
 ISSN 1354-3172

Overload
Journal of the ACCU C++ Special Interest Group

Issue 13

April/May 1996

Editorial: Subscriptions:
Sean A. Corfield Membership Secretary
13 Derwent Close c/o 11 Foxhill Road
Cove Reading
Farnborough Berks
Hants RG1 5QS
GU14 0JT pippa@octopull.demon.co.uk
overload@corf.demon.co.uk

£3.50

Contents
Editorial 3

Software Development in C++ 6

Those problems revisited 6

So you want to be a cOOmpiler writer? – part V 9

Simple classes – Part 4: Game of Life 11

Some pitfalls of class design: a case study 14

The Draft International C++ Standard 16

The Casting Vote 16

C++ Techniques 18

I do not love thee, STL! 18

You can’t get there from here – a closer look at input iterators 20

The Standard Template Library – first steps: sequence containers 21

Using STL with pointers 24

/tmp/late/* Specifying integer size 27

editor << letters; 30

questions->answers 31

 Overload – Issue 13 – April/May 1996

 Page 3

Editorial
An object lesson in usability
“With all their damned computers, why does it
take them so long to allocate bookings to peo-
ple?” asked the irritable New Zealander standing
behind me in Dallas airport as we waited to get
new tickets after being stranded by storms en
route to our planned destinations. He had a point.
We had been queuing for ages and now we could
see three staff operating one desk with five other
desks each manned by one person. How could it
take so long for six desks to process this queue
of people, and why did it take three people to
wrestle with one console at times?

When it was my turn at the desk I tried to figure
out what the ticket staff had to go through to
process a customer. There’s minimal information
to enter: destination, seat preference, maybe a
few other details. Then the system should surely
offer a selection, and after confirmation the ticket
should be printed. What I watched was, instead,
a flurry of keystrokes mainly using the cursor
keys, enter and the escape key. Although I
couldn’t see the screen, I would hazard a guess
that the data entry screens were packed with
fields and the menu structure necessitated con-
tinuous navigation up and down the hierarchy.

I wondered who was involved with the design.
Were the desk staff consulted? Did they under-
stand what the analysts were asking? Perhaps the
data entry system was a direct replacement for a
paper-based forms system? Who knows. No
doubt, the staff had become used to the day-to-
day operation of the system but from my point of
view it looked very cumbersome.

I expect we’ve all seen such systems – seemingly
simple query and answer situations bogged down
by a wealth of options and backtracking choices.
I consider myself lucky to have been involved
with a project many years ago that deliberately
provided a shortcut. I worked at Sun Alliance in
their motor insurance division developing the
software that would support the Motorist 50+
insurance quotation product. Written in COBOL
and assembler on IBM 8100 minis, the system
was a complete in-house solution. It was ambi-
tious, integrating a full-screen word-processor
(written in-house) with the database system to
simplify generation of form letters as part of the
quotation system. It was also running late.
Someone came up with the idea of a “quick

quote” subsystem that could handle the majority
of quotes on one screen. The customer (from an-
other Sun Alliance division) loved the idea and
sat with me as I worked on the screen design.
The idea was that a telephone operator could fill
in the form, left to right, top to bottom asking the
caller simple questions, then press enter and get
quotes back for “third party”, “third party, fire
and theft” and “fully comprehensive” insurance,
again all on one screen. On confirmation from
the caller, the operator moved to the billing
screen to finish the transaction. Simple.

Any unusual conditions (medical, convictions,
etc) would cause a referral to the normal, multi-
screen quote system but the key issue was that
the vast majority of cases could be handled by
the quick quote subsystem efficiently. The data-
entry was co-designed by the people who would
use it, capturing the most important data in the
most natural way.

Was this system so unusual? Ten years later, are
more systems being designed this way? I don’t
know, but from my observations of desk staff
struggling with their computer consoles I
strongly suspect the answers are “yes” and “no”
respectively.

Next time you’re involved with GUI design, ask
yourself what is the most common problem it is
trying to solve – could an additional shortcut
screen improve the usability? If so, beat on your
analysts and your managers – campaign to make
systems useable!

