MLOC. I have
now moved into the CAE sector.
This is quite a ‘soft’ talk and I will be following on from some points in
the keynote (Balancing Bias in Software Development) [ACCU16] given
by Dr. Marian Petre, although I will drop into some more grounded issues
around video player pipeline design and some of the design issues that I
have come across.
As I mentioned, I had a sense of frustration with the quality of what was
getting produced in a commercial context, and frustration in terms of
finding people who could make that switch from doing the actual coding
and implementation to taking a more structural view. But though I started
coding in 1980, it was not until 1995 that I can say I was actually happy
with what I was producing. That is quite a sobering thought. OK, maybe
I have the excuse that I did not really get into Object Orientation until
1985/6, and the Dreyfus brothers [Wikipedia_01] say it takes 10 years to
become an expert in a domain, but even so…
I therefore want to delve into my own experience and try to understand
why this takes so long. This is an issue, not so much about teamwork, but
about what we could possibly do individually drawn from my own
experiences with being a practitioner with large codebases.
In terms of my inspirations with regard to software architecture,
Christopher Alexander of course is one, and there is one from left field. I
got involved in starting a Steiner school for my children back in the 1990s
and Steiner’s epistemology, drawn from a foundation coming from
Goethe, is actually quite relevant.
I will recap some of the points from my talk at ACCU2013 about
‘Software and Phenomenology’ [Tolman13], and my workshop in
ACCU2014 about ‘Imagination in Software Development’ [Tolman14],
but will be taking a slightly different slant on that content.

The path of the programmer
I want to start with some reflections on the path of the programmer as I
have come to see it, borrowing an idea from Zen about the three phases on
the path to enlightenment.

There is the initial NOVICE phase where you are still learning about the
tools you have at your disposal.
A lot of your thinking is going to be Rule Based since you are learning the
steps you need to take to do the job. The complexity of your thought is
generally going to be less than the problem complexity you are dealing
with when you get into ‘live’ industrial work, and hence you are
producing brittle code, and/or it is not doing all that is needed. Here you
are aware of your own limits because you know you do not know things,
but you are unaware of your own process. I am not here talking about team
development process, I am talking about your own personal learning
process.
This level is thus characterized by an undisciplined self-awareness. There
is little self-awareness about your own limits, and the lack of knowledge
about your learning process means what awareness you have is
undisciplined.
The next phase is what I call the dangerous phase, the JOURNEYMAN
phase. It was about 1984 when I was in this phase.
Here you have a better knowledge of tools, having learnt about many of
the programming libraries available to you. But the trap here is that the
Journeyman is so very enamoured of those tools, and this conforms to the
upward spike in the confidence curve that Dr. Marian Petre talked about
this morning (The Dunning-Kruger effect [Wikipedia_02]).
Here the problem is that you can get into Abstract thinking and this can
lead you to having an overly complex view of the solution. Your thinking
here is more complex than the problem warrants. It is quite possible that
up to 80% of the code will never be used. Therefore you are unaware of
your own thinking limits and this can lead to an experience of total panic,
especially if you are working on larger systems. [About a quarter of the
listeners raised their hand when I asked if anyone had ever experienced
this] This conforms to the downward spike that occurs after the upward
spike on the confidence curve.
One anecdote I have is the story of one rather over-confident colleague
who was given responsibility for a project. The evening before the client
was due to turn up for a demo he was still coding away. When I came into
work the next morning there was a note on his desk saying ‘I RESIGN’.
He had been working through the night and didn’t manage to get to any
solution. Of course the contract was lost.
This highlighted the total lack of awareness about his own limits. In this
phase I too remember having an arrogant positivity – “its just software”,
with the accompanying assumption that anything is possible. I had an
undisciplined lack of self-awareness. Some people can stay in this phase
for a long time, indeed their whole career and it is characterized by an
insistence on designing and coding to the limit of the complexity of their
thinking. This means, by definition, that they will have big problems
during debugging because more complex thinking is needed to debug a
system than was used in its creation.

T

Charles Tolman earned a degree in Electronic Engineering in the
70s, and then moved into software; progressing through assembler to
Pascal, Eiffel and eventually C++. He’s now involved in large scale C++
development in the CAE domain. Having seen many silver bullets come
and go, his interest is in a wider vision of programmer development that
encompasses more than purely technical competence. You can
contact him at ct@acm.org

1. ACCU2016: Talk on Software Architecture Design 1: The Path of the
Programmer.
4 | Overload | August 2017

[Tolman14]

FEATURECHARLES TOLMAN
We have gone here from one undisciplined state of partial self-awareness
to another undisciplined state of no self-awareness. Of course this could
be seen to be a bit of a caricature but you know if you hit that panic feeling
– you are in this phase.
The next phase is the MASTER phase. In the past I have hesitated to call
it the Master phase, referring to it instead as the Grumpy Old Programmer
phase!
Here we have a good knowledge of tools, but the issue that is different is
that you will be using a Context Based thinking. You are looking at the
problem you have got in front of you and fitting the tools to that problem.
There is a strong link here with a practice when flying aircraft where you
need to read from the ground to map, not the other way around. You must
do it correctly because there have been a number of accidents where the
pilots have read from the map to ground thus misidentifying their
location.
It is the same with problem-solving. Focus on the problem, use the
appropriate tools as you need them. It is interesting what Dr. Marian Petre
said about how experts can seem as though they are novices – which is
exactly what I feel like. Sometimes I look at my code and think “that
doesn’t really look that complicated”. You bring out the ‘big guns’ when
you need them, hopefully abstracted down under a good interface, but you
know you need to keep the complexity down because there will be a lot
of maintenance in the future, where you or others will have to reason
about the code.
In this phase the software complexity is of the order of the problem
complexity, perhaps a bit more because you will need a some ‘slack’
within the solution. At a personal level the major point here is that you are
aware of your own limits because in the previous phase you have reached
that panicked state.
One of the big things I have learnt through my career is the need to
develop an inner strength and ability to handle this stressed state. For
example there will be a bug. The client may panic. This is to be expected.
The salesman may panic. Still possibly to be expected. As a developer if
your manager panics too, you have a problem, because the buck will stop
with you. Can you discipline your own thinking and your own practice so
that you can calmly deal with the issue, regardless of how others are

handling the situation? This is the struggle you can get in a commercial
coding environment.
Implicit in this description is that you have developed a disciplined
personal practice.
So in summary:
Novice
 Rule-based thinking
 Undisciplined
 Some self-awareness.

Journeyman
 Abstract thinking
 Undisciplined
 No (or very little) self-awareness.

Master
 Contextual thinking
 Disciplined
 Deep self-awareness.

References
[ACCU16] ACCU Conference 2016 https://accu.org/index.php/

conferences/accu_conference_2016/
accu2016_sessions#Balancing_Bias_in_Software_Development

[Tolman13] ‘An Exploration of the Phenomenology of Software
Development’, https://www.slideshare.net/charlestolman/accu-
2013-exploration-of-phenomenology-of-sw-development

[Tolman14] ‘Imagination in Software Development’
https://charlestolman.com/2014/04/21/accu2014-workshop-
imagination-in-software-development/

[Wikipedia_01] Dreyfus model of skill acquisition,
https://en.wikipedia.org/wiki/Dreyfus_model_of_skill_acquisition

[Wikipedia_02] Dunning-Kruger effect https://en.wikipedia.org/wiki/
Dunning%E2%80%93Kruger_effect
August 2017 | Overload | 5

Live on-site C++ Training
by Leor Zolman

www.bdsoft.com • bdsoftcontact@gmail.com • +1.978.664.4178Co
ur

se
s:

wwwww..b

Moving Up to Modern C++
An Introduction to C++11/14/17 for experienced C++
developers. Written by Leor Zolman.
3-day, 4-day and 5-day formats.

Effective C++
A 4-day “Best Practices” course written by Scott
Meyers, based on his Legacy C++ book series.
Updated by Leor Zolman with Modern C++ facilities.

An Effective Introduction to the STL
In-the-trenches indoctrination to the Standard
Template Library. 4 days, intensive lab exercises,
updated for Modern C++. bdsoftcontact@ggmamaililil c.comom •• ++11.979788.66666644.41417878

Mention ACCU and receive the U.S. training
rate for any location in Europe!

https://accu.org/index.php/conferences/accu_conference_2016/accu2016_sessions#Balancing_Bias_in_Software_Development
https://accu.org/index.php/conferences/accu_conference_2016/accu2016_sessions#Balancing_Bias_in_Software_Development
https://www.slideshare.net/charlestolman/accu-2013-exploration-of-phenomenology-of-sw-development
https://www.slideshare.net/charlestolman/accu-2013-exploration-of-phenomenology-of-sw-development
https://charlestolman.com/2014/04/21/accu2014-workshop-imagination-in-software-development/
https://en.wikipedia.org/wiki/Dreyfus_model_of_skill_acquisition
https://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect
https://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect

FEATURE SERGEY IGNATCHENKO
A Usable C++ Dialect that is Safe
Against Memory Corruption
Suitable allocators for (Re)Actors can speed things
up. Sergey Ignatchenko continues his investigation
in Allocator for (Re)Actors (Part 2).
We have this handy fusion reactor in the sky.
You don’t have to do anything, it just works.

~ Elon Musk

Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Hare, and do not necessarily coincide with the opinions of the translators
and Overload editors; also, please keep in mind that translation difficulties
from Lapine (like those described in [Loganberry04]) might have prevented
an exact translation. In addition, the translator and Overload expressly
disclaim all responsibility from any action or inaction resulting from reading
this article.

s we briefly discussed in Part I of this mini-series [NoBugs17],
message-passing technologies such as (Re)Actors (a.k.a. Actors,
Reactors, ad hoc FSMs, and event-driven programs) have numerous

advantages, ranging from being debuggable (including post-factum
production debugging), to providing better overall performance.
In [NoBugs17], we discussed an approach to handling allocations for
(Re)Actors – and were able to reach kinda-safety at least in what we
named ‘kinda-safe’ and ‘safe with relocation’ mode. Unfortunately,
kinda-safety didn’t really provide the Holy Grail™ of safety against
memory corruptions. Now, we can extend our allocation model with a few
additional guidelines, and as long as we’re following these rules/
guidelines, our C++ programs WILL become perfectly safe against
memory corruptions.

#define (Re)Actors
To make this article self-contained and make sure that we’re all on the
same page with terminology, let’s repeat the definition of what we’re
considering: (Re)Actors [NoBugs17].
Let’s begin with a common denominator for all our (Re)Actors: a
GenericReactor. GenericReactor is just an abstract class – and
has a pure virtual function react():
 class GenericReactor {
 virtual void react(const Event& ev) = 0;
 }
Let’s define what we will refer to as ‘infrastructure code’: a piece of code
which calls GenericReactor’s react(). Quite often this call will be
within a so-called ‘event loop’ (Listing 1).
Let’s note that the get_event() function can obtain events from
wherever we want; anything from select() (which is quite typical for
servers) to libraries such as libuv (which is common for clients).

Also let’s note that an event loop, such as the one above, is certainly not
the only way to call react(): I’ve seen implementations of
infrastructure code ranging from one running multiple (Re)Actors within
the same thread, to another which deserialized (Re)Actor from DB, then
called react() and then serialized (Re)Actor back to a database. What’s
important, though, is that even if react() can be called from different
threads, it MUST be called as if it is one single thread (if necessary, all
thread sync should be done OUTSIDE of our (Re)Actor, so react()
doesn’t need to bother about thread sync regardless of the infrastructure
code in use).
Finally, let’s refer to any specific derivative from GenericReactor
(which implements our react() function) as a SpecificReactor:
 class SpecificReactor : public GenericReactor {
 void react(const Event& ev) override;
 };
In addition, let’s observe that whenever (Re)Actor needs to communicate
with another (Re)Actor – adhering to the ‘Do not communicate by sharing
memory; instead, share memory by communicating’ principle – it merely
sends a message, and it is only this message which will be shared between
(Re)Actors. In turn, this means that we can (and should) use single-
threaded allocation for all (Re)Actor purposes – except for allocation of
those messages intended for inter-(Re)Actor communications.

