
 ISSN 1354-3172

Overload
Journal of the ACCU C++ Special Interest Group

Issue 10
October 1995

Editorial: Subscriptions:
Sean A. Corfield Membership Secretary
13 Derwent Close c/o 11 Foxhill Road
Cove Reading
Farnborough Berks
Hants RG1 5QS
GU14 0JT pippa@octopull.demon.co.uk
overload@corf.demon.co.uk

£3.50

Contents
Editorial 3

A history lesson 3

Submissions 3

Coming online 3

Software Development in C++ 5

Multiple inheritance in C++ – part III 5

So you want to be a cOOmpiler writer? – part III 8

When is an “is a” not an “is a”? 11

The Draft International C++ Standard 13

What’s in a name? 13

C++ Techniques 16

Addressing polymorphic types 16

Simple classes for debugging in C++ – part I 21

Pausing for thought 24

editor << letters; 25

Books and Journals 28

Thinking in C++ 29

From Chaos to Classes 29

News & Product Releases 31

Microsoft Announces Visual C++ Version 4.0 31

 Overload – Issue 10 – October 1995

 Page 3

Editorial

A history lesson

In 1993, there was the Turbo C++ SIG founded by Mike Toms and from it came Overload 1. By the mid-
dle of the year the SIG had absorbed the European C++ User Group, causing a five-fold increase in mem-
bership and thus losing the compiler-specific nature with which it was conceived. For the first three
issues, Mike was pretty much single-handedly responsible for writing the bulk of the articles that appeared
in Overload. Issue 4 saw a shift with many different contributors beginning to appear.

Issue 4 also saw Mike appeal for writers on a wide range of subjects. An appeal that has largely remained
unsatisfied. I also note, somewhat distressingly, that the number of current contributors is in danger of
settling back down to a handful of dedicated regulars – as noted by Francis at the end of CVu7.6 – so I
shall republish Mike’s “call for articles” in the hope of spurring some of you into writing for future issues.
You don’t have to be a C++ expert – we need the novice view too! You don’t have to be a great writer –
Overload is about C++ rather than literature. See if anything on the following list takes your fancy:

1. commercial experiences of C++

2. streams

3. exception handling

4. templates

5. memory management

6. RTTI

7. STL

8. OOA/OOD

9. troublesome keywords or other language ‘corners’ (e.g., const, volatile, static)

10. C++ development tools

So get writing! Or I’ll send the boys round... Remember, we know where you live :-)

Submissions

Nearly all the submissions for Overload arrive by email now. Most arrive as plain text which is my pre-
ferred format. If you send me Word 2.0 for Windows files, I print them, save them as plain text and then
reformat them from scratch so don’t spend too long on formatting your articles!

I’ve been using the free version of Eudora for Mac for some time and have been impressed enough to buy
the commercial version. This provides fairly sophisticated mail filtering so I have taken this opportunity to
change the submission address for Overload so that Eudora can file submissions away automatically. In
future, please send mail to:
 overload@corf.demon.co.uk
if it is intended for publication and
 sean@corf.demon.co.uk
if it isn’t!

Coming online

I would like to thank Adrian Wontroba for the amount of work he has put in to produce an HTML version
of Overload 7 that is accessible from Alex Yuriev’s ACCU WWW site. One of the administrative issues

 Overload – Issue 10 – October 1995

 Page 4

involved is getting written permission from authors to make their copyright material available in such a
public manner – an additional thankyou then to all the contributors who gave that permission.

It has always been my intent with my own contributions to make them available on my www site. I re-
cently took a week off work and spent several days working on HTML versions of my past and current
contributions to Overload as well as updating my “C++ – Beyond the ARM” pages. The last two Casting
Vote columns, all three So you want to be a cOOmpiler writer? columns and this issue’s What’s in a
name? are now online with earlier columns to follow. I was pleased to discover that my “Beyond the
ARM” series gets 10-15 hits every day!

Sean A. Corfield
overload@corf.demon.co.uk

Those URLs in full

http://bach.cis.temple.edu/accu
Alex Yuriev’s ACCU home page.

http://uptown.turnpike.net/~scorf/overload.html
Overload index page.

http://uptown.turnpike.net/~scorf/cplusext.html
C++ – Beyond the ARM index page.

 Overload – Issue 10 – October 1995

 Page 5

Software Development in C++
This section contains articles relating to software development in C++ in general terms: development
tools, the software process and discussions about the good, the bad and the ugly in C++.

Ulrich Eisenecker examines the different uses of inheritance in modelling relationships and Alan Griffiths
approaches the problem from the opposite side by showing how a single relationship can be modelled in
several different ways. My compiler series continues by taking a brief look at the preprocessor.

Multiple inheritance in C++ –
part III

by Ulrich W. Eisenecker

In the last few issues of Overload many articles
were about multiple inheritance. Therefore I
changed the stuff I wanted to write about, to
avoid boring the readers of Overload and to join
the actual discussion!

Very interesting are the – partially philosophical
– remarks made by The Harpist and Kevlin Hen-
ney for instance. I feel challenged to comment
on these and I want to start by quoting Sean Cor-
field in the editorial of Overload 8. He writes:
“ ... would you say you inherit characteristics
from both your parents? ... A clear case of mul-
tiple inheritance – what could be more ‘real
world’ than that?”

Of course, this is multiple inheritance in “real
world”! And therefore I will scrutinise the mean-
ing of “multiple inheritance” itself. In the con-
text of object-oriented programming languages
this term is used in a way which leads to severe
misunderstanding. Provoking? Fine – that is my
intention. Let us go on!

Beginning to have doubts...

Considering inheritance in biology it is obvious
that both single and multiple inheritance exist.
The most common form in nature is to inherit
from two parents. The main objective of inheri-
tance is to preserve the ability of a species to
adapt to changes in the environment. Only from
a very distant point of view could one argue that
in software development inheritance serves this
objective too. The next great difference between
inheritance in nature and (most) programming
languages is that every biological individual car-
ries its own plan for construction: class and in-
stance are unified in the individual. Classes and
instances are very different at least in C++. A
class is a lifeless plan for constructing objects,
and objects do not know about their class. Since

the introduction of RTTI this has changed a lit-
tle, but it is still not possible to access all the
information related to a class, for instance the
inheritance lattice. This is very different in
Smalltalk. A class can be accessed via an object
during runtime and all class information can be
retrieved and manipulated. It is even possible for
an object to change the relation to its class and to
become an instance of another class. This feature
has no model in nature. Maybe genetic engineers
will even abolish this invariant of biological or-
ganisms.

I hope you now agree to view inheritance in C++
as something quite different from inheritance in
nature. I prefer to look upon multiple inheritance
as a pure means of language. It expresses the
property that the description of a new class is
related to the description of an existing class.
Special restrictions can apply which are ex-
pressed by public, protected or private inheri-
tance.

One syntax, but many semantics...

Inheritance relations can be used for expressing
type relationships between classes. In modelling
type hierarchies, it is generally important to obey
the principle that a type can always be replaced
by one of its direct or indirect subtypes (Barbara
Liskov’s type substitution principle – see Jim
Coplien’s Advanced C++ programming styles
and idioms). Clearly multiple inheritance adds
some complexity in type hierarchies since one
always has to decide carefully, if a class is really
a subtype of each of its parents. By the way:
C++ is commonly said to be a strongly-typed
language. This is true with respect to type check-
ing of function parameters and so on, it does not
generally apply for inheritance semantics.

Another possible use of inheritance is to model
aggregation relationships (has-a relationship).
Of course this sounds horrible to all those who
have ever heard of type theory before, but it was
a practised style in Lisp-based OO languages –
as far as I can remember many years before. To-

 Overload – Issue 10 – October 1995

 Page 6

day this fashion is deprecated very much and I
do not want to explore it further.

Some variant of the former is to use inheritance
for modelling re-use relationships. That is, when
implementing a new class, the implementation of
an already existing class is used. It is now a
question of design and effort (for duplicating
part of the class interface) how such a relation-
ship is handled. It can be done by aggregation
and defining new methods which delegate to
methods of the aggregated or private/protected
base class object. If the re-used class provides
exactly the desired interface no practical obsta-
cles exist to prevent public derivation of the new
class.

Another important semantic of inheritance is
modelling has-property relationships. Obviously
properties such as being printable, persistent,
relocatable and so on are not classes which can
be instantiated as objects. They are clearly only
properties which – ideally – can be attached to
every kind of object and be removed if desired.
It would always be fine to keep such properties
orthogonal to the type system. Unfortunately in
C++ (and other languages too) the inheritance
mechanism is used to express them all: type hi-
erarchies, re-use hierarchies, has-property
relationships and all the other relationships I am
going to tell you about below. The interesting
thing about has-property relationships is that in
contrast to types and re-use properties they do
not necessarily form a hierarchy or a lattice.
Typically they divide a hierarchy into three
parts. The first part contains the property classes
which are mostly not related. The second part
contains the classes for instantiable objects
which may be related. The third part contains the
‘mixin’ classes combined from instantiable
classes and property classes.

Another possible use of inheritance is to employ
it for expressing value relationships. You won-
der what that is? Okay, that phrase may or may
not be well chosen, but the fact exists. What
would you call the derivation of an EmptyString
from an abstract String? What about matrices
with only null elements? Value relationships can
often help to express restrictions primarily at-
tached to values in combination with positive
effects especially for memory allocation or to
describe algorithmic restrictions. An empty
string does not consume memory space for rep-
resenting any internal data. The same applies for

a null matrix. Furthermore, some computations
are not allowed or are only allowed for null ma-
trices or triangular matrices and so on. If value
relationships are directed so that derived classes
widen the set of applicable computations there
are mostly no problems. Things become difficult
when restrictions apply for derived classes (see
also The Harpist’s remarks about circles and el-
lipses in Having multiple personalities, Over-
load 8). Such restrictions can regularly not be
expressed statically during compile time (if one
does not like to overturn the hierarchy). There-
fore methods must be overridden to maintain
certain restrictions and to issue an error at run
time if necessary (common practise in Smalltalk
programming). An assignment of a value other
than zero to a null matrix is an example of this.

I have used this approach by deriving Zero-
Literal from IntegerLiteral to express the
unique properties of zero when analysing
code – Ed.

Another way to use inheritance is for modelling
roles, which is similar to using has-property re-
lationships. Consider a female human being.
When she is born she is a baby from the view of
her parents and society. As she grows she takes
on many roles like pupil, perhaps being mom
herself, and so on. Some roles are durable when
acquired, some end under certain circumstances,
and some are mutually exclusive. The individual
never loses its identity or changes its original
class but depending on a role an object can re-
spond to different messages or can perform role
specific behaviour for the same message. Multi-
ple inheritance can be applied very well for mod-
elling roles. An employee and a father can be
joined to form an employed father for instance.
In database theory, especially object-oriented
databases, the concept of migrating between dif-
ferent roles or the acquisition of roles is much
better understood than in programming.

There is another variant of using inheritance, the
is-like-a relationship. Normally it is used to rank
individuals along a specific dimension according
to their similarity. It can be also be used to ex-
press similarities between classes. In similarity
based hierarchies it is no problem to derive
Whale from Fish.

And, as we all know, the whale is an insect –
Ed.