On the move
As I write this, stranded in the Harvey Hotel in
Dallas, I don’t yet know what this issue will con-
tain beyond the articles I have written myself and
the final part of Roger Lever’s debugging article.
Travel broadens the mind, they say, and the last
three weeks driving through California have
broadened mine. As usual the ISO / ANSI C++
meeting proved enlightening, I learnt about
“guiding functions” for templates and a host of
other subtle issues. I encountered the scene de-
scribed above, and I learnt a hard lesson of being
self-employed and having to tackle the sharp end
of wrangling over contracts when you work di-
rectly for a company without the safety net of an
agency. Collegues have been quick to assure me
that my experience is not unique although I hope

 Overload – Issue 13 – April/May 1996

 Page 4

it is not too common either. I imagine that
ACCU’s membership contains quite a few con-
tractors so I would be interested in hearing cau-
tionary tales which could be published (author
withheld, if desired) in either Overload or CVu.
In my case, half of my last invoice was withheld
“pending completion” despite the contract being
a fixed daily rate with no written deliverables or
acceptance criteria. Given the Deputy Prime
Minister’s recent admission that as an entrepre-
neur he used to “string along”

 Overload – Issue 13 – April/May 1996

 Page 5

FULL PAGE ADVERT GOES HERE

 Overload – Issue 13 – April/May 1996

 Page 6

his creditors, I suspect it may be symptomatic of
a more widespread commercial malaise – it sad-
dens me that we, as professional programmers,
have to wrestle with issues outside our chosen

arena of expertise to avoid being eaten by the
sharks.

Sean A. Corfield
overload@corf.demon.co.uk

Software Development in C++
This section contains articles relating to software development in C++ in general terms: development tools,
the software process and discussions about the good, the bad and the ugly in C++.

Francis takes a deeper look at the code he presented in his guest editorial in Overload 12, I consider the
problems with introducing virtual inheritance into existing code, Roger Lever presents the program that led
him to develop the debugging code presented in the last few issues and Nigel Armstrong discusses a real-
life example of poor class design.

Those problems revisited
by Francis Glassborow

When I wrote the article that Sean turned into a
guest editorial I had not intended to say anything
more about the two pieces of problem code. My
mail has convinced me that this was a mistake. It
also showed that a considerable section of the
readership of Overload needs those less high-
powered articles that I was asking for.

Though I had not asked for a response, I received
over a dozen attempts to identify the problems. I
say attempts because one writer more or less got
them right (though he dismissed one real prob-
lem as being unlikely to happen in real code) and
one identified one of the problems correctly. The
rest missed entirely, one answer even ignored
details given in the text.

I am afraid that I elided too much code for some
of you. Of course, buried in the commented sec-
tion of my sample code was such essentials as
public: so that the code could compile. In fact
both pieces of code were extracted from code
that not only did compile, but must compile.

Problems with new
Most of my correspondents seemed to suspect
the use of new without checking a return value.
The problem with that is that up-to-date compil-
ers use a version of new that throws an exception
if there is a failure to allocate memory. In the
circumstances I did not want to cloud the issue
by encapsulating calls in try blocks because
what I wanted you to focus on was elsewhere.

I hope that there will be plenty of articles on
writing code for exception handling environ-
ments which will explain the need to consider
encapsulating uses of new in constructors so that

destructors will guarantee the use of delete even
when an exception is thrown over the dynamic
object.

Correct ways of using new are just one of the
many subjects that you will need to learn about if
you are moving from the C++ of the 1980’s to
that of the end of this decade.

Polymorphic arrays?
Consider the following code:
// base.h
#ifndef BASE_H
#define BASE_H
#include <iostream.h>
class Base {
 int i;
public:
 Base ();
 virtual ~Base();
 virtual void printon(ostream &
 =cout)const;
}
#endif

// derived.h
#ifndef DERIVED_H
#define DERIVED_H
#include “base.h”
class Derived {
 int j;
public:
 Derived ();
 ~Derived();
 void printon(ostream &
=cout)const;
}
#endif

// app.cpp
#include “derived.h”
int main(){
 Base * pb;
 pb = new Base[10];
 for (int i=0; i<10; i++)
 pb[i].printon();
 delete[] pb;
 return 0;
}

All I want you to focus on is the compilation of
app.cpp which is why I have not included any

 Overload – Issue 13 – April/May 1996

 Page 7

implementations of Base and Derived. They
would only be a distraction. I am also assuming
that new will succeed.