Rules to ensure memory safety
With (Re)Actors defined, we can formulate our rules to make our
(Re)Actor code (Reactor::react() and all the stuff called from it)
perfectly safe.
First, let’s postulate that there are three different types of pointers in our
program: ‘owning’ pointers, ‘soft’ pointers, and ‘naked’ pointers.
‘Owning’ pointers delete their contents in destructors, and within our
rules, should comply with the following:
 an ‘owning’ pointer is a template, semantically similar to

std::unique_ptr<>
 ‘owning’ pointers are obtained only from operator new
 copying ‘owning’ pointers is not possible, but moving them is

perfectly fine
 there is no explicit delete; however, there is a way to assign

nullptr to the ‘owning’ pointer, effectively calling destructor

A

Sergey Ignatchenko has 20+ years of industry experience,
including being an architect of a stock exchange, and the sole
architect of a game with hundreds of thousands of simultaneous
players. He currently writes for a software blog (http://ithare.com),
and translates from the Lapine language a 9-volume book series
‘Development and Deployment of Multiplayer Online Games’.
Sergey can be contacted at sergey.ignatchenko@ithare.com Listing 1

std::unique_ptr<GenericReactor> r
 = reactorFactory.createReactor(...);
while(true) { //event loop
 Event ev = get_event();
 //from select(), libuv, ...
 r->react(ev);
}

6 | Overload | August 2017

[Loganberry04]

FEATURESERGEY IGNATCHENKO

our rules do NOT allow the creation of any
pointers, unless it is a pointer to an existing

on-heap object, or an on-stack object
and deleting the object. However, while the destructor will be
called right away, implementation of our allocator will ensure that
actual freeing of the memory will be postponed until the point when
we’re out of Reactor::react(). As we’ll see below, it is
important to ensure safety in cases when there is a ‘naked’ pointer
to the object being deleted.

‘Soft’ pointers are obtained from ‘owning’ ones. Whenever we’re trying
to access an already deleted object via a ‘soft’ pointer (or create a ‘naked’
pointer from a ‘soft’ pointer which points to an already deleted object) –
we are guaranteed to get an exception. ‘Soft’ pointers should comply with
the following:
 a ‘soft’ pointer is also a template, somewhat similar to

std::weak_ptr<>
 ‘soft’ pointers are obtained from an ‘owning’ pointer, or as a copy

of an existing ‘soft’ pointer
 both copying and moving ‘soft’ pointers is ok
 ‘soft’ pointers can be implemented either using tombstones (with

reference counting for the tombstones), or using the ID-comparison-
based technique described in [NoBugs17].

‘Naked’ pointers are our usual C-style pointers – and are inherently very
dangerous as a result. Apparently, we can still handle them in a safe
manner, as long as the following rules are followed:
 our ‘naked’ pointers are obtained only from ‘owning’ pointers, from

‘soft’ pointers, or by taking an address of an existing on-stack
object. This implies (a) that all pointer arithmetic is prohibited, and
(b) that all casts which result in a pointer (except for
dynamic_cast<>) are prohibited too.

 We are allowed to copy our ‘naked’ pointers into another ‘naked’
pointer of the same type; however, whenever we’re copying a
‘naked’ pointer, we MUST ensure that the lifetime of the copy is not
longer than the lifetime of the original pointer.

The most reliable way to enforce the ‘lifetime is never extended’ rule
above is to say that all copying of ‘naked’ pointers is prohibited, except
for a few well-defined cases:
 Calling a function passing the pointer as a parameter, is ok.

NB: double-naked-pointers and references to naked pointers
effectively allow to us to return the pointer back (see on returning
‘naked’ pointer below) – so assigning to such *ptrs should be
prohibited.

 Creating an on-stack copy of a ‘naked’ pointer (initialized from
another pointer: ‘owning’, ‘soft’, or ‘naked’) of is generally ok too.

On the other hand, the following constructs are known to violate the
‘lifetime is never extended’ rule, and are therefore prohibited:
 Returning ‘naked’ pointer(s). Instead, we’ll need to return either the

‘owning’ or ‘soft’ pointer(s). Actually, if we think about it, we’ll see
that is not that much of a restriction. If we want to return a pointer
to an on-heap object, ‘soft’ or ‘owning’ pointers are the way to go;

and returning a pointer to our local stack is a Bad Idea™ anyway.
This only leaves us with functions such as strchr(), which tend
to return a pointer on an object which was passed to them as a
parameter – but it is not difficult to find a different way to return this
information (to implement an analogue of strchr() within our
restrictions, we can always return an offset instead of the pointer).

 Assigning ‘naked’ pointers to members of on-heap objects (and any
naked-pointer parameter may happen to point to the heap) is
prohibited. This can be seen as a stronger version of our restriction
from [NoBugs17], of ‘(Re)Actor state cannot have ‘naked’
pointers’; as an important side-effect which we’ll rely on later, this
means that as soon as we’re out of Reactor::react(), there are
no ‘naked’ pointers whatsoever.

Note that the respective lists of ways to create pointers are exhaustive; in
other words: the ONLY way to create an ‘owning’ pointer is from
operator new of the same type; the ONLY ways to create a ‘safe’ pointer
is (a) from an ‘owning’ pointer of the same base type, or (b) as a copy of
a ‘safe’ pointer of the same type; and the ONLY way to create a ‘naked’
pointer is from {‘owning’|‘soft’|‘naked’} pointer as long as the ‘naked’
pointer doesn’t extend the lifetime of the original pointer.
This implies prohibiting casting to pointers (and also prohibits C-style
cast and static_cast<> with respect to pointers; however, implicit
pointer casts and dynamic_cast<> are ok). Note that although casting
from pointers won’t cause memory corruption, it is not a good idea in
general.
This also implies that assigning the result of new to anything except an
‘owning’ pointer is prohibited.
Implementations for both ‘owning’ and ‘safe’ pointers should take into
account that their methods may be invoked after their destructor is called
(see discussion in (*) paragraph below); in this case, we’ll either
guarantee that no pointer to a non-existing object will be returned, or
(even better) will throw an exception.
Note that for the time being, we do NOT handle collections and arrays; in
particular, we have to prohibit indexed dereferencing (a[i] is inherently
dangerous unless we’re ensuring boundary checks).
That’s it – we’ve got our perfectly safe dialect of C++, and while it doesn’t
deal with arrays or collections, it is a very good foundation for further
refinements.

Proof sketch
The formal proof of the program under the rules above is going to be
lengthy and, well, formal, but a sketch of such a proof is as follows.
First, let’s note that our rules do NOT allow the creation of any pointers,
unless it is a pointer to an existing on-heap object, or an on-stack object
(the latter is for ‘naked’ pointers only). NB: if we also want to deal with
globals, this is trivial too, but for the time being let’s prohibit globals
within (Re)Actors, which is good practice anyway.
August 2017 | Overload | 7

FEATURE SERGEY IGNATCHENKO
As a result, there is no risk of the pointer pointing somewhere where there
was never an object, and the only risks we’re facing are about the pointers
to objects which did exist but don’t exist anymore. We have two types of
such objects: on-stack objects, and on-heap ones.
For on-stack objects which don’t exist anymore:
 To start with, only ‘naked’ pointers can possibly point to on-stack

objects
 Due to our ‘the lifetime of a ‘naked’ pointer never extends’ rule,

we’re guaranteed that a ‘naked’ pointer will be destroyed not later
than the object it points to, which means that we cannot possibly
corrupt memory using it.

For on-heap objects which don’t exist anymore:
 ‘owning’ pointers are inherently safe (according to our rules, there

is no way to delete an object while an ‘owning’ pointer still points
there)

 ‘soft’ pointers are safe because of the runtime checks we’re doing
every time we’re dereferencing them or converting them into a
‘naked’ pointer (and throwing an exception if the object they’re
pointing to doesn’t exist anymore).

 ‘naked’ pointers to on-heap objects are safe because of the same ‘the
lifetime never extends’ rule and because of the postponing the
freeing of memory until we’re outside Reactor::react().
Elaborating on it a bit: as we know that at the moment of conversion
from an ‘owning’ pointer or a ‘soft’ pointer to a ‘naked’ pointer, the
object did exist, and the memory won’t be actually freed until we’re
outside of Reactor::react(), this means that we’re fine until
we’re outside of Reactor::react(); and as soon as we’re
outside of Reactor::react(), as discussed above, there are no
‘naked’ pointers anymore, so there is no risk of them dereferencing
the memory which we’re going to free.

(*) Note that via ‘naked’ pointers, we are still able to access objects which
have already had their destructors called (but memory unreleased); this
means that to ensure safety, those objects from supporting libraries which
don’t follow the rules above themselves (in particular, collections) must
ensure that their destructors leave the object in a ‘safe’ state (at least with
no ‘dangling’ pointers left behind; more formally: there should be a firm
guarantee that any operation over a destructed object cannot possibly
cause memory corruption or return a pointer which is not a nullptr,
though ideally it should cause an exception).
Phew. Unless I’m mistaken somewhere, it seems that we got our perfectly
safe dialect of C++ (without collections, that is).

Enter collections
[Enter Romeo and Juliet]

Romeo: Speak your mind. You are as worried as the sum of yourself
 and the difference between my small smooth hamster and my nose.

Speak your mind!
Juliet: Speak YOUR mind! You are as bad as Hamlet!

You are as small as the difference between the square of the difference
between my little pony and your big hairy hound

and the cube of your sorry little codpiece. Speak your mind!
[Exit Romeo]

~ Program in The Shakespeare Programming Language

As noted above, collections (including arrays) are not covered by our
original rules above. However, it is relatively easy to add them, by adding
a few additional rules with regards to collections.
First, we will NOT use the usual iterators (including pointers within
arrays); instead, we’re using ‘safe iterators’. A ‘safe iterator’ (or ‘safe
range’) is a tuple/struct/class/… which contains:
 An {'owning'|'soft'|'naked'} pointer/reference to the collection
 An iterator (or range) within the collection pointed out by the pointer

above

The second rule about collections is that all the access to the collections
(including iterator dereferencing) MUST be written in a way which
guarantees safety.
For example, if we’re trying to access an element of the array via our ‘safe
iterator’, it is the job of the operator* of our ‘safe iterator’ to ensure
that it stays within the array (and to throw an exception otherwise).
This is certainly possible:
 For arrays, we can always store the size of the array within our array

collection, and check the validity of our ‘safe iterator’ before
dereferencing/indexing.

 Then, as all the std:: collections are implemented either on top of
single objects or on top of arrays, rewriting them in a safe manner is
always possible based on the techniques which we already
discussed.

 On the other hand, more optimal implementations seem to be
possible for specific collections. As one example, deque<> can be
implemented without following the rules discussed above within its
implementation, and simply checking range of the iterator instead.
In another example, tree-based collections can be optimized too.

This way, whenever we want to use such a ‘safe iterator’/‘safe range’, first
we’ll reach the collection (relying on our usual safety guarantees for our
{'owning'|'soft'|'naked'} pointers), and then the collection itself will
guarantee that its own iterator is valid before dereferencing it.

Different approaches to safety in infrastructure code
and Reactor code

20% of people consume 80% of beer
~ Pareto principle as applied to beer consumption

An observation (*) above, as well as the discussion about optimized
collections, highlights one important property of our Perfectly Safe
Reactors:

we can (and often SHOULD) have different approaches to safety of
the Reactor::react() and the rest of the code.

This dichotomy between infrastructure code and Reactor code is actually
very important in practice.
Infrastructure code (including supporting libraries such as collections,
etc.) is:
 written once – and then stays pretty much unchanged
 usually relatively small compared to the business-logic stuff
 called over and over
 often fits into the 5% of the code which takes 95% of the execution

time
In contrast, (Re)Actor code:
 contains business logic, which has a tendency to be changed several

times a day
 as with any business logic, its code base can be huuuuge
 most of this code is called only occasionally compared to the

Infrastructure Code
 90% of it is glue code, which very rarely causes any performance

issues
As a result, we can observe that for small, never-changing, and
performance-critical Infrastructure Code, it is both feasible and desirable
to provide safe highly-optimized versions (which may or may not follow
our rules above in the name of performance). On the other hand, for
(Re)Actor Code, formal safety is usually much more important than bare
performance. This is especially so as, in the case of our rules, the expected
performance hit is pretty much negligible: the only two runtime checks
we’re doing happen at ‘safe’ pointer to ‘naked’ pointer conversion (or at
‘safe’ pointer dereferencing), and at collection accesses; neither of them
is expected to be noticeable (except in some very performance-critical
code).
8 | Overload | August 2017

FEATURESERGEY IGNATCHENKO
Generalizing this point further, we can split our code base into a small
performance critical part (which we’ll handle without our safety rules, but
which is small enough to be scrutinized in a less formal manner), and a
large performance-agnostic part (which we’ll handle according to the
safety rules above); however, in practice, these lines will be usually very
close to the lines between Infrastructure Code and (Re)Actor Code.
One important thing to keep in mind when writing those Infrastructure
objects which are intended to be called from (Re)Actors is ensuring that
they’re safe even after their destructor is called (as discussed in the (*)
paragraph above). On the other hand, if our object follows our safety rules
above, this will be achieved automagically.

All our rules are very local, which enables
automated checks
One further very important property of our safety rules is that

they’re very local.
Indeed, all the rules above can be validated within the scope of one single
function. In other words, it is possible to find whether our function f() is
compliant with our safety rules using function f() and only function f().
This not only allows for simple code reviews, but also means that this
process can be automated relatively easily. Implementing such a tool is a
different story (and it is still going to take a while) but is perfectly feasible
(well, as long as we find a tool to parse C++ and get some kind of AST,
but these days at least Clang does provide this kind of functionality).
As soon as such an automated check tool is implemented, development
will become a breeze:
 We separate our code into ‘safe’ code and ‘unsafe’ code (usually,

though not strictly necessary, along the lines of the
(Re)Actor::react()).