 Overload – Issue 10 – October 1995

 Page 7

Is-like-a relationships often tend to reflect oppor-
tunistic or naive classifications. Therefore the is-
like-a relationship is similar to the next relation-
ship.

The last variant of using inheritance I can think
of is building taxonomies. At least in German,
“taxonomy” has two meanings. The first is a sys-
tem for classifying organisms into categories
(think about the relation of comparing and clas-
sifying classes and individuals yourself) and the
second is that of a discipline of linguistics,
which is dedicated to the segmentation and clas-
sification of language elements describing the
structure of language systems. Particularly for
the second meaning, inheritance can be used to
model hierarchies of terms and concepts forming
a specific language. In the broad field of object-
orientation, artificial intelligence and linguistics,
colleagues and I already use this principle for
structuring and modularising word and phrase
groups, so called “vocabularies”, of domain spe-
cific languages using inheritance hierarchies.
Aside from such rather esoteric applications of
inheritance for building taxonomies many inheri-
tance hierarchies are at least partially taxono-
mies. Taxonomies are built from a specific point
of view and do not necessarily reflect type rela-
tionships or relations which are of cosmic truth.
Instead, they are very well formed is-like-a rela-
tions which needed many reflection and a long
time to grow. By the way, some experienced
Smalltalk programmers like to talk of sophisti-
cated inheritance hierarchies as taxonomies.

A first figure...

In my opinion it is a nice way to depict the rela-
tions between the different semantics of using
inheritance in form of a taxonomy graph. A first
draft of such a graph is given in Figure 1: Tax-
onomy of inheritance relationships. I would ap-
preciate any comments or criticisms for
improving its current structure.

Mixing it up...

I do not believe that I have succeeded in enu-
merating all possible semantically different uses
of the syntactic means of inheritance. I hope that
I have made you question your “common sense”
understanding of inheritance. In my opinion it is
very important to follow a consistent principle in
using multiple inheritance, make it obvious to
those using a class hierarchy, and to document
the exceptions from applied rules due to practi-
cal circumstances. I am not sure whether it
would be wise to deprecate all uses of inheri-
tance except type-relationships, but I agree fully
with Kevlin Henney who states the importance
of clearly defining the purpose of a class in
analysis. It is always misleading or irritating if a
class designer does not know his own intentions
when using inheritance. It also becomes very
difficult and erratic if many styles of using in-
heritance and multiple inheritance are applied
unsystematically and without documentation in a
class hierarchy.

 Overload – Issue 10 – October 1995

 Page 8

Outlook

Well, inspired by the previous contributions in
Overload I wrote about something completely
different to what I formerly intended and you
saw no C++ code. I hope you can forgive me and
I will be very pleased if this article provokes
some discussion and follow-up articles. After
discussions with the editor I will decide the next
topic in the context of multiple inheritance to
write about.

Ulrich W. Eisenecker
eisenecker@mbgate.augusta.de

So you want to be a cOOmpiler
writer? – part III
by Sean A. Corfield

At the end of part II, I provided some skeleton
classes and asked you to consider what the inter-
faces should be. I’m going to start by fleshing
out one of those interfaces and then look in a
little more detail at some aspects of preprocess-
ing. I may come back to the other classes in a

future issue but I am no longer in a position to
divulge some of the details that I had planned!

At source

The class I want to look at is the base class
Source. In a purely abstract sense, all we can say
for sure about it is that we can repeatedly ‘get’
items from a Source until it is ‘empty’:

template<class T>
class Source
{
public:
 virtual T get() = 0;
 virtual bool empty() const = 0;
 virtual ~Source() { }
};

The member functions are both “pure virtual”
because there can be no sensible generic imple-
mentation for them – they must be provided by
more derived classes. The class has no data
members – no state – so a default constructor
(implicitly generated by the compiler) is appro-
priate here. However, we must provide an ex-
plicit virtual destructor because the default
would be non-virtual and could lead to problems
later on. In many ways, assignment and copy

inheritance

type

value

has-property

has-a role
is-like-a

re-use taxonomical

Figure 1: Taxonomy of inheritance relationships

 Overload – Issue 10 – October 1995

 Page 9

construction are irrelevant because the class has
no state information. What kind of Sources will
we be dealing with in reality? We’ve already
said each Phase is a Source but we also need the
lowest-level Source: a file. Or is it? An istream
is a more general Source than an ifstream so
perhaps we should consider that first:

template<class T>
class StreamSource
: public Source<T>
{
public:
 StreamSource(basic_istream<T>& i)
 : i_(i) { }
 virtual T get()
 { T c; i_.get(c); return
c; }
 virtual bool empty() const
 { return
i_.eof(); }
 virtual ~StreamSource() { }
private:
 basic_istream<T>& i_;
};
StreamSource<char> charSource;
StreamSource<wchar_t> wideSource;

By templatizing StreamSource and using ba-
sic_istream, we take our first steps towards
‘global’ programs – a useful point to remember.

Whither STL?

Kevlin Henney noted in Overload 9 (Applying
the STL mindset) that the phases could probably
be rewritten in terms of iterators and, given the
above class interfaces, we are going to end up
with a lot of code that does something like this:

Source<T>& st = ...;
while (!st.empty())
{
 T t = st.get();
 // do stuff with t
}

STL-style iterators would indeed allow us to re-
write this as:

Source<T>& st = ...;
for (Source<T>::iterator i = st.begin();
 i != st.end();
 ++i)
{
 T t = *i;
 // do stuff with t
}

By definition, however, a Source<T>::iterator
would be an “input iterator” and these are one-
pass iterators which come complete with a lot of
semantic restrictions. For the initial input phases
of preprocessing, this is not a great problem but
as the mapping involved in each phase becomes
more complex the restrictions associated with
input iterators make them unworkable. The ap-
proach that I took was to implement all the early

phases with the get/empty interface and then col-
lect all the tokens that came out of preprocessing
into a list that could be iterated over by the
parser:

Preprocessor* p = new

Preprocessor(filename);
list<Token> source;
while (!p->empty())
{
 source.push_back(p->get());
}
parseProgram(source.begin(),
source.end());

This is somewhat simplified because the actual
input to the parser is the output of phase six
whereas the preprocessor is only really phases 1
to 4 – see Table 1: Phases of translation.

Assuming that we really wanted to implement
the input iterator for a Source, let’s examine how
we’d go about it:

template<class T>
class Source
{
public:
 class iterator
 : public input_iterator<T>
 {
 public:
 iterator(Source<T>* sp)
 : sp_(sp) { }
 T operator*()
 { return sp_-
>get(); }
 iterator& operator++()
 { return
*this; }
 iterator operator++(int)
 { return
*this; }
 friend bool
 operator==(const
iterator&,
 const
iterator&);
 private:
 Source<T>* sp_;
 };
 iterator begin()
 { return
iterator(this); }
 iterator end() { return iterator(0); }
 // ... as before ...
};

The implementation of the equality operator is
left as an exercise for the reader. Note two
things:

1. this assumes the != operator provided by
STL – a template operator that guarantees “x
!= y” means “!(x == y)”,

2. every time you use operator* on the itera-
tor, the Source is advanced.

 Overload – Issue 10 – October 1995

 Page 10

That last point may surprise you – in fact, the
semantics of input iterators are under review by
the C++ committee at present and it may turn out
that the above implementation violates the in-
tended requirements of an input iterator (I don’t
believe it does at present). If the requirements
change, then the ‘current item’ would need to be
cached within the iterator and a few other ad-
justments made – I may revisit this in a future
article.

Parsing a program

In C++, a program is a sequence of declarations,
so it shouldn’t surprise you that I implemented
that as follows:

void parseProgram(
 list<Token>::iterator cur,
 list<Token>::iterator eof
)
{

 while (cur != eof)
 {
 cur = parseDeclaration(cur, eof);
 }
}

parseDeclaration takes a pair of iterators speci-
fying a range, [cur, eof), and returns an iterator
that refers to the next, unparsed Token in the list.
I will return to this later in the series.

Of symbols...

In Overload 8, I commented that the symbol ta-
ble is an obvious abstraction in a compiler. The
main symbol table required in C++ is relatively
complicated because it needs to be “scope-
aware” but the preprocessor also needs symbol
tables – for macros and preprocessor directives.
First of all, let’s look at what information we
need for a preprocessing token: its name (or
spelling), its “key” (e.g., IDENTIFIER, HASH,
WHITESPACE) and its position in the source
code. We need the latter to be able to accurately
report the location of warnings that we detect
later on in the analysis. For the purposes of pre-
processing, only a few different types of token
are important, in particular there are no key-
words.

There are two types of macros: object-like and
function-like. In an ideal world we could imple-
ment these along the following lines:

class Macro
{
public:
 Macro(const string& n,
 const list<Token>& b)
 : name_(n), body_(b) { }

 virtual ~Macro() { }
 list<Token> expand() const = 0;
protected:
 const string& name() const
 { return name_; }
 const list<Token>& body() const
 { return body_; }
private:
 const string name_;
 const list<Token> body_;
};

class ObjectMacro
: public Macro
{
public:
 ObjectMacro(const string& n,
 list<Token> b)
 : Macro(n, b) { }
 virtual ~ObjectMacro() { }
 list<Token> expand() const;
};

class FunctionMacro
: public Macro
{
public:
 FunctionMacro(const string& n,
 list<Token> b,
 list<Token> p)
 : Macro(n, b), params_(p) { }
 virtual ~FunctionMacro() { }
 bool bind(const list<Token>& args);
 list<Token> expand() const;
private:
 list<Token> params_;
// ...
};

Then preprocessing would proceed like this:

 if (token.key() == IDENTIFIER)
 {
 MacroTableIterator m =

macroTable.find(token.name());
 if (m != macroTable.end())
 {
 if (FunctionMacro* fm =

dynamic_cast<FunctionMacro*>(&*m))
 {
 // collect arguments from token
 // stream
 if (!fm->bind(args))
 {
 warning(token.where(),
 BAD_MACRO_CALL,
 token.name());
 }
 }
 list<Token> expansion = m-
>expand();
 }
 }

Notice how we can bind the macro arguments
after downcasting in the case of a function-like
macro but always despatch the macro expansion
from the base class. Unfortunately, RTTI is not
portable enough at the moment to allow us the
luxury of implementing macros like this. Instead,

 Overload – Issue 10 – October 1995

 Page 11

I implemented it all in one class (Macro) and
provided a method isFunction() that indicated
whether binding arguments was a sensible opera-
tion – an engineering compromise. macroTable
is implemented as a hash table – something sadly
missing from the draft standard library – that
maps the name of a macro to the implementation
of the macro (hash_map<string,Macro>).

The preprocessing operations that affect macros
can be easily implemented:

// #define macroName body
// #define macroName(args) body
 MacroTableIterator m =

macroTable.find(macro.name());
 if (m == macroTable.end())
 {
 macroTable[macro.name()] = macro;
 }
 else
 {
 // if args & body are not identical
to
 // previous definition, warn about
it
 }

// #undef macroName
 MacroTableIterator m =

macroTable.find(macro.name());
 if (m != macroTable.end())
 {
 macroTable.erase(m);
 }

Service included

Since the #include directive causes phases 1 to 4
to be recursively applied to the specified file,
implementation should just be a matter of creat-
ing a new preprocessor on that file, ‘get’ing all

the Tokens from it and priming the owning pre-
processor with that list of Tokens – this implies
that Preprocessor has a cache:

bool Preprocessor::empty() const
{
 return cache.empty() && lexer.empty();
}
Token Preprocessor::get()
{
 if (cache.empty())
 {
 // perform normal preprocessing
 }
 else
 {
 Token t = cache.front();
 cache.pop_front();
 return t;
 }
}

// #include filename
 Preprocessor* included = new

Preprocessor(filename);

 while (!included->empty())
 {
 cache.push_back(included->get());
 }
 delete included;

Coming soon

Whilst I have obviously glossed over many of
the details of preprocessing, I hope that this
gives you a feel for what is involved. In part IV,
I shall move on to look at representing the C++
type system and some of the engineering consid-
erations involved.