Now what code will your compiler generate for
pb[i]? It will have to generate code to compute
the address of the ith object of size sizeof(Base)
beyond the address stored in pb. The
sizeof(Base) is a static (compile time) property of
Base, not a dynamic property. The designers of
C++ could have arranged for the sizeof a poly-
morphic base class (one with a virtual function)
to be stored in the vtbl but they did not do so.
The sizeof objects cannot be determined dynami-
cally (at run time). Well to be strictly correct,
you could provide such information via a, possi-
bly static, member of a class with a virtual
member function (cannot be static, as this is an-
other facility that C++ chose not to provide) to
return the value. However trying to use this in-
formation to compute the address of the ith ele-
ment of pb dynamically without losing the type
information needed to dispatch to a virtual mem-
ber function is too complicated to even consider.

Of course, in the above code static determination
of the address is fine because the static type of an
element of pb is the same as the dynamic type
(they are both Base).

Now think what will happen if we change the
line pb = new Base[10]; to pb = new De-
rived[10];

The compiler will still be required to compute
the addresses of elements of the dynamic array
based on the statically determined sizeof(Base).
But Derived objects are bigger than Base ones.
In other words the compiler will get the address
of all but the first element wrong. The sad thing
is that the compiler knows at the time that you
create the dynamic array that it will probably go
wrong but remains silent. Actually it has enough
information at compile time to determine if your
code can work (it knows if there is a mismatch
between the sizeof the static type and the dy-
namic type.) I would hope that quality compilers
would have a switch that allowed it to classify
this as an error.

I hope this convinces you that you cannot call
member functions for elements of an array unless
the static and dynamic types of the elements are
the same (or at least have the same size).

So how does this relate to delete[] pb? Well the
compiler expands that line to something like:

for(int temp=0;
 temp<hidden_number_of_elements;
 temp++)
 (pb+temp)->~Base();
release_memory();

That is it calls the destructor for each of the ele-
ments of the array before it releases the memory.
It knows how many elements have to be de-
stroyed because that information is hidden away
when you use new[] to create an array rather
than a single object. Note that I am assuming you
are using the library versions of new, new[], de-
lete and delete[], if you aren’t life can get more
complicated. Even if you do provide operator
delete and operator delete[] you still cannot fix
the problem because use of these functions are
determined by the static type of a pointer (i.e.,
what the pointer has been declared as, not what it
actually points to).

The upshot of all this is that delete[] pb must
step through the elements of the array and so the
sizeof these elements must be correct. This effec-
tively means that you cannot have arrays of a
polymorphic type. If you must use C style arrays
(rather than using an STL container, or a hand
coded container) and want polymorphic behav-
iour you must deal with arrays of pointers. Note
that this restriction does not only apply to explic-
itly dynamic arrays (that is ones you create with
new[]) but also to the implicit ones created by
initialising an appropriate parameter with the
address of an array. For example:
void fn (Base array[], int size);

Will not work if you try to call it with:
Derived darray[10];
fn(darray, 10);

I think that C++ programmers must learn to leave
raw arrays to the C programmers. Using them in
C++ is a recipe for eventual unexpected behav-
iour. Instead of constantly checking that what
you are doing is safe, learn a way of achieving
your ends safely (learn to use the STL).

Self assignment
All the good books tell you to start your defini-
tion of copy assignment like this:
const T & operator = (const & T t) {
 if (this != &t) {
 // rest of code
 }
 return * this;
}

This is wrong! Yes, read that again. I am going
out on a limb and declaring that the carefully

 Overload – Issue 13 – April/May 1996

 Page 8

thought out and justified code found in all the
best books is a mistake. It is a sledge hammer to
crack a nut, but worse than that it focuses the
programmers attention in the wrong place. The
problem isn’t with operator= but with the fol-
lowing pattern of code:
 delete px;
 px = new X(ax);

or equivalents. That is, every time you release
the resources held by a pointer before attaching
new resources to hold a copy of some object.
Whenever you do this you must first consider if
it is possible for the released object to be the one
you are intending to copy. More simply, the
problem isn’t self-copying but the more specific
case of self-copying a dynamic (sub-)object.