 For ‘safe’ code, such an automated check tool becomes a part of the
build

 As a result, as long as ‘unsafe’ code is not changed (i.e. only ‘safe’
code is changed) there can be no possible regressions which can
cause memory corruptions.

While this is not a real ‘silver bullet’ (nothing really is – in fact, the safety
of theoretically safe languages also hinges on the safety of their compilers
and standard libraries), this approach is expected to improve memory
safety of the common business-level code by orders of magnitude (and

even if your code is already perfectly safe, this approach will provide all
the necessary peace of mind with regards to safety).

Conclusion
That’s pretty much it – we DID get a perfectly usable C++ dialect which
is also 100% safe against memory corruption and against memory leaks.
BTW, if necessary our approach can easily be extended to a more flexible
model which relies on semantics similar to that of std:shared_ptr<>
and std::weak_ptr<>; while I am not a fan of reference-counted
semantics (from my experience, reference counting causes much more
trouble than it is worth – and simplistic ‘owning’ pointers are more
straightforward and are perfectly usable for millions of LOC projects) – it
is perfectly feasible to implement shared ownership along the same lines
as discussed above; the only substantial twist on this way is that as
std::shared_ptr<> (unlike our model above) does allow for circular
references and resulting memory leaks, we will probably need to detect
them (which can be done, for example, by running some kind of
incremental garbage collection at those points where we’re waiting for the
input, sitting outside of Reactor::react()).
Phew. BTW, as the whole thing is quite complicated, please make sure to
email me if you find any problem with the approach above (while I’m sure
that it is possible to achieve safety along the lines discussed above, C++
is complicated enough we might need another restriction or two on this
method). 

References
[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to

Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[NoBugs17] ‘No Bugs’ Hare, ‘Allocator for (Re)Actors with Optional
Kinda-Safety and Relocation’, Overload #139, Jun 2017

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague
August 2017 | Overload | 9

http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html

FEATURE HERB SUTTER
Metaclasses: Thoughts
on Generative C++
Can you simplify C++ with minimal library
extension? Herb Sutter shows how
metaclasses could make this possible.

Herb recently blogged this note about a new ISO C++ proposal he and
colleagues are working on, and we felt it would be of interest to Overload
readers. Herb has kindly agreed to let us republish the blog post here
as an article, and add the abstract from the current version of the
proposal. -Ed.

’ve been working on an experimental new C++ language feature
tentatively called ‘metaclasses’ that aims to make C++ programming
both more powerful and simpler. You can find out about it here:
 Current proposal paper: P0707R1 [Sutter17a]. I hope the first ten

pages give a readable motivation and overview. (The best two pages
to start with are 9 and 10, which probably means I need to reorder
the paper…)

 Initial intro talk video: ACCU 2017 (YouTube) [Sutter17b]. This is
the initial public presentation three months ago. Thank you to Roger
Orr, Russel Winder, Julie Archer, and the other ACCU organizers
for inviting me and for holding back the video until we could have
the ISO C++ summer meeting in mid-July, so it could go live along
with a report (herein) on the results of this feature’s first presentation
to the ISO C++ committee. And special thanks to Ina and Arvid, the
two audience volunteers who graciously agreed to come on-stage to
participate in a live mini UX study. There’s a lot of subtle
information in their nuanced reactions to the code examples; pay
special attention when their responses are different or as their
responses evolve.

 ‘Incomplete and experimental’ prototype compiler. The Clang-
based prototype by Andrew Sutton is available as an online live
compiler at cppx.godbolt.org, and as source at github.com/asutton/
clang. It’s incomplete but can compile a number of the examples in
the paper (see the paper for example code links). Thanks to Matt
Godbolt for hosting it on godbolt.org!

Please see the above paper and video to answer “what are metaclasses and
why should I care?”
If you’re the “show me code first, English later” kind of person, try the
live compiler and these quick examples: interface, base_class, value
(regular type), plain_struct (links are in the paper).
The rest of this article aims not to duplicate any information above, but to
provide some context about the broader journey, and what I and others are
attempting to accomplish.

A journey: Toward more powerful and simpler C++
programming
Phase 1: By using the existing language better
About five years ago, I started working on long-term effort toward
making using C++ simpler and safer.

In the first phase, a small group of us – centered on Bjarne Stroustrup,
Gabriel Dos Reis, Neil MacIntosh and Andrew Pardoe – pushed to see
how far we could get with ‘C++ as it is’ plus just a few well-chosen
library-only extensions, with a particular goal of improving type and
memory safety. Bjarne, Neil, and I first publicly reported on this effort in
the two CppCon 2015 plenary sessions ‘Writing Good C++14’
[CppCon15a] and ‘Writing Good C++14… By Default’ [CppCon15b].
The results of that work so far have manifested as the C++ Core
Guidelines [CCG] and its support library, GSL [GSL], that adds a limited
number of library types (e.g., span, now being standardized); and I led
the Lifetime design in particular (available in the Guidelines /docs folder)
which Neil and I and others continue to work on formalizing with the aim
of sharing a ‘draft’ static analysis spec later this year.
One of the goals of this phase was to answer the question: “How much
progress can we make toward simplifying the existing C++ language with
only a few key library extensions?” The answer as I see it turned out to be:
“Some solid progress, but probably not a major simplification.” And so
that answer led to phase two…

I

Herb Sutter is chair of the ISO C++ committee and a programming
language architect at Microsoft, and has been the author or co-
author of a number of C++ features.

The only way to make a language more powerful, but also make its
programs simpler, is by abstraction: adding well-chosen abstractions that
let programmers replace manual code patterns with saying directly what
they mean. There are two major categories:

Elevate coding patterns/idioms into new abstractions built into
the language. For example, in current C++, range-for lets
programmers directly declare “for each” loops with compiler support
and enforcement. Templates are a powerful parameterization of
functions and classes, but do not enable authoring new encapsulated
behavior.

(major, this paper) Provide a new abstraction authoring
mechanism so programmers can write new kinds of user-
defined abstractions that encapsulate behavior. In current C++,
the function and the class are the two mechanisms that
encapsulate user-defined behavior. In this paper, $class
metaclasses enable defining categories of classes that have
common defaults and generated functions, and formally expand
C++’s type abstraction vocabulary beyond class/struct/union/
enum.

Also, §3 includes a set of common metaclasses, and proposes that
several are common enough to belong in std::. Each subsection of §3
is equivalent to a significant “language feature” that would otherwise
require its own EWG paper and be wired into the language, but here can
be expressed instead as just a (usually tiny) library that can go through
LEWG. For example, this paper begins by demonstrating how to
implement Java/C# interface as a 10-line C++ std:: metaclass –
with the same expressiveness, elegance, and efficiency of the built-in
feature in such languages, where it is specified as ~20 pages of text.

Abstract from P0707 R1
10 | Overload | August 2017

FEATUREHERB SUTTER
Phase 2: By evolving the language
Two years ago, I started to focus specifically on exploring ways that we
might evolve the C++ language itself to make C++ programming both
more powerful and simpler. The only way to accomplish both of those
goals at the same time is by adding abstractions that let programmers
directly express their intent – to elevate comments and documentation to
testable code, and elevate coding patterns and idioms into compiler-
checkable declarations. The work came up with several potential
candidate features where judiciously adding some power to the language
could simplify code dramatically.
Of those potential candidate features, metaclasses is the first major piece
I picked to propose for ISO C++. We presented it for the first time at the
summer ISO C++ meeting earlier this month, and it received a warm
reception. [1]
There was (rare) unanimous support for pursuing this kind of capability,
but also some concern about how best to expose it and specific design
change feedback the committee wants us to apply to improve the
proposal. [2]
We’ll work to include in a revision for the November standards meeting
as we start the multi-year process of vetting and refining the proposal. So
this is good progress, but note that it (only) means encouragement to
continue the experiment and see where it leads; it’s far too early to talk
about potential ship vehicles.
So do expect change: The proposal is still evolving, and it in turn assumes
and builds on the static reflection proposal (P0578 et al.) and the compile-
time programming proposal (P0633), both of which are actively evolving
in their own right. Incidentally, one of the contributions of Andrew
Sutton’s prototype metaclasses compiler is that it is implementing those
other proposals too(!), since the metaclasses feature needs them. The aim
is to keep the latest compiler and the latest P0707 paper in sync with each
other and with those related proposals, but there will doubtless be
occasional drift in between syncs.

What’s next
I’ll talk about metaclasses more in my upcoming CppCon 2017 talk this
September, and Andrew Sutton will also be giving two CppCon talks
about metaclasses – one about implementing them in Clang, and one
about using them for a real project.
This is just the beginning, and we’ll see whether it all pans out and leads
somewhere, but I hope you enjoy this exploration and I look forward to
talking with many of you about it at CppCon this September. 

Notes
1. I actually brought a smaller piece from this same work to the

committee at the previous meeting, the winter meeting in Kona:
P0515 (consistent comparisons), which proposes adding the three-
way <=> comparison operator. P0515 is only about a minor feature,
and not one of the most important things that can help improve C++,
so normally I wouldn’t have picked that piece to contribute first; but
the committee was already continuing to actively discuss
comparisons, so I cherry-picked it from my design work and
contributed it since I had the design in my pocket anyway. Happily
the committee liked what they saw and both EWG and LEWG

accepted it, and it is now progressing well and on track to hopefully
be voted into draft C++20 in the next meeting or two. Thanks to Jens
Maurer and Walter Brown for the heavy lifting of writing the core
language and library standardese wording, respectively, for that
P0515 proposal.

2. The committee’s design feedback was primarily about how to wrap
up the transformation code: Instead of putting it inside a new ‘meta’
class-like abstraction, how about wrapping the same code inside a
compile-time function-like abstraction that takes an input
meta::type parameter and returns a generated meta::type return
value? This doesn’t affect the proposal’s basic engine, just the shape
of its steering wheel – for example, we could change the first line of
each example metaclass definition from the class-like syntax

 $class interface {
 constexpr {
 // … basically same code …
 }
 };

to the decorator-function-like syntax

 meta::type interface(const meta::type source) {
 // … basically same code …
 };

where the latter has the advantage that it’s easy to see that we’re
reading one type and generating another type. Interestingly, I think
this dovetails with the mini UX study in the video where most of the
difficulty the UX participants seemed to encounter was in
understanding the $class syntax, not the metaclass bodies and not
later using the metaclasses to author new types.
But we’ll explore this and other options and validate/invalidate it
with more experiments… and feel free to drop me a line (or
comment on the original blog post [Sutter17c]) if you like one of
these styles better, or perhaps another variation.

References
[CCG] C++ Core Guidelines http://isocpp.github.io/CppCoreGuidelines/

CppCoreGuidelines
[CppCon15a] https://www.youtube.com/watch?v=1OEu9C51K2A
[CppCon15b] https://www.youtube.com/watch?v=hEx5DNLWGgA
[GSL] GSL: Guideline support library http://isocpp.github.io/

CppCoreGuidelines/CppCoreGuidelines#S-gsl
[Sutter17a] Metaclasses: Generative C++ P0707 R1 proposal paper at

https://herbsutter.files.wordpress.com/2017/07/p0707r1.pdf
[Sutter17b] Metaclasses. Goal: Making C++ more powerful, and simpler

at https://www.youtube.com/
watch?v=6nsyX37nsRs&feature=youtu.be

[Sutter17c] Original blog post: https://herbsutter.com/2017/07/26/
metaclasses-thoughts-on-generative-c/?platform=hootsuite
August 2017 | Overload | 11

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://www.youtube.com/watch?v=1OEu9C51K2A
https://www.youtube.com/watch?v=hEx5DNLWGgA
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-gsl
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-gsl
https://herbsutter.files.wordpress.com/2017/07/p0707r1.pdf
https://www.youtube.com/watch?v=6nsyX37nsRs&feature=youtu.be
https://www.youtube.com/watch?v=6nsyX37nsRs&feature=youtu.be
https://herbsutter.com/2017/07/26/metaclasses-thoughts-on-generative-c/?platform=hootsuite
https://herbsutter.com/2017/07/26/metaclasses-thoughts-on-generative-c/?platform=hootsuite

FEATURE KATARZYNA MACIAS
A C++ Developer Sees Rustlang
for the First Time
Rust claims to run blazingly fast, prevents segfaults, and
guarantees thread safety. Katarzyna Macias provides an
introduction for a C++ developer.
decided to learn a new modern language – the more exotic the better.
But to be honest, it’s not hard to impress me because throughout my
studies and career I have only had contact with the most mainstream

languages, like C, C++, Java, Python and Javascript.
At first, I planned to choose between Haskell, Clojure and Scala, but then
I made a Twitter survey and I got several recommendations to try Rust.
After a quick look at some examples … it looks weird enough. I’ll take it!
I liked it at first sight: Rust may be the language that the world was
waiting for! (Yes, I know – it is too early for me to have this much
enthusiasm).
The documentation says:

Rust is a systems programming language focused on three goals:
safety, speed, and concurrency. It maintains these goals without
having a garbage collector.