Sean A. Corfield
ocs@corf.demon.co.uk

When is an “is a”
not an “is a”?
by Alan Griffiths

Setting the scene

The software development process has always
suffered from the difficulty of relating the initial
description of a problem to the implementation
of a system to solve it. Object-orientation ap-
pears to offer an easy method of mapping con-
cepts between analysis of the problem domain,
the system design, and the implementation. It
appears simple to track the classes and relation-
ships described in each of these processes to
those described in the others. In practice it is not
as simple as it seems because many of these ap-
parent mappings are invalid.

For those of you without either Overload 5 or the
memory of Methuselah, here’s a resumé of the phases
of translation:

1. map character set and trigraphs

2. splice \ <newline> pairs

3. map characters to preprocessing tokens and replace
comments by whitespace

4. expand macros and include directives

5. map escape sequences in character and string liter-
als

6. concatenate adjacent string literals

7. convert preprocessing tokens to tokens and per-
form syntax and semantic analysis

8. combine translation units to form a program

Table 1: Phases of translation

 Overload – Issue 10 – October 1995

 Page 12

To take a simple example consider a member-
ship application form handled by the ACCU.
This is initially sent to the treasurer who pays
the cheque in (and waits for it clear) before for-
warding the application to the membership sec-
retary who then enters it into the membership
database and files it.

• In the analysis model the MembershipAppli-
cation object would be represented as having
states “being processed by treasurer”, “being
processed by membership secretary”, and
“completed processing”.

• In the design (especially given the distrib-
uted nature of the ACCU administration),
each of these states is represented as a col-
lection of applications.

• When it comes to implementation it will be
noticed that AppsBeingProcessedByTreas-
urer and AppsBeingProcessedByMember-
shipSecretary have common functionality
and an implementation class (SetOfMember-
shipApplications) will be abstracted.

Given the above elaboration of the system during
development it is no longer a trivial matter to
trace the “state transitions” of the analysis model
directly into the implementation. (They are still
there of course but their representation has
changed – they no longer belong to the Member-
shipApplication.) For those who doubt the valid-
ity of the above scenario, it is precisely what I
was told to do on an OMT training course! (I
was the only one on the course that appeared
uncomfortable with the gaps in this progression.)

Now let’s examine the relationships between
some of these classes. One of the classic tests for
valid inheritance is the “is a” test. That is “a
class of objects A is a subclass of another class
of objects B if each instance of an A is also an
instance of a B”.

When implementing such a design it is important
to note that C++ supports a number of mecha-
nisms of implementing an is-a relationship and
that choices need to be made amongst them. The
three main forms of is-a are:

• Inheritance from a public base class.

• Instantiation of a template class.

• Conformance to the restrictions on a tem-
plate argument.

Dealing with these choices is a C++ “program
design” issue which serves to further separate
the implementation from the earlier development
stages. These forms are discussed below, but
note that there is no corresponding choice at the
analysis or design levels of the development
process. Indeed, as far as I am aware no other
programming language requires (offers?) these
choices.

Inheritance from a public base class

In the above example the classes AppsBeing-
ProcessedByTreasurer and AppsBeingProcess-
edByMembershipSecretary are related as each of
them is a SetOfMembershipApplications – they
support the same methods, for example:

insert(const MembershipApplication& ma);

In this case a public base class SetOfMembershi-
pApplications is appropriate:

class AppsBeingProcessedByTreasurer
: public SetOfMembershipApplications
{ ... };

Instantiation of a template class

Now consider the classes SetOfMembershipAp-
plications and SetOfMembers. Each of these is a
“set”, but you cannot treat a SetOfMembershi-
pApplications as a SetOfMembers as the func-
tions have different signatures:

insert(const MembershipApplication& ma);
insert(const Member& m);

The approach here is to use a template set class
as provided by the standard library:

typedef set<MembershipApplication>

SetOfMembershipApplications;

In real life, there is probably a need to add func-
tionality to the functions supplied by set in
SetOfMembershipApplications so delegation
may be more appropriate:

class SetOfMembershipApplications
{
public:
 //...
 virtual void insert(
 const MembershipApplication& ma)
 { apps.insert(ma); }
private:
 set<MembershipApplication> apps;
};

Conformance to the restrictions on a
template argument

One of the interesting features of templates is
way that the operators and member functions

 Overload – Issue 10 – October 1995

 Page 13

applied to template arguments are resolved. This
means that a template can be written which re-
quires an expression such as t1 < t2 to be valid
and to return true if t1 precedes t2 regardless of
how “precedes” is interpreted and whether the
expression is evaluated by the built-in < opera-
tion, a member operator T::operator<() or by a
binary operator operator<(T&, T&) that hap-
pens to be in scope when the template is instan-
tiated.

In terms of our example there could be a tem-
plate function printAddressLabel() that requires
its argument to provide member functions get-
Name() and getAddress() with some appropriate
behaviour. From the viewpoint of this function
either Member or MembershipApplication is a
source of address information without the need
to introduce a SourceOfAddressInformation base
class for each of them.

Artificial classes such as the hypothetical Sour-
ceOfAddressInformation deepen the inheritance

hierarchy, often require multiple inheritance, and
(when their purpose is to assist such utility func-
tions) they tend to proliferate. They are best
avoided.

In conclusion

C++ is such a rich language that there will be
other ways of implementing “is a” that are not
covered above. However, it has been demon-
strated that blindly following the design to pro-
duce a hierarchy based on public base classes is
not the only option.

The challenge is to ensure that implementation
and the design are close enough to ensure that
the system is correctly implemented without
forcing the more flexible “is a” relationships
shown in the design into a straitjacket based on a
single implementation of “is a”.

Alan Griffiths
alan@octopull.demon.co.uk

The Draft International C++ Standard
This section contains articles that relate specifically to the standardisation of C++. If you have a proposal
or criticism that you would like to air publicly, this is where to send it!

After the various comments that have been raised about namespaces, I look at an alternative explanation
for the way they work in an attempt to clarify what the draft standard says.

What’s in a name?
by Sean A. Corfield

In Overload 8 I promised that I would return to
look at namespaces in more detail. When Bjarne
Stroustrup presented the proposal to the commit-
tee in Munich in July 1993, he said that the fea-
ture was simple enough to explain to C++
programmers “in ten minutes” and could be “im-
plemented in ten days”. Prior to the Munich
meeting, I had implemented most of the name-
space mechanism in a day and it seemed very
straightforward. However, I, like many other
committee members, had not grasped a couple of
subtleties of the namespace mechanism and had
implemented it incorrectly. Metaware – the only
commercial compiler implementation – had also
implemented it incorrectly (Metaware’s imple-
mentation largely agreed with my own!). Let’s
look at why the confusion arose and how name-
spaces really work!

First principles

The principle behind namespaces is simple
enough: provide a way to partition the global
scope to allow mix’n’match between compo-
nents from different libraries – see my short ex-
posé in Overload 8. A namespace may only be
defined at file scope or nested directly in an-
other namespace. Names declared inside a name-
space can be accessed from outside the
namespace by using the fully qualified name.

namespace ACME
{
 class Widget ...
}
ACME::Widget w;

A namespace can be “unlocked” for the purpose
of name lookup with a using-directive, e.g., us-
ing namespace ACME; or an individual name
can be imported into the current scope with a
using-declaration, e.g., using ACME::Resource;

The using-declaration behaves exactly as if the
unqualified name had been declared at the point

 Overload – Issue 10 – October 1995

 Page 14

of the using-declaration and it is a synonym for
the fully qualified name.

The using-directive says “if name lookup
reaches file scope (or namespace scope) before
the name has been found, search any and all
unlocked namespaces as well as file scope (or
the namespace scope we have reached)”.

In addition, file scope is now deemed a name-
space scope, but with a name you cannot utter.
This makes the name lookup rules simpler by
removing the ‘special case’ of file scope and we
can rewrite the using-directive rule as: “if name
lookup reaches namespace scope before the
name has been found, search any and all
unlocked namespaces as well as current name-
space scope”.

I’ll explain this in more detail below, but first I
want to round off the ‘feature list’.

A shorter alias for a long namespace name can
also be defined, e.g.,

namespace ACME =

a_company_that_makes_everything;

This also allows you to mix’n’match libraries
more easily:

namespace lib = Modena;
// can easily change to:
// namespace lib = RogueWave;
// namespace lib = std;

// never need to change this:
lib::string banner;

It all looks so simple, doesn’t it? How could we
possibly have been confused?

Confusion will be my epitaph

Unfortunately, a using-directive and a using-
declaration look similar enough that many peo-
ple think the directive is some sort of declara-
tion. Barry Dorrans’ letter in Overload 9 is
typical of many programmers’ first reaction to
seeing namespaces. Even with hindsight, I don’t
know what syntax the committee could have
picked to avoid this confusion. Part of the basic
problem with namespaces is that they look a lot
like classes or named scopes: they have a key-
word, a “tag” and a brace-enclosed list of decla-
rations:

namespace MyLib
{
 class ConfigurationFile
 {
 // ...
 };

 // ...
}

This naturally leads programmers to expect a
namespace to behave in a similar way to a class
and at least obey rules of scope. I think this is
what causes many programmers to think that a
using-directive will somehow be “found” during
lookup prior to reaching an outer scope.

Second principles

There has recently appeared – within the com-
mittee, at least – an explanation of namespaces
that does not so easily give rise to this confusion.
Consider a namespace as simply a shorthand for
exactly what we want to achieve – separation of
names:

namespace MyLib
{
 class ConfigurationFile
 {
 };
}
namespace YourLib
{
 class ConfigurationFile
 {
 };
}

If we didn’t have namespaces, we’d probably
write this:

class MyLib_ConfigurationFile
{
};
class YourLib_ConfigurationFile
{
};

Here, the names are all in the global scope and
“fully qualified” names would simply the the
entire name with the prefix (MyLib_ or Your-
Lib_). This is, after all, something like the way
that compilers will implement namespaces any-
way. Let us now examine what a using-
declaration does in this context:

using MyLib::ConfigurationFile;

becomes equivalent to:

typedef MyLib_ConfigurationFile

ConfigurationFile;

If the name referred to a variable, it would be
like having a local reference to the original:

Type& name = MyLib_name;

or if it were a function, we could have a local
delegation function:

inline Type func(Arg arg)
{

 Overload – Issue 10 – October 1995

 Page 15

 return MyLib_func(arg);
}

(allowing for the subtleties of pass-by-reference
and so on). What about the troublesome using-
directive? In this imagined context, using name-
space ACME; says “if name lookup reaches
global scope, look for ACME_name as well as
name”. Returning to the “confusing” example in
Overload 9:

namespace A
{
 int j;
}
void f()
{
 int j = 0;
 if (j)
 {
 using namespace A;
 j = 0;
 }
}

Rewriting this to use a prefix instead of a name-
space gives:

int A_j;
void f()
{
 int j = 0;
 if (j)
 {
 // using-directive means:
 // look for A_name as well as name
 j = 0;
 }
}

Clearly, the j in the assignment must refer to the
local j because A_j is in an outer scope and name
lookup never reaches it. Replace the using-
directive with a rewritten using-declaration:

int A_j;
void f()
{
 int j = 0;
 if (j)
 {
 int& j = A_j;
 j = 0;
 }
}

and it should be clear that the j in the assignment
now refers to the local reference and hence to the
global A_j.