If your objects contain no dynamically provided
resources then there is no need to check for self-
assignment and leaving out this check will al-
most certainly marginally improve the perform-
ance of the class.

If your class does include dynamically provided
resources, this provision will need to be handled
by various constructors as well as the copy as-
signment operator. Such code (providing dy-
namic resources) should ideally only be written
once as a member function with appropriate ac-
cess qualification. The following expansion of
my second example from Overload 12 demon-
strates this:
class Record {
 char * name;
public:
 void setname(char * s){
 if (s == name) return;
 delete[] name, name
 =new char[strlen(s) +
1];
 strcpy(name, s);
 return;
 }
 const char * getname()const
 { return name;}
 Record (char * n =“”): name(0)
 { setname(n); }
 Record (const Record & r):
name(0)
 { setname(r.name); }
 const Record & operator = (
 const Record & r) {
 setname (r.name);
 return *this;
 }
 ~Record() { delete [] name; };
};

I have placed all the code in the definition to
save time. Of course this is greatly simplified
code, but note that if I change the mechanism for
storing a name I only have to re-implement two
functions. Also note that all constructors first

initialise the pointer to null. I believe that this is
an example of a far more important rule. Pointers
should at all times point to either an object or
null. That is why I try to follow uses of delete by
an immediate re-assignment and emphasise that
by using a comma instead of the more normal
semi-colon. (By the way, for those that do not
know, you may safely use delete and delete[] on
a null pointer)

Problems should be tackled at the point they oc-
cur.

Breaking data hiding
At least one correspondent believes that the get-
name() function in the above code is wrong.
Now I might agree that the data should imple-
ment name as a string object but even then, how
is the user to have access to the name? It seems
too restrictive to say that the user cannot have
any access. It is usual to provide read access to
data by returning constant references even
though a silly user could cast the const protec-
tion away. C-style arrays are handled through
pointers (references to arrays are possible but
unnecessarily complicated). What options has the
class designer? Having decided to use an array of
char to store characters there are three:

Return a char * to the original data. Definitely
wrong as it does not protect against accidental
access by the user.

Return a char * to a dynamically created copy of
the original. No use, because the creator of dy-
namic resources should be responsible for releas-
ing them.

Return a const char * to the original. This is se-
mantically equivalent to using a constant refer-
ence in other circumstances and so should be as
acceptable as they are.

Remember that access control is only intended to
protect against accidental use of object data. If
you insist on breaching data protection just de-
clare an appropriate friend function in the
header. This does not change the layout of a
class so the compiled implementation code
should still work. However if you ever do this
expect to be taken into a large field and invited
to dig your grave.

Conclusion
Well that is it for the time being. Let me finish
with a question for the experts to mull over.

 Overload – Issue 13 – April/May 1996

 Page 9

C++ recently introduced a keyword explicit to
qualify constructors so that the compiler cannot
use them for implicit type conversion. Why is it
not necessary to extend the use of explicit to
type converters such as operator int()? The an-
swer is obvious when you see it, but it took me
several months to get there.

Francis Glassborow
francis@robinton.demon.co.uk

So you want to be a
cOOmpiler writer? – part V

by Sean A. Corfield

Introduction
In part IV I looked at the type system and said I
would examine some of the implications of con-
verting the inheritance hierarchy to use mixins
for templates. First of all, I’m going to take a
brief diversion to look at what can be considered
good and bad in abstract base classes.

The ABC of ABCs
When I first started designing the analyser, I
didn’t have much experience with OOD although
I had spent about a decade designing and build-
ing compilers, interpreters, optimisers and so on.
Many of the base classes within my original type
hierarchy were concrete classes – I was deriving
StructType from ClassType to start with! During
the maintenance cycle, extra classes were added
into the hierarchy and base classes were gener-
ally made into abstract classes.