Looks great: it doesn’t have a garbage collector and that gives it a big
advantage over the languages that do have GC. It also introduces a new
level of safety. It has a lot of other assets that I don’t know about yet.
I don’t think it will replace C++, because I don’t think that any language
will be able to do that within 10–20 years (don’t blame me if I’m wrong).
However, it may well become a proud neighbour of C++ on the shelf
reserved for the most beautiful programming languages.

A first look at Rust
These are the things that caught my attention when I started to learn about
Rust.

Variables are immutable
In Rust, every ‘variable’ – which is called a binding – is immutable by
default. The binding declaration is shown in the example below. You
can’t reassign the value of x since x is const!
 fn main ()
 {
 let x = 5;
 x = 3; // This won't compile!
 }

To make a binding mutable, add mut keyword: let mut x = 5.
This is different from C++, where you need to add the additional word to
make a variable immutable. And I think the Rust solution is better. It’s
easy to forget or to skip the ‘unnecessary’ keyword out of laziness. Here,
forgetting gives you the less-risky default.

I have even heard a rumour that Bjarne (Stroustrup) once said that he
would like to have such ‘inverted const logic’ in C++. But did he really
say that? I don’t know.

You can’t use an uninitialized binding
Another safety improvement is the fact that you get a compilation error
when you try to use an uninitialized binding. I also appreciate this feature.
Why would anybody want to use uninitialized variables? It’s an obvious
error, so why not stop compilation when it happens?

Formatting correctness checked at compile time
The next protection for the careless developer: if you’ve ever had a crash
in your application because you used the wrong number of arguments in
your print function, you will value this. I have had this kind of problem
and it was really hard to detect all the places in the code where the print
was misformatted (our compiler gave no warnings for that – GCC
fortunately does). To make it worse, the crashes were only sporadic. I
would really prefer that the code would not compile as soon as the
problem was introduced. And so it is in Rust: it won’t allow you to
compile incorrect formatting.
 fn main ()
 {
 // This won't compile!
 println!("The value is: {}");
 }

Function declaration order does not matter
You can call functions before you declare them. This code is correct:
 fn main ()
 {
 print_number(5);
 }

 fn print_number(x: i32)
 {
 println!("x is: {}", x);
 }
This goes against the expectations of a C++ developer, but perhaps that is
not important.

Returning without a return statement
This one is weird. The example below shows how to return a value from
a function:
 fn add_one(x: i32) -> i32 {
 x + 1
 }

No semicolon, no return keyword… And a strange-looking arrow. It
doesn’t look very friendly at first sight.

I

Katarzyna Macias lives in Wroclaw, Poland. She works as a C++
software developer since 2013. Her main interests are new
language features and telecommunication. Contact:
kasia.macias@gmail.com
12 | Overload | August 2017

FEATUREKATARZYNA MACIAS
If you want to ask how to return early… Good question. Here you should
use return:
 fn foo(x: i32) -> i32 {
 return x;

 // we never run this code!
 x + 1
 }
Further, from the Rust book, we learn that:

Using a return as the last line of function works, but is considered
poor style.

Hmm. For me this syntax is odd, but I won’t be discouraged by that.

My impressions of Rust
I feel very positive about Rust and I consider the additional safety as a
great feature. I think the more checks that are done during the compilation
time the better, as long as the compilation time doesn’t exceed reasonable
limits. Remember that the time you spend on waiting for your compilation
may save you long hours of debugging.
I feel very curious about the possibilities for this language and I’m excited
to learn more! 
August 2017 | Overload | 13

Alison Peck
www.clearly‐stated.co.uk

All too often, user documentation for a product or service ends up a bit like this... a brain‐dump
of everything the people writing it know, just in case it’s needed one day.

Developing good user assistance (manuals, online help, tutorials, video) is more than sharing what
you know.

It involves working out who will be using the information, what they are likely to know already,
what they are doing at the time, why they need it (what are they trying to achieve, what happens
if they get that step wrong...

A professional, qualified technical communicator can
help you to get all of this right.

FEATURE ALF STEINBACH
Portable Console I/O via
iostreams
Portable streaming is challenging. Alf
Steinbach describes how his library fixes
problems with non-ASCII characters.
y Boost licensed stdlib header library [stdlib] applies some
crucial fixes to the C++ implementation’s standard library, and
provides a (hopefully) complete set of wrapper headers that

apply these fixes; some functionality used internally in the stdlib
implementation; and a number of convenience headers for the standard
library.
The most important fix, because it enables portability and reasonable
functionality for beginners’ programs, is of char-based text iostreams
(e.g. cout) console i/o in Windows. stdlib installs special buffers in the
standard iostreams that are connected to the console, and these buffers
provide an UTF-8 view of the console. That means that portable
ordinary char and std::string based code can present e.g.
Norwegian and Russian text in the console, via cout, and can input
international text from the user, via cin.
stdlib also provides an UTF-16 view of the console for wchar_t based
i/o via the wide iostreams, such as wcout.
The UTF-16 view was functionality that essentially came for free,
because it was base functionality needed for the UTF-8 view, and it
means that in addition to supporting portable char based code stdlib
also supports wchar_t-based pure Windows programs.
Here I discuss only this portable console i/o aspect of stdlib – the other
stdlib stuff is also nice, but is not as significant.

Goal: portable console i/o
The main goal with stdlib was to enable simple textbook style console
based exploratory C++ programs, like the example in Listing 1.

A student should be able to type in his or her own non-English name into
this program, and see it accurately presented back by the program, also in

Windows. This goal is accomplished, modulo the Windows console
windows’ restriction to the BMP1 part of Unicode.
Without a console i/o fix applied, Visual C++’s runtime library forwards
the nullbytes that a Windows console window in UTF-8 mode (codepage
65001) produces for non-ASCII characters, i.e. yielding a name string
with embedded nullbytes, which in the console window’s presentation
leaves blank areas (see Figure 1).
Using the Visual C++ 2017 compiler cl in Windows 10 and applying the
stdlib i/o fix via the /FI option for a forced include gives the output in
Figure 2.
This correct result is independent of the console window’s active
codepage, and is the same in the *nix world.
The stdlib i/o fix includes a convenience #pragma for Visual C++, setting
the execution character set to UTF-8, for otherwise the execution

M

Listing 1
1. The BMP, the Basic Multilingual Plane, is Unicode restricted to 16 bits,

like in Unicode version 1 in 1991/1992. The 21-bit version 2 came in
1996. By that time Microsoft had committed to 16-bit Unicode. Unicode
2’s UTF-16 encoding was designed to allow the existing 16-bit Unicode
systems (various programming languages, + Windows) to just keep on
working; a backward-compatible encoding. So most of Windows uses
full UTF-16, but Windows console windows have a non-streaming API
that restricts each character position to 16 bits. Hence if you output an
UTF-16 surrogate pair (representing a Unicode code point outside the
BMP, e.g. an emoji or an archaic Chinese glyph) to a Windows console
window, you get two characters displayed, probably as “I didn’t
understand that” squares.

Alf Steinbach learned Basic and some 8080 assembly back in
1980. He’s been a senior consultant with Kantega and Accenture,
a lecturer at Nordland University, a vocational teacher, has
contributed to various C++ FAQs, and helps administer the
Facebook group ‘C++ Enthusiasts’. He was awarded Microsoft’s
MVP in Visual C++ in 2012. Contact: alf.p.steinbach@gmail.com

Figure 1

Figure 2
14 | Overload | August 2017

FEATUREALF STEINBACH

In Windows, the limited byte streams are
second or third class citizens, not the
primary way to interact with consoles
character set would have had to be specified explicitly as UTF-8 in
every compilation, like the /utf-8 option in the first compiler
invocation above. Visual C++ defaults to Windows ANSI encoding,
which depends on the locale Windows is installed for. With g++ the
execution character set default is already UTF-8.

The technical problem(s)
I hate to hear ‘Less is more.’ It’s a crock of crap.

~ R. Lee Ermey, American soldier and
movie star of Full Metal Jacket [Ermey]

The C and C++ standard libraries’ unified view of console, pipe and file
i/o as minimalist streams of bytes, works fine in the *nix world where
C and C++ originated. But Windows is based on different ideas, ideas
of more rich standard functionality – much richer standard
functionality. And so, in Windows the limited byte streams are second
or third class citizens, not the primary way to interact with consoles: the
streams are evidently there as backward compatibility support for archaic
pre-Unicode programs, because UTF-8 console input Just Doesn’t
Work™ for non-ASCII characters.
So, what happens if you tell a Windows console window to use UTF-8
encoding, by setting its active codepage to 65001?
As of Windows 10 byte stream output appears to work, but, down at the
Windows API level, byte stream input of non-ASCII characters produces
just nullbytes, as illustrated by a program that directly uses Windows’
ReadFile and WriteFile functions (see Figure 3).
Additionally, Visual C++’s setlocale in Windows [Microsoft-a]
explicitly does not support UTF-8. A possible reason is the C standard’s
requirement that a wchar_t “can represent distinct codes for all members
of the largest extended character set specified among the supported
locales” [C99]. For Windows’ wchar_t type, from the early Unicode
adoption, is just 16 bits, which with modern 21-bit Unicode is not enough
for all members of an UTF-8 locale.
And in addition to the limited Windows support for UTF-8 in consoles,
the C and C++ standard libraries fail to support UTF-8 text handling.
There is no functionality for iterating over code points (which can be of a
variable number of bytes); the functionality for char classification, such
as the C library’s isupper, only works for single bytes, i.e. when the
UTF-8 character is in the ASCII subset ; the C++ l ibrary’s
std::ctype::widen, which can deal with a string of encoding units, is
rendered impotent for portable code by the fact that there’s no UTF-8
locale in Windows, so there’s no way to tell it that those bytes are UTF-8
encoded text; and so on, and on. AFAIK there’s no solution that addresses
all the issues.
However, the lack of C++ standard library support was not a showstopper
for the *nix world’s transition to UTF-8. In the late 1990s and early 2000s
one simply let existing tools treat UTF-8 as extended ASCII text with
occasional pass-them-right-through-please hey just ignore them high
value bytes. Today, as of 2017, the *nix world appears to be all UTF-8 for

text files, so that approach worked, and hence it can presumably also work
for Windows.

Possible solutions
The missing functionality for text handling is offered by various 3rd party
libraries, including IBM’s open source ICU library [ICU], and Boost
Locale, which is a char-based wrapper over ICU. The Boost Locale
documentation notes that “The default character encoding is assumed to
be UTF-8 on Windows” [Boost-a]. So evidently, an assumption of UTF-8
as the main text encoding on every platform, including in Windows, is not
unheard of.
A mainly all UTF-8 approach for external text and for simple processing,
with conversion to and from UTF-16 for e.g. use of ICU, seems to be
where we’re heading, also for Windows programs.
Anyway, to work with international text in Windows consoles, especially
for beginners, it’s practically necessary to
 change the default font for Windows console windows2 to one that

can display international characters, such as Lucida Console, or else
use 3rd party console windows.

With that display fix in place one basically has three options for portable
C++ code:
 use byte stream i/o with some fix applied in Windows, e.g. the

standard library’s byte streams with a restricted character set from a
national codepage, or with conversion to/from internal UTF-8 such
as provided by stdlib;

 use wide stream i/o (note: the standard library’s wide stream i/o
converts to and from external byte streams) with some platform-
dependent fix applied, e.g. in Windows, using the standard library’s
wide streams with Microsoft’s _setmode extension [Microsoft-b],
or again using stdlib, and in the *nix world, with a suitable UTF-8
locale; or

2. To change the default font for a Windows console window, just right
click the window title for a menu, and drill down into it

Figure 3
August 2017 | Overload | 15

FEATURE ALF STEINBACH

there seems to be no portable non-intrusive
way to fix the encoding of the arguments of
main in Windows
 use an abstraction that transparently adapts the encoding to the
system, selecting between byte and wide stream i/o within the
implementation of that abstraction, with an encoding unit type
suitably defined for each system.

Some years ago, I saw adaptive encoding and i/o as a viable compromise
between conflicting goals [Steinbach13].
One main problem with that approach, however, is that it’s necessarily
intrusive, e.g. requiring string literals wrapped in adaptive macro calls
like S("Hi") and use of standard streams via adaptive references like
sys::out for std::cout, so that
 the approach can’t handle simple textbook example program code

as-is, and hence
 existing code doesn’t automatically benefit.