Like a namespace within a name-
space

The simile used above can be extended to nested
namespaces and using-directives too:

namespace A
{
 int j;

}
namespace B
{
 namespace C
 {
 int i;
 }
 using namespace A;
}

B::C::i can be treated as a global scope identifier
called B_C_i and then the lookup rules described
above apply. The using-directive inside B says
“look for A_name as well as B_name”. Now if
we unlock B with a using-directive (“look for
B_name as well as name”) we simply end up
with a list of possible names to find in the global
scope. Even if we use qualified name lookup to
look inside B, we can still use this simile to ex-
plain the rules: B::j causes a lookup of B_j and
since the using-directive in B adds A_name to
B_name as possible candidates, we will correctly
find A_j as expected. I should point out that
qualified name lookup prior to Monterey (July
‘95) did not work in this manner but it was
clearly the intent of the original proposal that it
should and synthesis of namespaces relies on
that property.

Synthetic libraries

As I explained in Overload 9 (page 18), one of
the goals of namespaces was the ability to syn-
thesise ‘new’ namespaces from old ones, allow-
ing a company to provide a single standard
namespace that all its programs can rely on with-
out worrying about exactly where names really
come from. This should provide great benefits to
companies that use many different vendors’ li-
braries and have to deal with differences be-
tween versions of those libraries (in fact, this
was one of the example Bjarne originally gave in
‘93 to support his proposal). All the differences
can be dealt with in one place – the synthesised
namespace – and no client code should need to
be changed.

The nameless ones

Finally, there are unnamed namespaces. They
are exactly like other namespaces with two slight
differences:

1. their name is unique and cannot be uttered

2. each unnamed namespace is implicitly
“unlocked”

That means that:

namespace

 Overload – Issue 10 – October 1995

 Page 16

{
}

is absolutely equivalent to:

namespace UNIQUE
{
}
using namespace UNIQUE;

where UNIQUE is some compiler-generated
name (probably with lots of digits and under-
scores in it!). Since unnamed namespaces effec-
tively do have a name, all the previous
explanation applies.

Alas poor static...

The committee have decided that file scope
static should be deprecated – marked for possi-
ble future removal – because unnamed name-
spaces provide an alternative that is more
consistent with the future direction, or style, of
C++. Since file scope static can be implemented
by generating a unique prefix for each transla-
tion unit and then treating the full names as ex-
ternally linked, it should be easy to see how
unnamed namespace can be used instead:

static int i;
static int j;

// can be treated as:
int UNIQUE_i;

int UNIQUE_j;
// which is equivalent to:
namespace UNIQUE
{
 int i;
 int j;
}
using namespace UNIQUE;

Still confused?

Ideally, you’d need to go away and try the code
examples on your favourite compiler. Unfortu-
nately, only Metaware supports any form of
namespaces and that doesn’t obey the rules given
above. Several major vendors are working on
namespaces now – hopefully implementing them
the same way – so it shouldn’t be too long before
we can “play” with this useful, two-year old lan-
guage feature!

If you have any questions or comments about the
above, I’d like to hear them – perhaps a follow-
up article will be necessary?

Sean A. Corfield
sean@corf.demon.co.uk

C++ Techniques
This section will look at specific C++ programming techniques, useful classes and problems (and, hope-
fully, solutions) that developers encounter.

The Harpist provides a real world example of polymorphism to examine the issues involved in designing a
‘proper’ polymorphic type. Roger Lever begins a series on writing useful classes for debugging and Fran-
cis Glassborow provides a utility class for tracking order of destruction.

Addressing polymorphic types
by The Harpist

derived from an idea
by Francis Glassborow

You will find both questions and tasks included
in the body of this article. They try to identify
areas that need either further development or
extended exploration. I hope that all of you will
look at these carefully and, if you can, provide
appropriate articles about one or more. I would
hope to see quite a number of items in future
editions of Overload derived from this article.

Some time ago Francis and I had a discussion
about examples of polymorphism. We both
agreed that the ubiquitous Shape hierarchy was a

poor example for reasons that have been covered
in earlier issues of Overload. (Actually, I think
that Shape is a good discussion topic for inter-
mediate C++ programmers with leanings to-
wards becoming class designers rather than
writers of client programs and application code.)
What Francis wanted was a simple concept that
virtually demanded multiple implementations of
a single interface. After throwing ideas around
for a time, Francis suggested the idea of an Ad-
dress. We refined that down to a postal address
(excluding email addresses and speeches) but
decided for simplicity to keep to the name Ad-
dress for the base class.

I think that we can largely agree on a public in-
terface for Address objects while recognising
that the exact implementation will depend on the
country in which the address is located.

 Overload – Issue 10 – October 1995

 Page 17

My feeling is that the address concept is one that
is ideal for introducing the ideas of polymor-
phism and reuse. Addresses are very common
pieces of data and so justify the overhead for
developing a good reusable implementation
(class hierarchy). They also exhibit just about all
the problems of pure polymorphic types. I use
the term ‘polymorphic type’ to refer to the con-
cept of types that share a single public interface
without any extensions in sub-types.

Let me offer a possible ABC (abstract base
class) for Address.

class Address {
 const char * const country;
public:
 enum type { UK, US, Germany, France };
 const char* get_country()
 { return
country; }
 virtual void printon(ostream& =cout) =
0;
 virtual void getfrom(istream& = cin) =
0;
private:
 void operator=(const Address&);
public:
 Address(const char*);
 Address(const Address&);
 virtual ~Address() = 0;
};

No doubt there is other functionality that you
might want to include but I think the above is a
good starting point. For the less experienced
(and so that the experts can pull it apart) here is
my rationale for the various elements in my Ad-
dress interface.

class Address {

I have elected to use the keyword class to em-
phasise that this is a specifically C++ structure. I
reserve identifiers with single leading upper case
characters as type names. This is purely an ele-
ment of my personal style. The most important
rule here is to be consistent.

 const char* const country;

This is an addition of mine. Francis’ original
design has no data in his ABC. I decided to add
this single data member because it is a property
of all postal addresses that they are located in a
country even if that is not stated anywhere else. I
chose to use a char* because I wanted to assign
space dynamically. This choice does raise some
issues about efficiency. It minimises stack use
(OK, use of local storage if you want to be
picky) but at a cost of speed (dynamic memory
allocation and release is always more time con-
suming than any other form). At this stage I

avoided using a string class because the Stan-
dard Library version is still not stable. On a sec-
ond pass I would almost certainly consider
replacing char* with either wchar_t* or some
form of string object. As this is private data I can
change my mind freely.

My choice of the two const qualifiers is rather
more debatable. The first one effectively means
that nothing may change the spelling of the
country data. Optimisers can sometimes make
use of such information. The second one pre-
vents any attempt to reassign storage for country.
Actually this has a valuable side effect (which is
why I am using it), it requires value of country to
be set in a ctor-init list (constructor-initialiser
list). You will see that this works quite well with
the concrete classes that follow. You will also
see that the first const works rather badly.

public:
 enum type { UK, US, Germany, France };

This will be a list of all the countries supported
by the hierarchy. As we pursue this we will find
that somewhere we need such a list. This may
not be the right place because it means that ex-
tending the hierarchy will require us to tinker
with the abstraction. I am deliberately leaving
this as an open question because I want to see
what ideas our expert members will suggest.

Expert question: How should knowledge of
concrete classes be encapsulated? Can you
avoid providing it in the base class?

I have just placed four countries in this enum, in
a full implementation there would be many
more.

 const char* get_country()
 { return
country; }

As this field is common to all Address types we
can safely provide read access at this level. If we
later change the type of storage the body will
have to provide a conversion. As this might not
be possible in some instances (e.g., providing
full international spellings with wchar_t) I think
providing a minimal class to handle names of
countries needs to be added, urgently. Once such
has been provided, you have far more room for
future change.

 Overload – Issue 10 – October 1995

 Page 18

Intermediate task: design and implement a
class that provides support for using interna-
tional character sets for country names.

 virtual void printon(ostream& =cout) =
0;

This function will allow us to provide an appro-
priate output for printing, screen display and per-
sistent storage (though the latter has some
ramifications). Note that it defaults to screen
display, which seems reasonable to me. It is also
a pure virtual function which forces the concrete
classes to provide an implementation, though, as
we shall see in a moment, it does not prohibit an
implementation at ABC level.

 virtual void getfrom(istream& = cin) =
0;

And this is the symmetrical operation to allow
data to be read into an instance.

private:
 void operator=(const Address&);

We know that we must do something about copy
assignment because if we don’t the compiler
will. At first sight you may think that the as-
signment should be virtual. I don’t think that will
work – the derived versions would also have to
take an const Address& parameter. The client
code is going to be using Address* and Ad-
dress& (i.e., pointers and references to the
ABC). This leads to a problem, because we
might have something like this:

Address& ger = *new German_address();
Address& fra = *new French_address();
ger = fra;

That won’t work because we would be back to
the polymorphic object problem that I tackled in
the last issue (circles and ellipses). If we are go-
ing to provide copy assignment we are going to
need something much smarter. For the time be-
ing I have declared the function private. That
way we inhibit generation of default copy as-
signment both here and in derived classes (they
will try to use the base class copy assignment
and get an access violation). Strictly speaking,
we need not provide a copy assignment declara-
tion as long as country is of a const qualified
type – the compiler cannot generate copy as-
signment (nor copy construction either) because
it would violate the rules on assignment to (ini-
tialisation of) const qualified variables.

Expert task: provide a copy assignment for
concrete address sub-types that will throw an

exception (or otherwise fail under control) if
the left and right sub-types are different.

 Address(const char*);

While we cannot have any instances of plain
Address objects, we are going to need them as
sub-objects so we need a constructor. Yes, we
really do, as this has been written because coun-
try is both const qualified so must be initialised,
and with private access can only be touched in
the context of a plain Address.

 Address(const Address&);

If we are to copy concrete Address sub-types we
must be able to copy the base sub-object.

 virtual ~Address() = 0;

In order for polymorphism to work we must pro-
vide a virtual destructor. As I believe it would
always be an error for the destructor of a poly-
morphic base to be non-virtual I think that the
language should specify that it will be. The ques-
tion remains as to whether it should be a pure
virtual (i.e., should I require implemented de-
structors in derived classes)? Even if I do so I
will still need a base class implementation:

Address::~Address()
{
 delete[] country; // note: delete[]
 // not delete!
}

Which leads to all sorts of interesting debates:
const qualified objects may not be changed:
surely deleting them is changing them and so on.
The fact of the matter is that you need to release
the storage and the language allows it to be done
this way. Yet, note that you cannot initialise it in
the body of a constructor – that is too late. Its
these inconsistencies that cause so many prob-
lems to novices. [We have even more fun with
the logic of deleting member data within the
body of a destructor when the object being de-
stroyed is itself const qualified. I could make a
strong case for requiring const destructors for
const objects. That would require cv-
qualification information to be stored in the
RTTI (run time type information) record for a
variable. As the language currently stands, cv-
qualification creates a compile time fine struc-
ture for types that is not available at run time. Or
in other words, the range of static types is not the
same as that for dynamic ones.]