This is what stdlib addresses with its UTF-8 console i/o: it can handle
textbook example program code as-is, and if existing code uses the C++
iostreams, then that code benefits automatically.
In contrast the nowide library [nowide], adopted in Boost [Boost-b] in
June 2017, is an intrusive UTF-8 i/o approach, and thus, except that it
handles ordinary narrow literals, it suffers from the drawbacks above.
The nowide web page refers to a 2011 blog posting of mine [Steinbach11]
about Unicode in Windows console windows, which, incidentally, is how
I became aware of nowide, some time after I started work on stdlib. In
that article, I argued for leveraging Microsoft’s _setmode extension,
using wide text internally in the C++ program, and I referred to a 2008
blog posting by Microsoft’s Unicode guru Michael Kaplan, titled
‘Conventional wisdom is retarded, aka What the @#%&* is
_O_U16TEXT?’ [Kaplan08]. Both stdlib and nowide now go in the
opposite direction, using narrow text internally in C++.

General comparison: adaptive versus stdlib versus
nowide
The C++ core language is involved in two areas: string literals and process
command line arguments, namely the arguments of main. Happily, with
the all UTF-8 approach of stdlib and nowide, and with modern
compilers’ (especially now Visual C++’s) support for UTF-8 as the
execution character set, one can just use ordinary narrow literals.
Unfortunately, there seems to be no portable non-intrusive way to fix the
encoding of the arguments of main in Windows, and so both libraries
provide intrusive, portable means of obtaining UTF-8 encoded command
line arguments.
Apart from that the stdlib library is based on only providing transparent
fixes to the standard library implementation, and a minimum of new
functionality, while the adaptive approach and the nowide library are
based on providing alternatives to the core language and standard library
in certain areas.
With stdlib’s goal of providing as little new functionality as possible,
checking which of stdlib and other libraries provide the most
features, would be mostly meaningless. But one can still compare

general goals or ideals achievement for the libraries. For the adaptive
approach, the table below just lists what will be generally true of any
reasonable implementation of that approach.

My ‘partial’ mark on nowide’s working is mainly due to its failure to
remove carriage return characters from input in Windows (Listing 2). The
result is in Figure 4.
This problem, plus a ditto problem with Windows’ convention of using
Ctrl Z as EOF marker, has probably already been fixed by the time you’re
reading this. But I was perplexed to discover that the library bungled
input, which is so fundamental to what it’s all about, after it had been
approved for Boost. It’s really strange.

Goal/ideal Adaptive stdlib nowide
General

Working narrow Unicode console i/o n/a Success Partial

Working wide Unicode console i/o n/a Success Failure

That it fails gracefully for bad data - Success Failure

Support of coding

Idiomatic char based learner’s C++ Failure Success Success

No <windows.h> namespace pollution - Success Success

Few or no explicit encoding conversions Partial Failure Failure

Using textbook example code as-is Failure Mostly Failure

Automatic benefit for existing code Failure Mostly Failure

Support of building & other tool usage

No large 3rd party library dependency - Success Success

Header only library - Success Failure

Tools, e.g. string display in debuggers Success Failure Failure

Clean build with common compilers - Success Failure

Listing 2

Figure 4

16 | Overload | August 2017

FEATUREALF STEINBACH

Both stdlib and nowide assume that main
arguments on other platforms than

Windows are UTF-8 encoded
With Visual Studio’s debugger in Windows one can use the format
specifier ,s8 on a watch of a raw C string to force UTF-8 interpretation
of the bytes. However, with other presentations of narrow strings the VS
debugger uses Windows ANSI, even when the program’s execution
character set is UTF-8, with gobbledygook as the result. This is the main
tool support failure of stdlib and nowide, and it’s one area where the
adaptive approach would shine.
Hopefully, in the not distant future the Visual Studio debugger will gain
some option to assume UTF-8, or maybe it will just pick up what the
program’s execution character set is, not to mention encoding information
for each literal, and use that.
stdlib’s not quite 100% success in supporting textbook example code is
due to the following constraints:
 automatic conversion to/from internal UTF-8 for console i/o seems

to not be portably possible for C FILE* i/o, and
 with both Visual C++ and MinGW g++ the arguments of main are

(incorrectly) Windows ANSI-encoded even when the execution
character set is UTF-8, and a transparent automatic fix appears to
not be practically possible.

Command line arguments in stdlib versus nowide
Both stdlib and nowide assume that main arguments on other platforms
than Windows are UTF-8 encoded. In Windows, they both use the
GetCommandLineW API function to obtain the original UTF-16 encoded
command line passed to the process, and CommandLineToArgvW to parse
it into individual arguments. stdlib uses this info to provide a separate set
of UTF-8 encoded original command line arguments, while nowide uses
the info to replace the main arguments with UTF-8 encoded originals.
The intended default usage in stdlib (and what I hope for in some future
C++ standard library support for this) is that a Command_line_args
object should be default-constructed wherever command line arguments
are needed, which supports use in e.g. the constructor of a namespace

scope variable, or in some other function without access to the actual
main arguments.
As of July 2017, default construction of Command_line_args is
implemented only for Windows and Linux, but code that only needs to be
portable to these two systems can look like Listing 3.
This can be made fully portable by replacing the main code with
Listing 4... which, however, is not possible for the mentioned case of
constructor for a namespace scope variable (without employing a time
machine to check what the future call of main will have).
The nowide library offers only this latter restricted approach of passing
the actual main arguments to a fixer object (see Listing 5).
Using the *nix world convention of representing the command line
arguments as an int + char** pair makes it easy to use library functions
based on that convention, such as getopt . With stdlib the
Command_argv_array class offers this value pair. A key difference is
that an instance of stdlib’s Command_argv_array is a copy of the
argument string data, so that the data can be freely modified.

Listing 4

Listing 5

Listing 3
August 2017 | Overload | 17

FEATURE ALF STEINBACH

Neither stdlib nor nowide provide
dedicated wildcard expansion
functionality, but stdlib offers portable
access to the C++17 filesystem library
Note: with MinGW g++ and nowide the value of n above can be reduced
by the declaration of the nowide::args variable, because MinGW g++
provides wildcard expansion of arguments, and the synthesized UTF-8
encoded arguments are not expanded.
 Neither stdlib nor nowide provide dedicated wildcard expansion
functionality, but stdlib offers portable access to the C++17 filesystem
library, which combined with some regular expression matching can do
the chore. However, that’s quite complex machinery. E.g. with normal
Windows filename wildcards a * doesn’t match backward slashes (which
a regular expression simple .* pattern does), and one has to deal with
absolute and relative paths. I think wildcard expansion functionality
properly belongs with the iteration ability of the filesystem library, and
not with mainly a console i/o fix library. Alas, the filesystem library does
not yet offer this functionality.

Using the C++17 filesystem library
Sometimes an executable has associated files such as configuration files
and resource files, placed in the directory that itself resides in, or in some
sub-directory there. Thus, sometimes one needs a path to the executable’s
directory. The ‘current directory’, the default origin for relative paths, can
be and often is some other directory. Usually the current directory is
initially the directory from which the program was launched this time, i.e.
some arbitrary directory, anywhere. Since the current directory is used
automatically, client code does not usually need its path for e.g. resolving
command line filename arguments. But client code does, in general, need
the path to the executable’s directory.
However, the C++17 filesystem library
 provides the generally not needed current directory path,

fs::current_path() – where fs denotes std::filesystem – and
 does not provide the often crucial executable’s directory path.

Happily, the first process command line argument, the first argument of
main, is in practice a relative or absolute path to the executable. This is
not formally guaranteed, but in practice it’s nearly always so. Ideally then,
to determine a path to the executable’s directory, code like this should be
sufficient (see Listing 6).
But run the program from a directory where the relative path to the
executable’s directory contains non-ASCII characters3, and then this

simple, natural and (assuming the first argument of main actually refers
to the executable) formally correct code, fails (Figure 5).
What’s going on here?
Running from the executable’s directory would work because with this
code the name of the executable, passed to fs::absolute(), is then
effectively a dummy – any filename-like string would do.
But running it from the parent directory involves a non-ASCII character,
π, in the path, which is served correctly, as UTF-8, to fs::absolute().
Here things go haywire because, as of July 2017, the Visual C++ and
MinGW g++ implementations of the C++17 filesystem library ignore the
execution character set and instead assume that narrow strings are and
should be Windows ANSI encoded… Since Windows ANSI is a country-
specific encoding choice the result Ï€ can even be different on other
machines.
It’s trivially easy to check if the execution character set is UTF-8, and
these implementations lay down the rules from scratch, with no frozen
history constraining them. So, as I see it, the behaviour is really not
excusable. Unfortunately, as far as I know there’s no way that stdlib can
fix this functionality transparently.
Until all common implementations of the C++17 filesystem library
conform to the standard one therefore has to be very careful about always
explicitly specifying UTF-8 in code using the filesystem library, by e.g.
using the fs::u8path factory function (see Listing 7).

Listing 6

3. Using the name “cat”, expressed as Russian “кошка”, for an
executable that lists the contents of a multi-language text file, is a weak
pun. It was the best I could do.

Figure 5

Listing 7
18 | Overload | August 2017

FEATUREALF STEINBACH

the continued existence of this fundamental
level failureof the filesystem library

implementations, so very far into the game,
appears perplexing, bewildering, inexplicable
… and the other way by using e.g. the fs::path::u8string
conversion function:
 string const dfp_utf8 = df_path.u8string();
In the first example "data" contains only ASCII characters and can
therefore be served raw to the filesystem machinery, but
"blueberry-π.txt" is decidedly non-ASCII so that it must be
manually tagged as Unicode via a call to fs::u8path.
As with the nowide library’s incorrect console input operation in
Windows, the continued existence of this fundamental level failure of
the filesystem library implementations, so very far into the game,
appears perplexing, bewildering, inexplicable. But hopefully both the
Visual C++ and the MinGW g++ implementations will be fixed. And,
as Jerry Pournelle used to put it, Real Soon Now™.
The workarounds, the extra care and explicitness, is all that’s needed with
Visual C++. However, with MinGW g++ 7.1 and earlier the workarounds
run into another filesystem implementation bug. For the MinGW g++ 7.1
implementation of fs::u8path can only handle UTF-16 encoded wide
strings…
Happily, stdlib provides a transparent fix for that.
Bu t , t ha t f i x mus t be exp l i c i t l y r e qu es t ed , by de f i n ing
STDLIB_FIX_GCC_U8PATH , because i t ’ s funct ion template
specializations that at least in theory won’t necessarily build for a later or
earlier version of the compiler, though this code may still work and may
be necessary also for such versions. (See Figure 6.)
In passing: internally this fix uses stdlib::wide_from_utf8 and
stdlib::utf8_from, which are among the library implementation
features that are made available via stdlib’s public interface.4

The fix is not needed in the *nix world. In the *nix world fs::u8path
converts the argument to std::string with no encoding change. And so,
for example, in Ubuntu, using g++ 6.3.0, the code compiles and works
fine without the fix.
Just as MinGW g++ 7.1’s fs::u8path punts on implementing an UTF-8
→ UTF-16 conversion in Windows, with MinGW g++ 7.1 an fs::path
argument to a file iostream constructor is not supported, though it’s
required by C++17. The lack of fs::path argument is problematic
because g++’s default standard library implementation doesn’t support
wide string argument5, either, and a narrow string path argument is
assumed to be Windows ANSI encoded. And yes, that’s even with UTF-8
execution character set.
There are three main solutions where portable Unicode paths are required:

 Only C++17-compatible compilers.
This means not using MinGW g++, or not testing parts of the code
with MinGW g++, or waiting until MinGW g++’s filesystem and
iostreams library implementations are fixed.

 Pure ASCII alternative paths.
Windows supports, although not completely and not for all
Windows ‘technologies’, alternative pure ASCII paths. These are
called short paths. The stdlib library provides a more robust
abstraction, a best effort mostly readable native encoding narrow
path, as stdlib::char_path() & friends.

 Custom iostream class.
If one controls the file opening code, then better replace e.g.
std::ifstream with a custom iostream class that supports
fs::path or wide string argument, or best, that directly and portably
supports UTF-8 encoded narrow string argument. The nowide
library provides that as nowide::ifstream & friends. Such a class
can also relatively easily be implemented in terms of
__gnu_cxx::stdio_filebuf<char>.

Alternative ASCII paths were the basis of the MinGW g++ fix employed
in the early Boost Filesystem, version 2 [Boost-c], but it was discontinued
with no alternative fix in version 3, apparently deferring that fix to
standardization. The original filesystem TS suggested that iostream
constructors in Windows implementations should support the Visual C++
extension of wide character path argument. With C++17 we additionally
have iostream constructors accepting fs::path directly, except that – the
problem – as of this writing, MinGW g++’s default standard library
implements neither.
Figure 7 is an example of a pure ASCII alternative path in Windows.
For readability and to preserve as much information as possible,
especially for a name of a file to be created, stdlib::char_path()
provides a Windows ANSI path, not a pure ASCII path, where it retains
(transcoded) those items of the original Unicode path specification that
can be encoded exactly as Windows ANSI (Figure 8).
Where an item can’t be represented exactly as Windows ANSI and
doesn’t have an alternative ASCII name, char_path replaces any non-
ANSI character with stdlib::ascii::bad_char, ASCII 127. I assume

4. ATTOW these conversion functions are limited to UTF-16 for wide text,
e.g. they can’t (properly) handle emojis in the *nix world. I intend to
remove that limitation, but must do one thing at a time.

5. C++17 §30.9.1/3 requires wide string filename argument support for
iostreams implementations on systems with wide native paths. Prior to
C++17 this was a Visual C++ extension of the standard library.

Figure 6
August 2017 | Overload | 19

FEATURE ALF STEINBACH
that this is often the desired behaviour: deferring path validity checking to
the file opening code, and just using the path with replacements if it
works , e .g . for display, or for creat ing a f i le . In contras t ,
stdlib::char_path_or_x throws a std::runtime_error exception
if the Unicode path can’t be represented exactly.
The design intention is to use char_path by default, e.g. for portably
passing narrow paths to 3rd party library code, and as a not quite 100%
but mostly Just Good Enough™ workaround/fix for filesystem-
challenged implementations, like Listing 8.
Here, the UTF-8 path is used in the failure reporting instead of just
outputting the fs::path directly, because while MinGW g++ 7.1
curiously does support that it adds simple ASCII quotes and duplicates
every backslash, sort of happily sabotaging things.
As mentioned, the newly adopted-in-Boost nowide library provides
streams that can be opened with UTF-8 encoded paths. And for file

opening code that one controls, using an alternative file iostream
implementation solves the availability problems of Windows ASCII
alternative paths. For the code above, with the standalone variant of
nowide, this solution entails just adding a
 #include <nowide/fstream.hpp>
replacing ifstream f{ dfp_native }; with
 nowide::ifstream f{ dfp_utf8 };
and removing the dfp_native lines, and that’s all.
With this approach, one uses each library for what it’s good at.

Invalid-as-UTF-8 bytes, how, what?
Narrow text bytes that are invalid as UTF-8 can occur due to a number of
possible reasons, e.g. just passing raw main arguments to cout, or doing
conversion from wide text to the narrow encoding of the user’s native
locale, which in Windows cannot be UTF-8.
When this happens, it’s in my opinion best if it doesn’t stop output of
further text, or indeed, of the text containing the bad bytes.
stdlib just replaces each bad byte with ASCII 127, DEL (see Listing 9).
The result of the stdlib-based code is in Figure 9 – it works the same with
g++.
The corresponding nowide-based code is in Listing 10 and the result of
the nowide-based code is in Figure 10 (overleaf).

Summary
There are currently two C++ libraries for UTF-8 console i/o
in Windows: the author’s stdlib, and the nowide library
recently adopted in Boost. With stdlib, existing textbook
code can work for Unicode console i/o in Windows, and
since it’s a header only library it’s easy to use for novices.
With nowide there is separate compilation, which can be a
barrier to novices, and one’s code must be modified to
explicitly use the nowide functionality, which also means

that existing, unmodified code doesn’t benefit from nowide.

Listing 8

Figure 9

Listing 9

Listing 10

Figure 8

Figure 7
20 | Overload | August 2017

FEATUREALF STEINBACH
As of this writing, console input just didn’t work correctly with nowide –
it included carriage return characters in input lines.
The nowide library’s nowide::ifstream (& family) can be very useful
as a workaround for MinGW g++’s current filesystem library
implementation deficiencies, when one controls the file opening code.
The corresponding stdlib fix stdlib::char_path is based on
Windows’ alternative ASCII names, which is easy to use and supports 3rd
party library functions such as with OpenCV. It’s guaranteed to work for
a path that can be represented exactly with Windows ANSI encoding, plus
this approach has worked for general Unicode existing paths on all the
myriad local Windows systems that the author has used. I.e. it’s not a
perfect fix, but simple and usually Good Enough™. 

References
[Boost-a] At http://www.boost.org/doc/libs/1_48_0/libs/locale/doc/html/

default_encoding_under_windows.html
[Boost-b] Boost acceptance of NoWide: https://lists.boost.org/boost-

announce/2017/06/0516.php
[Boost-c] Referred to in a 2011 discussion between the Boost Filesystem

creator Beman Dawes and the author, titled ‘Making
Boost.Filesystem work with GENERAL filenames with g++ in
Windows (a solution), at https://lists.boost.org/Archives/boost/2011/
10/187282.php

[C99] C99 §7.17/2 (I used the N1256 draft, roughly C99 + TC1 + TC2 +
TC3, for the quote).

[Ermey] Quoted from https://www.brainyquote.com/quotes/quotes/r/
rleeermey464853.html

[ICU] The International Components for Unicode library, available at
http://site.icu-project.org/

[Kaplan08] Still available at http://archives.miloush.net/michkap/
archive/2008/03/18/8306597.html

[Microsoft-a] Quoting Microsoft’s documentation of setlocale: “If you
provide a code page value of UTF-7 or UTF-8, setlocale will fail,
returning NULL.” ATTOW that documentation was available at
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/
setlocale-wsetlocale

[Microsoft-b] _setmode docs at https://docs.microsoft.com/en-us/cpp/c-
runtime-library/reference/setmode

[Microsoft-c] Windows API function GetShortPathName
documentation, at https://msdn.microsoft.com/en-us/library/
windows/desktop/aa364989(v=vs.85).aspx

[nowide] The NoWide library is available at http://cppcms.com/files/
nowide/html/index.html

[stdlib] The stdlib library is available at https://github.com/alf-p-
steinbach/stdlib

[Steinbach11] ‘Unicode part 1: Windows console i/o approaches’, at
https://alfps.wordpress.com/2011/11/22/unicode-part-1-
windows-console-io-approaches/

[Steinbach13] ‘Portable String Literals in C++’, Overload #116,
August 2013, available at https://accu.org/index.php/articles/
1842

In the *nix world, stdlib::char_path() just returns the argument
converted to UTF-8 if necessary, and in Windows it uses the following
algorithm to return a best effort readable ANSI path:

 let R (the result) be an empty string.

 for each item in the Unicode path:

 if the item is ASCII then

 append it to R.

 else if it converts exactly to Windows ANSI then

 append the converted item to R.

 else if it has an alternative ASCII name then

 append the alternative ASCII name to R.

 else if character substitution is permitted then

 convert the item to ANSI, possibly with substitutions.

 append this possibly inexact ANSI text to R.

 else

 fail by throwing a std::runtime_error.

The order of checking is crucial to not needlessly discard information.

If you want to implement this yourself, then do note that the short very
Unicody π as a path item is left as is by Window’s main API function for
this, GetShortPathName, presumably because π is so short. It’s quite
perplexing. For, while ASCII alternative paths are a very nice feature
indeed, who needs a transformation of Unicode paths to still Unicode
unreadable ultimate shortness with cryptic digit sequences, tildes and
uppercasing thrown in here and there? I can’t think of any need for that.
It appears to be just silly.

Happily the FindFirstFile API function does give a pure ASCII
alternative for that π, on a Windows installation and filesystem that
supports short paths. And it apparently works fine in general, but only on
one single path item, namely the last.

Problems include that short filenames in principle can be turned off via
a registry setting (though it’s unlikely, considering that they e.g. appear
in registry values), that short filenames can be somewhat cryptic (it’s easy
to expand them back though), and that the documentation [Microsoft-c]
states that they’re not available with three Windows ‘technologies’,
namely SMB 3.0 Transparent Failover (TFO), SMB 3.0 with Scale-out
File Shares (SO), and Cluster Shared Volume File System (CsvFS),
which I read as network drives (?).

ASCII Alternative Paths

Figure 10
August 2017 | Overload | 21

http://www.boost.org/doc/libs/1_48_0/libs/locale/doc/html/default_encoding_under_windows.html
http://www.boost.org/doc/libs/1_48_0/libs/locale/doc/html/default_encoding_under_windows.html
https://lists.boost.org/boost-announce/2017/06/0516.php
https://lists.boost.org/boost-announce/2017/06/0516.php
https://lists.boost.org/Archives/boost/2011/10/187282.php
https://lists.boost.org/Archives/boost/2011/10/187282.php
https://www.brainyquote.com/quotes/quotes/r/rleeermey464853.html
https://www.brainyquote.com/quotes/quotes/r/rleeermey464853.html
http://site.icu-project.org/
http://archives.miloush.net/michkap/archive/2008/03/18/8306597.html
http://archives.miloush.net/michkap/archive/2008/03/18/8306597.html
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/setlocale-wsetlocale
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/setmode
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/setmode
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364989(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364989(v=vs.85).aspx
http://cppcms.com/files/nowide/html/index.html
http://cppcms.com/files/nowide/html/index.html
https://github.com/alf-p-steinbach/stdlib
https://github.com/alf-p-steinbach/stdlib
https://alfps.wordpress.com/2011/11/22/unicode-part-1-windows-console-io-approaches/
https://accu.org/index.php/articles/1842
https://accu.org/index.php/articles/1842

FEATURESATPREM PAMUDURTHY
A Functional Alternative to
Dependency Injection in C++
Dependency injection allows flexibility. Satprem Pamudurthy
showcases a functional alternative in C++.
unctional programming languages have certain core principles:
functions as first-class citizens, pure functions (immutable state, no
side-effects) and composable generic functions. C++ is not a pure

functional language – we cannot impose immutability constraints on a
function, for instance – but that is alright. Most real-world applications
have side effects such as writing to databases and I/O, and thus cannot be
written exclusively using pure functional constructs. With the addition of
variadic templates, generic lambdas, perfect forwarding and the ability to
return lambdas from functions, C++’s functional credentials are the
strongest they have ever been. While OOP is the most popular paradigm
in C++, by introducing elements of functional programming into our
designs, we can create highly modular, extensible and loosely coupled
components. In this article, I propose an alternative to dependency
injection that uses functions to allow object behaviors to be configured at
runtime.

Dependency injection
The basic building block of OOP in C++ is a class. A class encapsulates
data and methods operating on that data. The behavior of an object is
defined by its methods and how they manipulate the object’s state. Some
objects require the use an external service (a dependency) to implement
some of their behavior. Dependency injection is a technique for
decoupling the client of a service from the service’s implementation
[Wikipedia-a]. If the client object were to directly create an instance of the
service, it would introduce a hard-coded dependency (strong coupling)
between the client and the service implementation. The client object
would have to know the exact type of the service, making it impossible to
substitute a different implementation of the service at runtime. In
dependency injection, we define an interface for the service and the client
accesses the service’s methods through the interface. Code external to the
client is responsible for creating an instance of the service and injecting it
into the client. The injection of the service can be done at construction, or
post-construction through setter methods. We can now configure the
behavior of the client by substituting different implementations of the
service interface. Consider the example in Listing 1.
The Customer class has two dependencies:
 ICustomerDatabaseService
 IOrderDatabaseService

It uses the ICustomerDatabaseService to get or update the
customer’s profile, and the IOrderDatabaseService to load
information about past orders. The Customer class should not and does
not concern itself with where this information is actually stored or even

F

Listing 1

class ICustomerDatabaseService {
public:
 virtual ~ICustomerDatabaseService() { }
 virtual void
 deleteCustomer(const CustomerId&) = 0;
 virtual CustomerProfile
 getProfile(const CustomerId&) const = 0;
 virtual void updateProfile(const CustomerId&,
 const CustomerProfile&) = 0;
};
class IOrderDatabaseService {
public:
 virtual ~IOrderDatabaseService() { }
 virtual Orders
 getPastOrders(const CustomerId&) const = 0;
 virtual void enterNewOrder(const CustomerId&,
 const Order&) = 0;
};

class Customer {
public:
 Customer(const CustomerId& id,
 std::shared_ptr<ICustomerDatabaseService>
 pCustomerDb,
 std::shared_ptr<IOrderDatabaseService>
 pOrderDb)
 : id_(id)
 , pCustomerDb_(pCustomerDb)
 , pOrderDb_(pOrderDb)
 {
 }
 CustomerProfile getProfile() const
 {
 return pCustomerDb_->getProfile(id_);
 }
 void
 updateProfile(const CustomerProfile& profile)
 {
 pCustomerDb_->updateProfile(id_, profile);
 }
 Orders getPastOrders() const
 {
 return pOrderDb_->getPastOrders(id_);
 }
private:
 CustomerId id_;
 std::shared_ptr<ICustomerDatabaseService>
 pCustomerDb_;
 std::shared_ptr<IOrderDatabaseService>
 pOrderDb_;
};

Satprem Pamudurthy works in the financial services industry and
has been programming professionally for over 10 years. His main
tools are C++ and Python but he will use anything that lets him get
the job done. In the past, that has meant Java, C# and even VBA.
You can reach him at satprem@gmail.com.
August 2017 | Overload | 22

FEATURESATPREM PAMUDURTHY

The only thing we require of the service methods is
that they are callable. We do not require the use of

inheritance or any other technique that entails
strong coupling amongst service methods.
whether it is even stored anywhere – we might have constructed mock
implementations of the services. We can also use the DECORATOR pattern
to extend the behavior of a service. The DECORATOR pattern is an object-
oriented design pattern that allows us to add behavior to an object at
runtime [Wikipedia-b]. A decorator is a special implementation of the
service interface that forwards calls to an inner service implementation
while executing code around the forwarded calls. Consider the class in
Listing 2, which traces all calls to an order database service.