 Overload – Issue 10 – October 1995

 Page 19

Some more implementation

Before we look at a concrete class derived from
Address, we need to finish the ABC by providing
implementations for its constructors.

Address::Address(const char* c)
: country(new char[strlen(c)+1])
{
 strcpy(const_cast<char*
const>(country),
 c);
}

I think I have this right. First attach sufficient
dynamic memory to country to contain the string
passed in as an argument, then temporarily sus-
pend the const qualification on the elements of
the char[] so that you can write to them. This is
where having some form of string type would
avoid the problem. One reason why I elected to
use dynamic arrays of const char was to focus
your attention on this problem.

Note that this is not a default constructor, but we
do not need one because you cannot have a plain
Address object. More to the point, you cannot
have an array of pure Address objects. When do
you need default constructors? You usually need
them to create arrays. Here we hit an oddity of
polymorphic types, you can have single poly-
morphic instances because you can do something
such as:

Address& ger = *new German_address();

You can have static arrays of a polymorphic sub-
type:

German_address adds[10];

You can have arrays of pointer to a polymorphic
type:

Address* padds[10];

But there is no mechanism for creating an array
of type Address&. Whatever the rights of the
matter are, arrays of references are not supported
by C++. This does not matter as long as you, as a
programmer, stick rigidly to the concept that an
ABC provides the whole interface and that you
get the same behaviour independent of how you
access an object. However as soon as an object
has different behaviour depending on its mode of
access the lack of arrays of references might
cause problems. This is not a criticism of C++, I
think the position it adopts is perfectly reason-
able, however it does mean that arrays of poly-
morphic objects have to use explicit indirection

(rather than the implicit indirection that is used
to implement references).

I think that the argument that the inconsistency is
in allowing references exhibit polymorphic be-
haviour has some force (not a lot, but some).

Address::Address(const Address& a)
: country(new char strlen(a.country)+1])
{
 strcpy(const_cast<char*
const>(country),
 a.country);
}

Now that makes the copy constructor almost
identical to the normal constructor. Perhaps we
should extract the code that writes to country. It
is also possible that a derived class might want
the power to change country. Such a decision
would be one taken by class hierarchy designer
with more than a little care. If you decided that
you wanted to provide write access to country
for derived classes what you must not do is
change country to protected access. That would
forever tie you to const char* const. What you
need would be something like:

void Address::set_country(
 const char* c)
{
 delete[] country; // free up any
current
 // dynamic memory
 const_cast<char *>(country) =
 new
char[strlen(a.country)+1];
 strcpy(const_cast<char*
const>(country),
 c);
}

With the prototype declared protected in the
definition of Address.

Because we must protect against possible mem-
ory leaks with the delete[] in the above function,
we will have to change our two constructors so
that they will make efficient use of this function.
Something like the following:

Address::Address(const char* c)
: country(0)
{
 set_country(c);
}
Address::Address(const Address& a)
: country(0)
{
 set_country(a.country);
}

Now let us look at implementing a concrete class
based on Address. I am not going to provide
more than skeleton code for this.

 Overload – Issue 10 – October 1995

 Page 20

Novice/intermediate task: flesh out and fully
implement German_address, UK_address,
US_address and French_address.

class UK_address : public Address {
 // UK specific data elements
public:
 void printon(ostream& = cout);
 void getfrom(istream& = cin);
public:
 UK_address(istream&);
 UK_address(const UK_address&);
 ~UK_address();
};

I am leaving most of the implementation to you
but a possible implementation of the construc-
tors might be:

UK_address::UK_address(istream& in)
: Address(“United Kingdom”)
{
 getfrom(in);
}
UK_address::UK_address(
 const UK_address& old)
: Address(“United Kingdom”)
{
 // code to copy the rest of the data
}

When we come to implement printon() we will
probably realise that we have tried to do rather
too much by allowing the same function to write
to all kinds of output. If we do not realise it then,
we will when we come to tackle persistence –
that is writing data to storage so that it can be
read back again.

The problem of persistence

Consider the following:

int main()
{
 Address* data[100]= {0};
 for (int i = 0; i < 100; i++)
 {
 get_address(data[i]);
 }
 ofstream outfile(“mydata”);
 for (int j = 0; j < 100; j++)
 {
 data[j].printon(mydata);
 }
 mydata.close();
 return 0;
}

Now how do I read that data back into an array?
My read data function must identify the correct
kind of address sub-type then dynamically create
an object of that sub-type so that it can read the
data into that object. The logical place for such a
function is as part of the Address ABC. But this
function needs to know about all the sub-types.
Also each address must be stored with some way
of identifying its sub-type. This was why I had

an enum in my ABC. It probably needs tucking
away somewhere else (I can think of quite a few
solutions, but I would like to see some from our
experts) because as currently written, the ABC
must be changed each time a new sub-type is
added.

Let me sketch a possibility. Suppose Address
includes a static data member that was a linked-
list of Address* (or Address& if you prefer).
Now suppose that each sub-type includes a regis-
tration function that, when called the first time,
added an instance of itself to the linked-list (and
then did nothing if called again). Add a virtual
function Address* make_me() = 0; to the ABC.
Some time ago a special relaxation to the rules
for return types of virtual functions was intro-
duced so that the return types of virtual functions
do not need to be identical but may be types de-
rived from the return type in the base (original)
virtual function declaration. This can be used
here so that each implementation of make_me()
returns a pointer to the specific sub-type. The
actual function must create a dynamic instance
of the relevant sub-type.

We could then include the following in Address:

void Address::Make_address(
 Address*& handle,
 int cntry)
{
 Address* model;
 // code to find the address of the
 // correct model sub-type in the
 // linked-list
 handle = model->make_me();
}

Expert task: implement a persistent storage
mechanism for the Address hierarchy.

I think that is enough from me. By all means tear
what I have written to shreds, but do so in writ-
ing and send it to Sean for publication. Better
still, try one or all of the suggested tasks, write
them up and send them in. I think you will bene-
fit from the exercise, I know that writing this has
already helped to crystallise my thoughts. For
example I think that enum type is a hang over
from an earlier view of solving the persistence
problem.

I am sure that developing on this theme, which is
based around an easily grasped abstraction of a
frequently used object type, will do much to de-
velop our general understanding of polymorphic
types, just as writing a class such as Complex
helps grasp the fundamentals of writing value
based classes.

 Overload – Issue 10 – October 1995

 Page 21

The one thing that would seriously depress me is
if none of you had anything to add to the subject
I have tried to open up in this article.

The Harpist

Simple classes for debugging in
C++ – part I

by Roger Lever

One of the curiosities of starting a tiny project
and getting side tracked for a while, is the
change of direction that sometimes results. The
Editor saw an earlier and very different version
of this article and suggested some changes.
Originally, the presentation style was based on
discussing, in detail, a small but complete work-
ing program of Dr Conway’s Game of Life. This
also included some debug classes – to help track
those elusive errors that seem to populate all
code over one line long! It was supposed to be
aimed at beginners, but on reflection, the level of
detail given was probably too much too quickly
to take in easily, or a case of “information over-
load”. By concentrating on the destination, or
finished product, the route of how to get there
had been lost and, sometimes, the journey is
more important than arriving. So here is a re-
vised version showing the route to a simple de-
bugging class.

Common problems

There are many common C++ problems which
developers of all levels suffer from and probably
the worst are pointer and memory errors such as:

1. Memory leaks (such as a new without a cor-
responding delete)

2. Deleting the same pointer again (probably
corrupting the heap)

3. Wild pointers (the pointed to object no
longer exists)

There are many good tools to help with these
“challenges” which mainly fall into the category
of post-implementation static analysers. This
debug class is not intended to replace any of
these tools, it is a mechanism to help with the
learning curve of C++. As has been often re-
peated by experienced trainers: “Write your own
class to understand it and then use someone el-
ses”!

The debug class will be built up from scratch
and as progress is made, more features will be
included until the destination is reached. So what
is the first major junction on our route? The ap-
proach to providing debugging facilities.

General approaches to these prob-
lems

At a source code level, there are probably two
key ways of dealing with these issues:

• Use a base class DebugObject and derive all
other classes from it

• Use a combination of smart pointers and
templates

Or three, if you count:

• “Contract” programming, as evangelised by
Betrand Meyer

The choice to use the DebugObject and an in-
heritance approach in this article(s) was because
it appears to be easier to understand. Also inheri-
tance has been around in C++ for longer and so
is probably more widely understood. Leaving
aside the Editor’s remark about my last article on
inheritance! [1] “Roger Lever follows up his
campaign for real inheritance” :-)

Specific approach

Stop, and take a while to think in general terms
about the design and then plan the tasks, where
each task builds incrementally towards the ob-
jective(s).

Now that some vague ideas are floating around it
is time to look at making it more concrete. So, in
terms of overall objectives, in no particular or-
der, the debug class should provide a way to:

• Catch the basic memory and pointer prob-
lems

• Be able to see which objects are in memory

• Exit from an application with debug infor-
mation – not crash out

• Be able to remove debug from production
code easily (like assert)

If an item is not on this list – the source code
will be given to develop it further!

Next, precise specification of the behaviour ex-
pected is possible but it would make sense to
keep it reasonably high level. So to plan the
route a little more the next junctions will be:

 Overload – Issue 10 – October 1995

 Page 22

1. Very basic debug class which will output
state messages

2. Differentiating between memory allocated
statically and with new

3. Provide some heap walking capability to
“see” what’s in memory

4. Output debugging information to a file

5. Provide some macro magic to automatically
enable or disable debug

We have objectives, we have a basic plan, we
can start!

Starting with simple classes

To place the debug class into context let’s start
with a simple class which outputs a few mes-
sages.

class Base
{
public:
 Base()
 { cout << “Base constructor\n”; }
 virtual ~Base()
 { cout << “Base destructor\n”; }
 virtual void print()
 { cout << “Base print\n”; }
};

The only point worth mentioning about this Base
class is that the destructor and print member
functions have been declared virtual. This al-
lows the destructor to work correctly with de-
rived classes and allows print() to be overridden
in a derived class. This use of virtual should be
explained in some detail in any good introduc-
tory text. Now, that the Base class is available,
further classes can be derived from it:

class Derived : public Base
{
public:
 Derived() : Base()
 { cout << “Derived constructor\n”; }
 virtual ~Derived()
 { cout << “Derived destructor\n”; }
 virtual void print()
 { cout << “Derived print\n”; }
};

Notice that the Derived constructor calls the
Base one first with : Base().

Since Base only has a default constructor (one
that takes no arguments) this call could be left
out. However, it is useful as a visual reminder
that the default Base constructor is being called
if no other Base constructor is explicitly used.
Clearly it would be necessary if a different Base
constructor were used or required. In fact the
theme of a visual reminder is also the reason that

print() is redeclared with virtual in Derived.
Strictly speaking this is redundant and a poly-
morphic call to the Derived class print() would
work fine. But, even if you know that print is
polymorphic would your successor? Of course,
referring to the Base class print it would be im-
mediately obvious to all and sundry that De-
rived’s print must be polymorphic too but, isn’t
it kinder, simpler and clearer to redeclare print
with virtual?

Anyway, moving into main()...

Main program and output
int main()
{
 cout << “Create B & D – ”
 << “allocated on stack” << endl;
 Base B;
 Derived D;
 B.print();
 D.print();
 cout << “Scope rules implicitly
delete”
 << “ stack item(s)” << endl;
 return 0;
}

Nothing to add to this except to remember to
include <iostream.h>!

The output is not startling:

Create B & D – allocated on stack
Base constructor
Base constructor
Derived constructor
Base print
Derived print
Scope rules implicitly delete stack
item(s)
Derived destructor
Base destructor
Base destructor

As yet print has not been used polymorphically –
it will be soon. Also, unlike heap allocated ob-
jects, B and D did not have to be explicitly de-
leted. The state output shows that the necessary
destructors were called.

Is there an obvious way of trying to break this
program? Yes. Placing B.~Base() before
B.print() will explicitly destroy B before it is
used and B’s destructor will be called again at
the end. Clearly the explicit destruction using
B.~Base() is dangerous but this can easily hap-
pen anywhere in a slightly different form such as
a function returning a reference to a local object:

// concat() should be returning a copy
// here not a reference
string& concat(string a, string b)
{
 string c = a + b;

 Overload – Issue 10 – October 1995

 Page 23

 // assumes + deals with the tricky
bits
 return c;
 // returns reference to local object
}

The pointer or reference that tries to use c is in
for a surprise!

What about using print() polymorphically?

To use print() polymorphically the following
could be added to main:

 Base* ptrB = new Derived;
 // note: a Base pointer using a
Derived
 ptrB->print();
 // Derived’s print() is called, not
Base
 delete ptrB;
 // Need to explicitly delete the
object

Life’s getting more complex. The Base pointer
can be used to invoke the Derived print() but
since the object has been explicitly allocated via
new it must be explicitly deallocated with de-
lete.

The additional output of this code is:

Base constructor
Derived constructor
Derived print
Derived destructor
Base destructor

Is there an obvious way of trying to break this
program? Yes again. Forgetting to match the
new with a delete, probably not disastrous but
certainly not good practice. Moving the pointer
(ptrB) to point to a different object and then de-
leting it twice. Never happen? Here is an exam-
ple of just how easy it is to make such a mistake:

 Base* ptr1 = new Derived;
 Base* ptr2 = new Derived;
 cout << ptr1 << ‘ ‘ << ptr2 << endl;
 ptr1 = ptr2; // should be *ptr1 =
*ptr2;
 cout << ptr1 << ‘ ‘ << ptr2 << endl;
 delete ptr1;
 delete ptr2;

The output of this fragment is:

Base constructor
Derived constructor
Base constructor
Derived constructor
0x182e 0x1836
0x1836 0x1836
Derived destructor
Base destructor
Derived destructor
Base destructor
Null pointer assignment

It is clear from this fragment that the pointer is
changed from 0x182e to 0x1836. The first object

has not been deleted at all whereas the second is
deleted twice, hence the Null pointer assign-
ment. This gives away the fact that this code was
compiled using the small memory model. (The
actual addresses on your machine, for this code,
are unlikely to be the same as given here.)

There are plenty of variations on this theme of
problems with memory and pointers such as try-
ing to use a deleted object...

Take arms against a sea of troubles

Control those ambitions to prevent all types of
memory and pointer problems! The debugging
class will start in a similar vein to Base and De-
rived – outputting state messages. A modest and
entirely achievable task. A little less modest is
the choice of name for this DebugObject class –
RNLI. There are two reasons for this name:

1. There is a nice association with a lifeboat
(Royal Naval Lifeboat Institution)

2. RNL are my initials! (nobody said it was a
good reason!)

// start sentinel to prevent
// multiple inclusion
#ifndef RNLI_H
#define RNLI_H
// provide basic screen output i.e.,
// cout, endl
#include <iostream.h>
class RNLI
{
public:
 RNLI()
 { cout << “RNLI constructor\n”; }
 virtual ~RNLI()
 { cout << “RNLI destructor\n”; }
};
// end sentinel to prevent
// multiple inclusion
#endif

Using the class is as simple as changing the Base
class to:

#include “rnli.h”
class Base : public RNLI
{
// as before
};

The output from main now including the heap
allocated object:

Create B & D – allocated on stack
RNLI contructor
Base constructor
RNLI contructor
Base constructor
Derived constructor
Base print
Derived print
RNLI contructor
Base constructor
Derived constructor

 Overload – Issue 10 – October 1995

 Page 24

Derived print
Derived destructor
Base destructor
RNLI destructor

Scope rules implicitly delete stack
item(s)

Derived destructor
Base destructor
RNLI destructor
Base destructor
RNLI destructor

This establishes that RNLI can be added into the
current hierarchy (Base⇒Derived) very easily.
What needs to be done next is to define or de-
sign the interface for RNLI to provide a level of
useful information.

Design choices

Many small and not so small design choices
need to be made for any particular class, for ex-
ample:

a) Will this be a base class? (Almost mandates
a virtual destructor)

b) Will polymorphic behaviour be supported or
required?

c) Declare the data private, protected or public?
(Public???)

d) What should the public interface include?

e) What private implementation data structures
and algorithms?

f) How to communicate between classes?

And so on...

Bjarne Stroustrup’s maxim [2] for class design
“a class should be minimal but complete” is
good but you need to make up your own mind as
to what exactly that means. Designing for inheri-
tance and polymorphism needs to be a measured
response to a problem and applied with some
understanding. Equally a balance needs to be
maintained between providing the required func-
tionality now and future-proofing.

So, given that, the following design choices were
made:

• RNLI is not intended to be a base class for
derived RNLIs

• Polymorphism does not need to be sup-
ported, except for the destructor

• The interface will only support querying of
state

• The implementation will remain visible, in
terms of data members

• RNLI is not designed to remain in “produc-
tion” code

No indication is made here of implementation
details such as choice of data structures, that is
deliberate. The first step in the design process is
to convert the “why” of requirement to the
“what” of design and then shuttle between the
“what” of design and the “how” of implementa-
tion. Or to quote Murray [3]:

• Designing the abstraction and designing the
implementation should be two separate, but
related activities

• What is not in the abstraction is as important
as what is in the abstraction

In summary

We have established the “why” – avoiding obvi-
ous memory and pointer problems. We have also
established the “what” in terms of the objectives
and high level design choices. We now need to
consider the “how”. The simplest way is by lit-
erally building the class up a few functions at a
time and since I like to keep things simple...

However, that will be picked up in the next issue
of Overload as I have run out of space!

Roger Lever
rnl16616@ggr.co.uk

References

[1] Overload 9, C++ Techniques

[2] Addison-Wesley, “The C++ Programming
Language Second Edition”, Bjarne
Stroustrup

[3] Addison-Wesley, “C++ Strategies and Tac-
tics”, Robert B. Murray

Pausing for thought
by Francis Glassborow

Earlier on today one of my delegates on a C++
introductory course had a problem with seeing
what happened after his program returned from
main. He had instrumented his constructors and
destructors so that he could check that all the
constructed objects had been destroyed. Unfor-
tunately he was working in a Windowing envi-
ronment that closed down the program window
on completion of the program. This meant that

 Overload – Issue 10 – October 1995

 Page 25

you had to be an exceptional speed reader to
check all the destructors that were called for
global and automatic objects.

The problem was how to pause a program during
its clean-up at the end of its execution. Let me
share a couple of our solutions and invite you to
experiment with them. The first option was to
create a function to be called by exit:

void fn () {
 cout << “Press a key.”;
 char c;
 cin >> c;
 return;
}
int main() {
 atexit(fn);
 // rest of code
}

I’ll leave you to clean up the detail, such as mak-
ing sure that the prompt and input are compatible
– think about it. There is also a matter of the
linkage of fn(). If you have any doubts, go and
look it up. I know the answer, but too many pro-
grammers either trust authors (despite the name,
they are not always authorities.) and you need to
develop a habit of checking details. (Apologies
to the real experts)

This worked for the program that we were inter-
ested in, because the relevant destructors were
local objects to main(). But it does not supply a
general solution, because global objects are de-
stroyed after the functions registered by atexit
have been run. So our next ‘solution’ was to
write a special class:

class Pause {
public:
 ~Pause() {
 cout << “Press a key.”;
 char c;
 cin >> c;
 return;
 }
} p;

By placing this at the head of the client code, the
last function run will be the destructor for p. It
met our needs. There are a number of interesting
points for less experienced C++ programmers.
This is a simple example of a dataless object,
one where it is the behaviour that interests us. I
think it is close to minimalist (another common
example of this usage is a Lock class used to
lock records in a database – the constructor locks
a record and the destructor unlocks it, but that
usually needs some data to track which record is
locked).

Another feature of class Pause is that it can be
used in many other places. Just write:

{ Pause p; }

wherever you want you program to pause (yes I
know you can set a break point with your debug-
ger but don’t spoil a simple idea). Make Pause a
little more complicated with storage for a string,
and the destructor can print out a message identi-
fying where the program is pausing. Why is this
interesting? Well, consider the order of initiali-
sation problem for executables built from several
files, each with global variables. By declaring a
suitable global Pause object as the first line of
each source code file, you can investigate the
order in which the globals are being destroyed.
Another aspect is that you can use a global
Pause object to check the difference between
explicit call of exit() from main() and using re-
turn 0. Yes, that is right – there is no stack un-
wind in the former case – you knew that, didn’t
you?

Well that is all I have time for. Anyone else got
any simple utility/instrumentation classes that
they would like to share with us?

Francis Glassborow
francis@robinton.demon.co.uk

editor << letters;
Sean,

after reading your review I downloaded the S-
CASE demo and played with it for a few hours. I
had the following email exchange with Mul-
tiQuest about the product and some problems I
had with it:

Keith Derrick: What price is a full version of
this product for Windows 3.1 (UK Pounds Ster-
ling please), and where in the UK can I obtain it?

MultiQuest: Single user node locked license is
US $495. I don’t know the current Sterling rate.
When we accept international payments, for ex-
ample, using MasterCard or Visa, they charge
the customer at the current rate. Currently, we
service all international markets directly. Inter-
national delivery takes only 3 business days.

KD: When are the next 2 releases of the product
due out? What are the predicted upgrade costs,
and what extra functionality will they provide?

 Overload – Issue 10 – October 1995

 Page 26

MQ: Release 3.0 is expected in the Oct/Nov
time frame. We have a single unified technical
support & product update program. New pur-
chases are covered for 30 days under this pro-
gram. Further support (which includes upgrades)
can be purchased at approximately 25% of prod-
uct cost per year ($125 for Windows node
locked license). Release 3 will provide:

• Support for all Booch diagrams

• Better connection between diagrams (as you
noticed, class & object diagrams are not con-
nected right now)

• Enhanced code generation (better support for
templates and latest C++ features)

• Enhanced user interface (we are switching
over from XVT to MFC)

KD: Parameterised classes: how do you instanti-
ate a template?