Tight coupling in inheritance
In our example, what does creating a new service implementation entail?
For starters, you need to define a new class, and each concrete service
class must implement every service method. When extending an existing
implementation, you need to define a new class even if you only need to
extend one of the service methods. Put another way, the unit of abstraction
and extension in object-oriented programming is a class. Implementation
inheritance also creates strong coupling between base and derived classes,

because the derived class has access to all of the base class’s public and
protected data and methods. For an in-depth discussion of the various
types of inheritance and their implications, please refer to John Lakos’s
presentation on inheritance [Lakos16a]. The video of his presentation is
available on the ACCU YouTube channel [Lakos16b].
OK, so can we solve this problem by using the Interface Segregation
Principle (ISP) [Wikipedia-c], whereby we define finer role interfaces
instead of a fat interface (we can still have a single class implement
multiple role interfaces)? Yes, but only for the time being. Interfaces tend
to accumulate methods over time, and each new method requires changes
down the inheritance tree, which brings us back to square one.
Dependency injection can also create unintended dependencies between
the Customer and the services. All public service methods are visible to
every method of the Customer class, and there is nothing preventing the
Customer class from using any of them. In the example above, the
Customer class has access to the enterNewOrder() method, and even
though it does not use it now, we cannot guarantee that it will not do so in
the future. It is good practice to assume that every available method will
be used. To quote David L. Parnas’s influential paper on design
methodology, a good programmer makes use of the available information
given him or her [Parnas71]. Unintentional and hidden dependencies
increase complexity and drastically affect maintainability of the code. We
need a solution that allows us to better manage dependencies amongst
code components.

A functional approach to configurable objects
Let us introduce functional programming into the mix and re-think the
design of the Customer class. The illustration below uses a utility class
I put together called RuntimeBoundMethod. It is a callable template
class that stores a function object (as an std::function) whose first
a rgu men t i s a r e f e r ence t o t he t ype con t a in i ng t he
RuntimeBoundMethod (similar to the implicit ‘this’ in member
functions). It takes a reference to the containing object in its constructor
and passes it along to the stored function. This allows us to call a
RuntimeBoundMethod as we would a member function. We can also
specify the const-ness of the bound method with respect to the object
containing the RuntimeBoundMethod. The code for this class
(Listing 3) is available on github [Pamudurthy].
We still have the Customer class but instead of service interfaces, the
Customer now depends on service methods. The only thing we require
of the service methods is that they are callable. We do not require the use
of inheritance or any other technique that entails strong coupling amongst
service methods. Each service method can be bound (i.e. injected)
independently of the other methods. Just as with role interfaces, it could
very well be that a single class implements multiple service methods but
that is entirely transparent to the Customer class. The entity that wires
the Customer and the service methods together gets to decide exactly
which service methods the Customer is able to use. Thus there are no
unintended dependencies between the Customer and the services. But it
is not all roses. If we forget to bind any of the service methods, we willListing 2

class TracingOrderDatabaseService
 : public IOrderDatabaseService {

public:
 explicit
 TracingOrderDatabaseService
 (std::shared_ptr<IOrderDatabaseService>
 pInner) : pInner_(pInner)
 {
 }

 virtual ~TracingOrderDatabaseService()
 {
 }

 Orders getPastOrders(const CustomerId& id)
 const override
 {
 std::cout << "Getting past orders";
 return pInner_->getPastOrders(id);
 }

 void enterNewOrder(const CustomerId& id,
 const Order& order) override
 {
 std::cout << "Entering new order";
 pInner_->enterNewOrder(id, order);
 }

private:
 std::shared_ptr<IOrderDatabaseService> pInner_;
};
August 2017 | Overload | 23

FEATURE SATPREM PAMUDURTHY
get a nasty surprise at runtime. This is also true of interface-based
dependency injection when using setter methods to inject dependencies
post-construction. We can avoid creating incomplete objects by requiring
that all dependencies be provided at construction.

Extending function behaviors
The unit of abstraction, extension and composition in functional
programming is a function. Just as we use decorator classes to extend the

behaviors of an object, we can use decorator functions to extend the
behavior of a function. C++ provides a powerful and concise syntax for
writing generic functions that can forward arguments to another function.
The decorator in Listing 4 adds a trace message before calling an inner
function, while perfectly forwarding its arguments to that function.
We would add tracing to a service method as follows:
 addTraceMessage(customer.getPastOrders,
 "Getting past orders");
 auto orders = customer.getPastOrders();
 // prints a message before calling
 // the inner function
Again, because we are dealing with functions and not interfaces, we are
able to add tracing only to the service methods we are interested in.

A caveat about runtime behavior configuration
When using techniques that allow us to configure the behavior of an
object at runtime, the intended behavior of an object cannot simply be
deduced from its type. Instead, you will need to understand how the object
has been wired at and after construction. This requires some adjustment
on part of the programmer when it comes to code analysis and debugging,
and this remains true even when using a functional approach.

Final thoughts
C++ is not a pure functional language, but ultimately programming
paradigms are not so much about language features as they are ways of
thinking about component and system design. Thinking functionally will
allow us to build highly modular designs that are easy to compose and
extend. Object-oriented and functional programming can coexist and C++
allows us get the best of both worlds – we can use classes to encapsulate
entities, and function objects to define and extend their behaviors. 

References
[Lakos16a] Proper Inheritance, John Lakos at

https://raw.githubusercontent.com/boostcon/
cppnow_presentations_2016/master/00_tuesday/
proper_inheritance.pdf

[Lakos16b] Proper Inheritance, John Lakos, ACCU 2016 at
https://www.youtube.com/watch?v=w1yPw0Wd6jA

[Parnas71] Information distribution aspects of design methodology,
David L. Parnas, 1971

[Pamudurthy] RuntimeBoundMethod.hpp at https://github.com/
spamudurthy1520/FunctionalCPP/tree/master/source

[Wikipedia-a] Dependency Injection at https://en.wikipedia.org/wiki/
Dependency_injection

[Wikipedia-b] Decorator Pattern at https://en.wikipedia.org/wiki/
Decorator_pattern

[Wikipedia-c] Interface Segregation Principle at https://en.wikipedia.org/
wiki/Interface_segregation_principle

Listing 3

class Customer {
public:
 explicit Customer(const CustomerId& id)
 : id_(id)
 {
 }

 const CustomerId& id() const
 {
 return id_;
 }

 RuntimeBoundMethod<const Customer,
 CustomerProfile> getProfile { this };
 // 'const' method
 RuntimeBoundMethod<Customer, void,
 const CustomerProfile&> updateProfile
 { this };
 RuntimeBoundMethod<const Customer, Orders>
 getPastOrders { this }; // 'const' method

private:
 CustomerId id_;
};

int main()
{
 CustomerId id{ 1 };
 Customer customer{ id };

 // bind service methods to the customer
 customer.getProfile = [](const Customer& self)
 {
 auto id = self.id();
 CustomerProfile profile;
 // populate the profile for id
 return profile;
 };

 customer.updateProfile = [](Customer& self,
 const CustomerProfile& profile) {
 // commit the new profile to storage
 };

 customer.getPastOrders =
 [](const Customer& self) {
 auto id = self.id();
 Orders orders;
 // load order details from storage for id
 return orders;
 };

 auto orders = customer.getPastOrders();

 CustomerProfile profile;
 customer.updateProfile(profile);

 return 0;
}

Listing 4

template<typename Method >
void addTraceMessage(Method& method,
 const std::string& traceMessage)
{
 method = [=](auto& self, auto&&... xs) {
 std::cout << traceMessage << std::endl;
 return
 method(std::forward<decltype(xs)>(xs)...);
 };
}

24 | Overload | August 2017

https://raw.githubusercontent.com/boostcon/cppnow_presentations_2016/master/00_tuesday/proper_inheritance.pdf
https://www.youtube.com/watch?v=w1yPw0Wd6jA
https://github.com/spamudurthy1520/FunctionalCPP/tree/master/source
https://github.com/spamudurthy1520/FunctionalCPP/tree/master/source
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Decorator_pattern
https://en.wikipedia.org/wiki/Decorator_pattern
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle

FEATUREANDREAS FERTIG
About the C++ Core Guidelines
The C++ core guidelines are a useful
summary of C++ best practice.
Andreas Fertig shows their use.
n 2015 at CppCon, Bjarne Stroustrup announced the C++ Core
Guidelines [CCG] in his opening keynote. These guidelines are a
summary of best practices intended to overcome known traps and

pitfalls of the C++ programming language. All the rules are grouped into
several sections ranging from philosophy, interfaces and classes to
performance and concurrency. The project is designed as an open source
project, which should ensure that it will improve over time along with the
language itself.
Behind this set of rules are some different ideas because, as Bjarne
mentioned in his talk: “We all hate coding rules” [Sommerlad16]. Often,
the rules are written by people with weak experience with the particular
programming language. They tend to keep the use of more complex
features to a minimum, with the aim of preventing misuse by less
experienced programmers. Both concepts are invalid for the Core
Guidelines, which are written by experts in the field targeting
programmers with C++ experience. The aim of the Core Guidelines is to
assist people in using C++ effectively, which implies transitioning legacy
C++ code towards modern C++, using C++11 or newer. The guidelines
also focus on the language itself and using its power. For example, enable
the use of static code analysis by expressing your intent in the language
while leaving comments only for documentation. Consider this example:
 int i = 0;
 while(i < v.size())
 {
 // do something with v[i]
 }
By using modern C+, this can be transformed into something like this:
 for(auto const& x: v)
 {
 // do something with x
 }
(Example taken from [Sommerlad16].)
There is a big difference between these two code fragments. In the first, a
new variable comes into scope, and several problems can occur if it is
reused. For example, it can lead to an out of bounds access Furthermore,
there is the potential of getting the array access of v wrong by adding +1
to the loop variable. Tampering with this variable in other ways is also
possible. These are typical mistakes, nothing somebody will do wrong on
purpose. In the modern version, there is no need for an additional variable.
It is also clear that the author is only interested in the objects of a vector.
No modification will take place, hence the const reference. Since we are
interested in all elements in the vector for the loop this is clearest. Last but
not least, the modern version is much clearer to the compiler and static

analysis tools. The compiler for instance, will not allow compilation if a
write access to x takes place. A static analysis tool can understand that this
is a way of iterating over the whole set of vector elements. You can
improve it even more by using functions from std::algorithm like
std::replace or std::find.
When using the C++ Core Guidelines, C++ becomes a little different. In
Bjarne’s words: “Within C++ is a smaller, simpler, safer language
struggling to get out” [Stroustrup15]. This means that all the rules in the
Core Guidelines work with a modern C++ compiler1. No additional
extensions are required, albeit there are assisting libraries to facilitate
using the rules. Let’s look at some of the rules.

Signalling failure
There is:

I.10: Use exceptions to signal a failure to perform a required task.

That’s a rule I struggle with. The standard library uses exceptions as the
main failure signalling mechanism. It fully denotes the word ‘exception’.
We do not expect such an event, so it’s reasonable to throw an exception
at this point. This also leaves the return value for returning a value in case
the function was successful. My struggle here is, if nobody expects
something why should anyone catch it? A ball thrown at you
unexpectedly can hurt a lot because you were not ready to catch it. Well,
in case of C++, it’s like you are fast enough to duck. Then, at least you do
not get hurt, but what about the others? You can let an exception which
was caused by a function your code called pass to whoever called you.
Now, the next higher function in the call stack has to deal with it. This
pattern can continue until we hit main. Then, the program will terminate.
Let’s say somebody within the call stack does catch the exception – now
what? There is often no good choice. In the layers above, nobody knows
which call triggered the exception and how to react to it. A horrible
scenario for embedded systems which are somewhat critical! There may

I

1. There is an exception when it comes to guidelines involving concepts.

Andreas Fertig holds an M.S. in Computer Science from Karlsruhe
University of Applied Sciences. Since 2010, he has been a software
developer and architect for Philips Medical Systems with a focus on
embedded systems. He also works as a trainer and develops various
Mac OS X applications. Andreas’ online presence is
https://www.AndreasFertig.Info
August 2017 | Overload | 25

FEATURE ANDREAS FERTIG

the choice is either to return the error code
and pass the actual return value into the
function as a pointer or reference
parameter, or vice versa
be millions of lines of code out there which can throw an exception, but I
prefer not to. I use my freedom to not pick this rule for me.
What can we do instead? A solution I have come across multiple times is
the following
 int SomeFunction(int param1, double param2,
 int* outValue)
 {
 //...
 }
Let us suppose the returned value uses the full range of its data type; then,
there is no space left to squeeze in the error code. Now, the choice is either
to return the error code and pass the actual return value into the function
as a pointer or reference parameter, or vice versa. Both are suboptimal.
The guidelines provide an alternative in section I.10: “using a style that
returns a pair of values”.
 auto [val, error_code] = do_something();
 if (error_code == 0)
 {
 // ... handle the error condition
 }

 // ... use val
It uses structured bindings which are available in C++17. This allows us
to return a struct and directly assign variables to the members. The
resulting code is much clearer and robust compared to the variant shown
before.
However, there is another alternative: std::optional (see Listing 1).