MQ: Template support isn’t great right now.
This has been given top priority for release 3.

KD: I assume that the “Abstract” check box in
the cardinality section of a class specification is
there to indicate that the class can not be instan-
tiated?

MQ: That is correct.

KD: Why is this box not set (and checked) by
other sections of the class specification? Surely,
if I define a pure virtual operator, then the class
is abstract, and hence this box should be checked
automatically? Conversely, if the class has pub-
lic constructors, and no pure virtuals, then it
makes no sense to set this check box. Also, why
can I associate an “A” annotation with a non-
abstract class?

MQ: These are all good suggestions, and I have
put them in our request database.

KD: If I annotate an inheritance as “virtual”, is
that reflected in the class specification?

MQ: Currently, none of the graphical properties
(A, F, S & V triangles) are tied to the model.
They are simply dumb shapes. This will be fixed
in release 3. However, when you check the ap-
propriate boxes in the class or relation specifica-
tions, they will be reflected in the code.
Specifically, if you double click on an inheri-
tance relation, you can specify that it is virtual in
the specification box and this fact will be re-
flected in the code.

KD: There appears to be little or no integration
between the class and object diagrams. It would
be nice if you offered a drop down list of
“known” classes in the object specification box.
You could also then provide a selection of valid
messages when annotating a relation between
two objects. This is important as I often use ob-
ject diagrams to “test drive” a set of interacting
classes, and limiting my choice of messages to
only those which is exist would make it a more
realistic exercise.

MQ: As mentioned earlier this is coming...

KD: How can you declare exception specifica-
tions for class members?

MQ: The only way to do it right now, is to over-
ride the member implementation. This is done by
pressing the “More...” button in the operation
specification and specifying your preferred im-
plementation. (BTW, this can be done for data
members also). Again S-CASE 3.0 should un-
derstand exception handling.

KD: Your Operator specification box allows me
to say it is a constructor, or destructor. It would
also be nice to be able to select “Copy Construc-
tor” which has a standard interface. If I rename
the class, then I need not edit the copy construc-
tor definition as it would change automatically a
la the other constructors.

MQ: Good suggestion. I have entered it into our
database.

Keith went on to say:

Sean, you asked about ROSE. I use v1 at present.
I’ve had the demo for v2, but it didn’t justify the
3-fold price increase. Rose v1 does have the in-
tegration between class and object diagrams,
also STDs, but no interaction diagrams which I
feel are extremely useful in clarifying the
sequence of interactions.

S-CASE has the potential to quickly overtake
ROSE if they provide 75% of what they promise.
Also the move from XVT to MFC should pro-
vide an easier to use interface. The XVT one
(also used in ROSE) seems a little primitive.

Still ROSE is better than nothing. I find it hard
to visualise a set of classes without something
like Booch’s notation, and it’s a godsend to have
a CASE package to help you out.

Keith Derrick

 Overload – Issue 10 – October 1995

 Page 27

Thankyou for that information, Keith. I
too look forward to v3.0 of S-CASE after
reading MultiQuest’s responses to your
questions. I wonder how their move from
XVT to MFC will affect support for their
UNIX and Mac versions?

Dear Sean,

Just a short letter this time to dot some i’s and
cross some t’s. I think you slightly missed the
point of my code that relied on mutable. You
have sometimes suggested that I could have
found out whether code worked by testing it on a
compiler. In the current state of C++ this is com-
pletely useless. It may compile because the com-
piler is wrong, it may fail to compile because the
compiler is wrong. Mental models of languages
must be built on the language as written, not de-
duced by experimenting with compilers. We al-
ready have serious problems with ill-informed C
programmers who have seriously flawed models
of C. To make matters worse, they write books
or publish articles in popular computing maga-
zines. For example the regular writer on pro-
gramming in Computer Shopper (UK version not
the identically titled US magazine about which I
know nothing other than that it exists) should be
taken out and shot.

If C++ programmers/writers start doing the same
thing (well they are, but don’t encourage them)
we are completely lost. We need a clear under-
standing of what C++ is supposed to do and how
code is supposed to behave. That way we can
shout very loudly at the many seriously broken
implementations.

Now my purpose (well one purpose) in produc-
ing perfectly readable genuine C++ code that
used mutable was precisely that after more than
two years there is still no readily available com-
piler that supports it. When such a simple thing
has not been included, what hope have we of
learning to use C++, and check support for the
alternative spellings of many of the operators if
you want some more examples.

OK, I do not need mutable, bitand etc. in order
to write C++, but the point is that implementors
are not even providing such minor detail so sug-
gesting that we use experiments on compilers to
discover what the language does is a bit over the
top.

Actually, I didn’t suggest any such thing
– I simply pointed out that it was unfair
to ask people to compile and try out a
piece of code that we both (all?) know
will not compile!

I have said it before, C++ is a great language, I
enjoy using it. My employer will not let it any-
where near any development site, not because
there isn’t a standard but because some of the
experts seem reluctant to address criticism and
mend the broken aspects of the language.

If you have any doubt that there are serious prob-
lems that need addressing just look at name-
space, STL and name injection. Any one of
those is bound to drive your average programmer
screaming mad. The first doesn’t seem to have
been implemented correctly (indeed I gather they
are still tinkering with the essential detail), the
second is a brilliant idea but needs an awful lot
more work as the current version is riddled with
manifest errors (and I’m not talking about the
typos). I am far from convinced that we should
let name injection any where near the language.
It seems a recipe for surprising programmers
with bizarre behaviour.

Yours,

George Wendle

Perhaps you could write an article on
the “manifest” errors you think are pre-
sent in STL – I’ve been using parts of it
heavily for about six months with no
problems (other than continued poor
support for templates from every com-
piler). On namespace, see “What’s in a
name?” elsewhere in this issue. As for
name injection, you’ll have to wait to see
what happens in Tokyo – it’s a hot topic
on the agenda!

Hi Sean,

I’ve just enjoyed reading Overload 9 and was
interested in Kevlin’s piece on the STL. I agree;
it won’t compile!

Keen the harness the power of STL, I tried two
approaches – building the Stepanov & Lee
source downloaded from the net and buying a
commercial version, Modena’s STL++. Eagerly
compiling the Stepanov and Lee source on my
Microsoft compiler gave numerous compile er-
rors. Luckily, Kevlin came to the rescue, fixed

 Overload – Issue 10 – October 1995

 Page 28

the ‘errors’ only to break the compiler which lay
on its back, feet in the air, crying ‘Internal com-
piler error, contact Bill Gates’ etc. Undaunted, I
turned to the STL++. More luck here, at least it
built to yield a library. However, trouble with
STL++ started when I tried multiple source file
builds (not so abnormal?) which gave link errors.
I contacted Modena who promised a patch disk
in the post...

Is there an industrial-strength version of STL on
an NT PC and Microsoft C++? I’d like to use
STL ‘at the coalface’ but is it too soon?

Chris Simons

Well, I ended up implementing it myself
for Cfront but then I’ve already done
two other implementations of parts of it.

I’ve been using STL heavily for about six
months but (lack of proper) template
support in various compilers is very
frustrating...admittedly, the committee
have put so much stuff into templates
that vendors have a really hard job
keeping up!

As far as MSC++ is concerned, I think
you’re on a loser: Borland (and Wat-
com?) can handle STL. Symantec is fine
on the Mac—it even ships with STL as a
precompiled header (but not, unfortu-
nately, on the PC!).

Sean,

I came across an unfamiliar term in Overload the
other month – could you tell me what a ‘mixin’
is?

Also, has Overload ever done a beginners’ guide
to exception handling? It is one of those new
C++ concepts (along with templates) that I ha-
ven’t managed to catch up with and I could
really use a basic explanation.

Dave Midgley
100117.2522@compuserve.com

Mixins are hard to explain but typically
you have an interface class that is im-
plemented in two separately derived
classes (some functionality in one, the
rest in the other) and then the two
classes are ‘mixed-in’ to a further de-
rived class giving a diamond shaped in-
heritance hierarchy. I’ll probably do
something on it in a forthcoming Over-
load issue.

Exception handling is something we
need articles on in future issues (hint,
hint, dear readers)! I can highly recom-
mend Silicon River’s “New and Emerg-
ing C++” video for a good explanation
of exception handling (and STL). Con-
tact Silicon River on 0171 317 7777.

Dear Sean Corfield,

I subscribed to Overload hoping to learn some-
thing about C++, but in issue 9 I read ‘A Better
C’ which just states C++ is not a better C++
[sic] because it is not a better C++ [sic] . Q.E.D.

Then I read a lengthy account of how Francis
Glassborow lost his dollars and all about his ho-
tel and restaurant, this must have been a rivetting
experience for him, but for his readers it must
have been a bore. No doubt Richford think they
are getting value for money I certainly am not.

yours sincerely,

Dr Brennig James

Ah, well, you can’t please everyone!

Books and Journals
Bruce Eckel and Daniel Duffy have their latest books reviewed in this issue. Barton & Nackman’s much
talked about “Scientific and Engineering C++” will be reviewed in Overload 11.

I’m looking for a reviewer for “Foundations of Visual C++ programming for Windows 95” – if you have
Windows 95, VC++2.0 (or later) and a CD-ROM drive, please drop me a line.

Sean A. Corfield
overload@corf.demon.co.uk

 Overload – Issue 10 – October 1995

 Page 29

Thinking in C++
reviewed by Peter Booth

Title: Thinking in C++

Authors: Bruce Eckel

Publisher: Prentice-Hall

ISBN: 0-13-917709-4

Price: £25.50

Format: softback, 813 pages

“You can’t just look at C++ as a collection of
features; some of the features make no sense in
isolation. You can only use the sum of the parts
if you are thinking about design, not simply cod-
ing. And to understand C++ in this way, you
must understand the problems with C and with
programming in general” (Eckel, 1995).

“Thinking in C++” is an alternative to the crop
of “How-To-Learn-C++-Without-Thinking”
books that have sprouted like weeds in the Com-
puting section of bookstores. Eckel teaches C++
for a living, is a member of the C++ Standards
Committee, and writes for a range of program-
ming journals, so is well qualified to write this
text. He directs this book at those who under-
stand C and intend to learn C++ on their own.
This summed up my own situation, so I had high
hopes when I first purchased “Thinking in C++”.
To a large extent, I have realised these hopes.

The book has a distinctive structure. It explains
those features of C++ that are not a part of the C
language. Eckel introduces new concepts strictly
one at a time, beginning with data abstraction,
classes, initialisation, and ending with multiple
inheritance, exception handling, and RTTI. This
avoids overwhelming the reader, but at a cost:
the example code mixes C and C++ styles, i.e.,
using malloc/calloc for the first ten chapters. At
first I found it hard to get into “Thinking in
C++”. Eckel’s talent for clearly explaining com-
plex features can make the subject material ap-
pear deceptively light. I had under-estimated the
difficulty of learning C++ concepts, so I put the
book on hold while I began a ten week course in
C++ programming. When I finished the course I
returned to “Thinking in C++” and found I could
readily engage with it. By working slowly
through the book I have gained confidence in
C++.