We can ask the optional object whether or not it contains a value, meaning
it can be used in a boolean expression. In case you would like to skip all
those checks, you can invoke it with value_or() and pass a value which
is used when the object does not contain a valid object. Pretty neat.

Safe and modern array passing
Let’s move on to another item:

I.13: Do not pass an array as a single pointer.

This aims to solve a popular problem we can often see in the wild. For
example, in the safe version of string copy:
 char* strncpy(char* dst, const char* src,
 size_t n)
 {
 // ...
 }
Wow, how safe is that? We have a single size_t parameter. To which
value does it apply? Alright, it enables us to write code like this:
 strncpy(dst, src, MIN(dstSize, srcSize));
Honestly, does this code look good to you? Writing MIN() over and over
again? How many mistakes can still be made? Rule I.13 is about getting
rid of code like this. Instead, there is the template class span which uses
the power of templates to deduce the size of the object. You can also cut
it down to just a slice of the array. The resulting object can be queried for
its size, hence the chances for discrepancies are reduced by a lot. It is one
object containing data and size. An improved string copy function would
look like this:
 span<char> strcpy(span<char> dst,
 span<const char> src)
 {
 // ...
 }
If you pay close attention, you will notice that we no longer need to check
for null pointers in strcpy.

No raw pointers
Another rule is

R.10: Avoid malloc() and free().

Together with
R.11: Avoid calling new and delete explicitly

it aims to reduce the use of uncontrolled memory allocation, with the goal
of preventing memory leaks. In C++ with objects, malloc and free do
nothing good for us. They are legacies from C. The guideline tells us to
avoid new and delete in their naked form as well. In modern C++, the
use of so called raw pointers, pointers without an owner, are discouraged.
To handle resource management better, allocated memory should belong
to an owner: some object which takes care of the lifetime of the memory.
In modern C++, we have several kinds of managing pointers:
unique_ptr, shared_ptr and weak_ptr. Helper functions likeListing 1

std::optional<std::string> GetUserName(int uid)
{
 if(uid == 0)
 {
 return "root";
 }
 return {};
}

void UsingOptional()
{
 if(auto str = GetUserName(0))
 {
 std::cout << *str << "\n";
 }

 auto fail = GetUserName(1);
 std::cout << fail.value_or("unknown") << "\n";
}

26 | Overload | August 2017

FEATUREANDREAS FERTIG

The concept of the library is to provide ready-to-use
functions which enforce the idea of the C++ Core Guidelines,

and increase the safety and correctness of a program
make_unique are available to assist us create such a pointer without
writing new ourselves. Afterwards, the smart pointers take care of the
allocated owned memory.
In case none of those managing pointers matches your needs, fallback to
owner<T>. The idea behind it is to state the ownership of a simple
pointer. In a perfect world, all owner<T> instances would be a managing
a pointer like unique_ptr. When we are not there, owner<T> can be
helpful for static analysis. Pointers which are not owning must not free
memory. On the other hand, owning functions must free memory as soon
as they go out of scope.

A library for the guidelines
For the best support of the C++ Core Guidelines, there is a library called
‘Guidel ine Support Library’ (GSL). Microsoft provides an
implementation of it under the MIT licence hosted in github [Microsoft].
The concept of the library is to provide ready-to-use functions which
enforce the idea of the C++ Core Guidelines, and increase the safety and
correctness of a program.
There are simple things in it like at(). This tiny template function
provides a bound-checked way of accessing built-in arrays like char
buffer[1024].There are also places for things we did wrong for a long
time: narrow_cast; again a template function which mimics the style
of a C++ cast. Under the hood it checks whether the narrowing will lose
signedness or results in a different value. Many of the checks are run-time
checks. However, it is a way of letting static analysers know what you
intend to do, and in doing so, there is a chance finding bugs before run-
time.
In many ways, the GSL is similar to the boost [Boost] library. For years,
boost has driven some new ideas and language improvements by letting
the community try it out and decide if an idea is useful, all without
compiler or standards changes. Some improvements of boost have found
their way into recent C++ standards. The GSL may do the same for the
community. In fact, they managed to get the first item of the GSL into the
shiny new C++ standard C++17: std::byte [C++].

Summary
In summary, the C++ Core Guidelines try to encourage using modern
C++. There is word on the street that they contain too many rules which
at some point overlap. Still, they are a comprehensive collection of
possible mistakes which can be avoided. Consider looking at the C++
Core Guidelines for ideas of how to write modern C++ and, of course,
pick the items you consider valuable for your project. Also have a look at
the GSL (multiple implementations are available) as it helps you write
safer and more robust code. 

Acknowledgements
Thanks to Peter Sommerlad who reviewed draft versions of this article.
His comments contributed to substantial improvements to the article.
Artwork by Franziska Panter from panther concepts, https://panther-
concepts.de

References
[Boost] http://www.boost.org/
[C++] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/

p0298r2.pdf
[CCG] https://github.com/isocpp/CppCoreGuidelines
[Microsoft] https://github.com/Microsoft/GSL
[Sommerlad16] http://wiki.hsr.ch/PeterSommerlad/files/

ESE2016_core_guidelines.pdf
[Stroustrup15] https://github.com/CppCon/CppCon2015/blob/master/

Keynotes/Writing%20Good%20C%2B%2B14/
Writing%20Good%20C%2B%2B14%20-
%20Bjarne%20Stroustrup%20-%20CppCon%202015.pdf
August 2017 | Overload | 27

http://www.boost.org/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0298r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0298r2.pdf
https://github.com/isocpp/CppCoreGuidelines
https://github.com/Microsoft/GSL
http://wiki.hsr.ch/PeterSommerlad/files/ESE2016_core_guidelines.pdf
http://wiki.hsr.ch/PeterSommerlad/files/ESE2016_core_guidelines.pdf
https://github.com/CppCon/CppCon2015/blob/master/Keynotes/Writing%20Good%20C%2B%2B14/Writing%20Good%20C%2B%2B14%20-%20Bjarne%20Stroustrup%20-%20CppCon%202015.pdf
https://github.com/CppCon/CppCon2015/blob/master/Keynotes/Writing%20Good%20C%2B%2B14/Writing%20Good%20C%2B%2B14%20-%20Bjarne%20Stroustrup%20-%20CppCon%202015.pdf

FEATURE CHRIS OLDWOOD
Afterwood
Have you ever broken prod? Chris Oldwood
reminds us to fix the problem not the blame.
s a child. I struggled with honesty; often shooting from the hip meant
I never really considered the consequences of my actions and so
found myself facing the ire of my parents more frequently than I

should have. It was never anything serious but I began to find it easy to
explain why anything that went wrong was never entirely my fault. I suspect
the innocence of childhood gave me the benefit of the doubt more often than
I deserved too. Fortunately, my parents did a good enough job that my
moral compass ensured I never strayed far from the straight and narrow.
Software development has always appeared more forgiving than many
other jobs. In my early days as a programmer there were a million
different reasons why things never went smoothly. For example, the very
environment we worked in was brittle – you would routinely have to
restart 16-bit Windows and pray your hard disk was still intact. I’ve lost
many hours trying to debug even user-mode applications that would cause
the earlier versions of Windows to crash. Then you have compilers with
code generation bugs which you needed to work around by writing the
same code in a different way. And then there’s the language itself with its
many traps and pitfalls for the unwary programmer that resulted in
‘undefined behaviour’ (UB) which you often found out the hard way. Add
to this the ambiguities of natural language leading to poorly specified
requirements and you’ll find it’s fairly easy to avoid having the finger
pointed directly at you as the root cause of most problems.
My safe little bubble eventually burst one afternoon courtesy of a support
incident at a large financial organisation. I was genuinely surprised when
a colleague quietly asked me why I had just rebooted our system’s main
servers in the production environment. He confirmed that he’d double
checked the security logs and, yes, my login was in there as being the
instigator of the machine restarts, which seemed pretty conclusive. It
didn’t take long before I realised what had happened and how the mistake
had been made. Yes, I had a pretty good clue where things had gone
wrong but ultimately the mistake was mine. My stomach churned as I
waited for the fallout. You often hear tales about how people have been
marched straight off the premises for misconduct and can’t help but
wonder if there's a grain of truth somewhere in those friend-of-a-friend
stories. Being a contractor and fairly new to the company didn’t feel like
it was exactly going to help my cause either.
Of course, nothing happened. In retrospect, my mistake was insignificant
compared to the many others that occurred around me and, whilst there
was a loss of service as everything slowly came back up and recovered,
the actual loss to the business was probably less than the time taken to
work out what it would have cost. Naturally the first code change I made
straight after was to my custom admin tool so that machine names starting
with a P and D were more easily discernible – bright red for the former,
something contrasting for the latter. Oh, and it popped up a warning
message too, for good measure.
The notion of holding a post-mortem is not a new one although the
emphasis on it being a blameless post-mortem seems to have gained more
recognition in recent years. My earliest recollection of the idea of post-
mortems (outside the medical ones on TV shows like Quincy) was
through the embedded software column in Dr Dobbs Journal, written by

Ed Nisley. NASA had started making their post-mortems publicly
available and so Ed would publish extracts in his column along with some
additional commentary. I’ve never worked in that kind of environment
but certainly marvelled at the ingenuity it creates working within such
constraints. It would be easy to laugh at some of the extremely costly and
yet seemingly trivial mistakes they’ve made in the past but the main take-
away for me was always that if the super-smart people at somewhere like
NASA couldn’t get this software development lark right all the time, then
what chance did I stand?
Reading about the recent major outage at a British airline and the apparent
scapegoating of a system administrator reminded me of some of my own
little mishaps and how they had been dealt with. I’ve clearly been
fortunate enough to have worked within teams where the level of trust and
respect both within the team and around it are sufficiently high that the
occasional mistake is dealt with appropriately. One can only assume that
senior managers and shareholders are after a scalp when something of that
magnitude goes awry and therefore it takes real courage to stand up and
blame the process that let this happen rather than single out the person
who was likely the victim of a weak process.
The prime directive, which is read out at the start of a team’s
retrospective, is a very clear statement which attempts to try and make the
team comfortable so they can get to the business of improving the process
they use, rather than blame the people themselves for their actions. Martin
Fowler has suggested in the past (based on the work of Pat Kua) how
important reading this statement has become, as repeatedly hearing it
could potentially change the culture of the team though the physiological
effect known as priming.
This also ties in very nicely with ‘psychological safety’ which Google’s
recent project Aristotle [NYTimes] managed to bolster with some
qualitative data. This is nothing entirely new though as ‘safety’ also
features in the lower layers of Maslow’s Hierarchy of Needs, which he
published back in the late 1940’s and has no doubt been the subject of
many other research projects in the intervening years. What probably
caused Google’s project Aristotle to surface on my (and many other
programmers’) radar was no doubt down to the workforce studied.
The TL;DR of that research appears to be that we are at our happiest when
we work with nice people, although I’m sure it’s highly disingenuous to
try and distil it to such a simplistic outcome. I don’t think I’ll ever truly
get over the small amount of fear I feel when administering a production
system but I also think that may be a healthy attitude, to some degree, to
ensure I’m not reckless through complacency. Either way, as long as any
fear we do feel is one of our own self-restraint and not out of a lack of
process, and subsequent retribution, then our productivity will remain at
its highest. 

Reference
[NYTimes]https://www.nytimes.com/2016/02/28/

magazine/what-google-learned-from-its-quest-
to-build-the-perfect-team.htmllearned-from-
its-quest-to-build-the-perfect-team.html

A

28 | Overload | August 2017

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise grade technology in plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted via gort@cix.co.uk or @chrisoldwood

https://www.nytimes.com/2016/02/28/magazine/what-google-learned-from-its-quest-to-build-the-perfect-team.html
https://www.nytimes.com/2016/02/28/magazine/what-google-learned-from-its-quest-to-build-the-perfect-team.html

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

	2009-07-01 Care About Code - online.pdf
	Slide 1

	Overload140.pdf
	Gnomes and Misnomers
	The Path of the Programmer
	A Usable C++ Dialect that is Safe Against Memory Corruption
	Metaclasses: Thoughts on Generative C++
	A C++ Developer Sees Rustlang for the First Time
	Portable Console I/O via iostreams
	A Functional Alternative to Dependency Injection in C++
	About the C++ Core Guidelines
	Afterwood