Eckel has a clear and accessible writing style,
with a real gift for explaining from the pro-
grammer’s perspective. The book is visually ap-
pealing, which makes a difference, and is well
indexed. It is very much a book for readers who
want to know “what happens under the hood”
with C++. I enjoyed the wide focus, which
ranges from the strategic implications of moving
to OOP, to how a compiler might implement late
binding. Some readers might feel impatient with
this. It was a relief to read a technical book and
trust the writer’s grasp of their subject. I found
“Thinking in C++” more engaging than either
Lippman’s “C++ Primer” or Stroustrup’s “C++
Programming Language”. It doesn’t cover all the
ground that Barton & Nackman’s “Scientific and
Engineering C++” manages, but it fills in more
of the gaps.

One criticism – finding the book’s code exam-
ples on the Internet was extremely difficult. I
hope that Prentice-Hall or Bruce Eckel take bet-
ter care of this in future reprints. This is an ex-
cellent book, within its niche. If you are a
confident C programmer who wants to work
through a structured tutorial that explains how to
write and, more importantly, think in C++, then
you could find this book extremely useful. For
me, it was money well spent.

Peter Booth
p.booth@ic.ac.uk

From Chaos to Classes
reviewed by Sean A. Corfield

Title: From Chaos to Classes – Object-
oriented Software Development in
C++

Authors: Duffy

Publisher: McGraw-Hill

 Overload – Issue 10 – October 1995

 Page 30

ISBN: 0-07-709118-3

Price: £29.95

Format: softback, 360 pages

Despite the subtitle, this is not a book about C++
nor even software development in C++. It is a
strongly pragmatic book about Rumbaugh’s Ob-
ject Modelling Technique (OMT) methodology
that uses C++ as the implementation language
for a few of its examples.

Front loading

The emphasis of this book is on requirements
through to design, with the claim that the itera-
tive nature of the OO software lifecycle means
that what most of us think of as “development”
is really just an ongoing “evolution” of a proto-
type. Of the 18 short chapters, only three really
cover C++ or development and the rest of the
book is clearly focused on the front-end of the
lifecycle. Consequently, the early chapters pro-
vide an in-depth discussion of identifying and
classifying objects, analysing their relationships
and designing their interactions. The discussion
of object relationships in chapter 2 should raise
everyone’s awareness of the many different
types of relationship that we need to model – see
Ulrich Eisenecker’s article on inheritance else-
where in Overload 10 for a similarly provocative
discussion. Because of the focus on object rela-
tionships and effective requirements analysis,
the OMT methodology itself is not even intro-
duced until chapter 8.

OMT++

The most startling aspect of this book is the gen-
erally critical tone of exposition. OMT is pre-
sented in the context of a full software lifecycle
and Duffy points out many shortcomings and
suggests realistic solutions – clearly the result of
practical experience with OMT. These solutions
generally involve adopting a pick’n’mix ap-
proach to different methodologies, for example
Jacobson’s “use cases” are recommended for
subdividing the problem domain to produce sub-
systems that can be manageably handled by
OMT. Similarly, “concept maps” are introduced
to reinforce the requirements analysis and filter
out ‘invalid concepts’ that would otherwise not
be discovered until later in the lifecycle using
classical OMT, “event-response lists” are used
as an aid to dynamic modelling and Object Flow

Diagrams are used alongside the Data Flow Dia-
grams of classical OMT.

Throughout the book a handful of example prob-
lems are used to examine the phases of the soft-
ware lifecycle, iteratively being fleshed out as
requirements become clearer and analysis pro-
ceeds towards design. Partial implementations
are given but after fairly thorough treatment,
completing the implementations would be pretty
much a mechanical process.

C--

If the strength of this book is in the focus on the
front-end of the lifecycle, its greatest weakness
is certainly in its presentation of C++. Although
templates and exception handling are both intro-
duced early on as being important features, their
description is incomplete and both features are
described as “not widely supported at the time of
writing” – this in a book published in June 1995!
Exception handling is treated in a particularly
cursory manner with no mention of how it af-
fects a class interface, despite repeated com-
ments about the importance of considering
exception strategies during analysis. This is par-
ticularly unfortunate given Duffy’s recommenda-
tion that exception handling is written into
templates – a thorny problem at the best of times
for which I would have liked to have seen his
solution.

Duffy hands down occasional “rules” for writing
maintainable C++ which are usually vague
guidelines and often unsupported – multiple in-
heritance is maligned for being difficult and
generally unnecessary. This could be forgiven if
the quality of the C++ code in the book wasn’t
so poor: code fragments suffer from inconsistent
layout and naming conventions, occasional syn-
tax errors and some outright poor practice, e.g.,
Boolean expressions are explicitly tested against
FALSE and TRUE (the latter being particular
error-prone).

Amongst the recommendations are some inter-
estingly draconian restrictions on method com-
plexity. Duffy states that no method should
contain more than five lines of code nor contain
more than one decision. This leads to an explo-
sion of methods so it is perhaps no surprise that
Duffy says classes should have “a maximum of
40” methods.

 Overload – Issue 10 – October 1995

 Page 31

Summary

Duffy’s thorough and pragmatic approach to the
OO lifecycle is let down by poor illustration
with inadequate C++. Although I found his style
somewhat slow and leaden at times, particularly
the introductory chapter, I think the detailed
treatment of the example problems provides
many insights into the difficult early stages of
the software lifecycle. Occasional vagueness
(“experience has shown”, “general agreement in
the literature”) is offset by an extremely varied

and interesting set of references at the end of
each chapter and at least all of the exercises pre-
sented have model solutions given in the appen-
dix – something I wish more books would do.

As a book on requirements capture and OOA/D,
I can recommend it with the above reservations,
but I’d be a little more enthusiastic if it wasn’t
trying to “tag along” with the C++ wave of
popularity.

Sean A. Corfield
sean@corf.demon.co.uk

News & Product Releases
This section contains information about new products and is mainly contributed by the vendors them-
selves. If you have an announcement that you feel would be of interest to the readership, please submit it
to the Editor for inclusion here.

Microsoft Announces Visual
C++ Version 4.0

September 12, 1995 – Microsoft announced to-
day the upcoming release of Visual C++ 4.0, the
latest version of the 32-bit development system
for Windows 95 and Windows NT operating
systems.

Key reuse features:

• Component Gallery, an intelligent storage
and management system for OLE Controls
and C++ components.

• Custom AppWizards, providing the ability to
create or use powerful application templates.

• MFC extensions are dynamic link libraries
that extend the Microsoft Foundation Class
library to provide capabilities by deriving
new custom classes from existing MFC
classes.

Other features:

• ClassView is a background no-compile class
browser seamlessly integrated with the pro-
ject workspace window. ClassView allows
developers to move “beyond files” by view-
ing and editing their code as a collection of
classes.

• Incremental Compilation and Minimal Re-
build, to reduce the amount of time it takes
to create an executable after making changes
in source files. With incremental compila-
tion, changing a source file causes only the

modified functions to be recompiled, instead
of the whole file. With minimal rebuild,
changing a header file causes only the af-
fected source files to be recompiled, instead
of every file that includes the header.

• Developer Studio, which integrates multiple
development tools in one central environ-
ment.

• Enhanced ease-of-use features, including
emulation of Brief and Epsilon editors,
DataTips that display the value of a variable
or expression during debugging when the
mouse pointer pauses over it, enhanced pro-
ject management including sub-projects and
custom build rules, and enhanced multi-
platform support.

Full support for Windows 95

• Visual C++ version 4.0 is the premier devel-
opment system for Windows 95. Key sup-
port features for Windows 95 in Visual C++
4.0 include encapsulation of new Windows
common controls and common dialogs in
MFC 4.0, support for TCP/IP debugging un-
der Windows 95, and support for new Win-
dows 95 user-interface.

MFC version 4.0 class library

• Visual C++ version 4.0 includes MFC ver-
sion 4.0. New with version 4.0 are support
for all Win32 common controls, including
rich-text edit controls; enhanced support for
multi-threaded applications, and support for
Data Access Objects (DAO), providing de-

 Overload – Issue 10 – October 1995

 Page 32

velopers the power and flexibility of Micro-
soft’s renowned Jet database engine in their
C++ applications.

Expanded C++ language support

• Microsoft Visual C++ 4.0 compiler supports
significant new C++ language features from
the current working papers of the ANSI/ISO
X3J16 committee on C++, including name-
spaces and run-time type information
(RTTI). Additionally, Visual C++ includes
Hewlett-Packard’s Standard Template Li-
brary (STL).

New support for multiple platform develop-
ment

• Visual C++ Cross-Development Edition for
the Macintosh now includes support for
Power Macintosh computers with a native
PowerPC compiler. Additionally, Visual
C++ for the Macintosh includes support for
building OLE- and ODBC-enabled applica-
tions via MFC 4.0, a new incremental linker,
and support for Win32 common controls on
the Macintosh.

• Visual C++ for PowerPC provides a native
toolset for PowerPC machines running the
Microsoft Windows NT operating system.

Pricing and availability

• Visual C++ 4.0 on the Intel platform will be
available in October, 1995.

Existing subscribers to Visual C++ will be auto-
matically sent the new version once it is avail-
able. New customers can subscribe to the
Microsoft Visual C++ Subscription 4.0 for
around £389 or less plus VAT. Visual C++ sub-
scribers receive 3 additional releases, including
major releases, as they become available during
the subscription year. Users of all previous ver-
sions of Microsoft Visual C++ can upgrade to
Visual C++ 4.0 for around £189 or less plus
VAT, or to Visual C++ Subscription 4.0 for
£289 or less plus VAT. All prices are estimated
retail prices, and Visual C++ 4.0 will be avail-
able from any software reseller worldwide.

• Special editions of Visual C++ 4.0 will be
available in November for MIPS and Alpha-
based systems, and for cross-development
for the Apple Macintosh (both Motorola and
PowerPC-based). Visual C++ for Windows
NT PowerPC will be available later in 1995.

For more information on the Microsft Visual
Tools family, visit Microsoft for Developers
Only at
http://www.microsoft.com/devonly

 Overload – Issue 10 – October 1995

 Page 33

Credits
Founding Editor

Mike Toms
miketoms@calladin.demon.co.uk

Managing Editor

Sean A. Corfield
13 Derwent Close, Cove

Farnborough, Hants, GU14 0JT
overload@corf.demon.co.uk

Production Editor

Alan Lenton
alenton@aol.com

Advertising

John Washington
Cartchers Farm, Carthorse Lane

Woking, Surrey, GU21 4XS
john@wash.demon.co.uk

Subscriptions

Dr Pippa Hennessy
c/o 11 Foxhill Road

Reading, Berks, RG1 5QS
pippa@octopull.demon.co.uk

Distribution

Mark Radford
mark@twonine.demon.co.uk

Copyrights and Trademarks
Some articles and other contributions use terms which are either registered trademarks or claimed as such.
The use of such terms is intended neither to support nor disparage any trademark claim. On request, we
will withdraw all references to a specific trademark and its owner.

Submission of contributions transfers all copyright to ACCU unless specifically withheld by the author.
Note that this is a change of policy by ACCU – full details will be given in CVu8.1. Except for licences
granted to (a) Corporate Members to copy solely for internal distribution (b) members to copy source code
for use on their own computers, no material can be copied from Overload without the prior written con-
sent of the copyright holder.

Copy deadline
All articles intended for inclusion in Overload 11 (December) must be submitted to the editor by Novem-
ber 6th.