One of the ongoing problems this caused – in-
dicative of how heavily poor design is punished
in OOP – was that base class constructors tended
to have quite a few arguments. In particular,
NamedScope (see part IV) ended up with four or
five constructor arguments. Since there were
several layers of classes below that, all those ar-
guments had to be supplied to the most derived
class constructor and then passed back up the
inheritance chain in the mem-initialisers. Some-
times this will be unavoidable but quite often it is
simply due to having inappropriate state informa-
tion in an abstract base class.

If a base class is truly abstract then there will be
no member data – state – within it. Does this

sound extreme? Well, consider what member
data actually means: it implements state. That
means that an implementation decision has to be
made as to how to represent that state. Some-
times the representation is easily determined by
the operations on the base class (e.g., void
set(int); int get() const;) but mostly the protocol
represented by an ABC is more complex and
does not directly suggest an implementation.
Such state information can be provided by an
implementation class which is either referenced
from the base class (using a pointer or reference)
or derived from the base class (forming one side
of a mixin diamond).

A stateless base class will usually only need a
default constructor. This brings notational con-
venience because the constructor call can be
omitted from mem-initialisers. Is he suggesting
implicit initialisations? Yes, for this particular
case. Let me explain why...

Virtual base classes
A virtual base class must be initialised by every
class derived from it – or, more accurately, its
constructor is called from the mem-initialiser list
of the most-derived class (i.e., effectively it must
appear in every derived class’s mem-initialiser
list). If the virtual base class constructor requires
arguments, the constructor call must be made
explicit with all the arguments supplied within
every derived class’s mem-initialiser list.

If virtual base classes have only default construc-
tors, then you cannot forget to initialise them
because the compiler default behaviour does the
right thing!

Some guidelines
1. abstract classes should be stateless

2. virtual base classes should have default con-
structors (only)

3. don’t explicitly initialise virtual base classes

I think I can justify those based on the observa-
tions made above. I’d like to go further but what
follows is slightly harder to back up with hard
experience. As a corollary to (1), I think it fol-
lows that stateless classes should have default
constructors (only). Although it doesn’t follow
logically, I’d argue that virtual base classes
should also be abstract classes and many C++
“experts” agree.

 Overload – Issue 13 – April/May 1996

 Page 10

Back to my problems
That’s hindsight, however, and would have been
useful in easing the transition from a non-virtual
inheritance hierarchy to a mixin-based hierarchy.
The first step was to change inheritance from the
base class Type, which was abstract, to be vir-
tual. That was easy. However, during the design
of the template argument deduction mechanism,
it was decided to abstract out some aspects of the
various class types’ matching algorithms (mainly
so that A<T> could be deduced regardless of
whether A was a class, struct or union). This
introduced another mixin diamond – see figure 1.
This meant more virtual inheritance (from
AbsClass and TemplateType) and that’s where
the problems really started!

At the bottom of the hierarchy, the classes repre-
senting instantiated template classes, structs and
unions have three direct base classes, one of
which is virtual, and two indirect virtual base
classes. The first problem was simply changing
all the relevant mem-initialiser lists and discover-
ing that, because some of the virtual base classes
had state, not all the necessary data was available

in the most-derived constructor. Having sorted
that out, the next problem was harder to solve: a
compiler bug! The combination of virtual inheri-
tance and multiple base classes proved too much
for Sun’s SPARCcompiler and it generated code
that crashed during execution of the mem-
initialisers. I tried the code on several other com-
pilers which generated correct code.

AbsType

NamedScope

AbsClass

ClassType

Templat eType

Templat eClass

Templat eMat ch

Figure 1: nested mixin diamonds

I could either back out the changes and redesign
things or change compilers. I chose the latter and
rebuilt everything with the GNU compiler, g++
2.6.3, which uncovered a new compiler bug!

Given a combination of virtual and non-virtual
inheritance, g++ seemed to lose accessibility of
protected base class members. The obvious so-
lution was to make the members public but this
bothered me so I experimented further with g++.
I discovered that if all the inheritance was vir-
tual the problem went away. Given that some
people advocate public virtual inheritance as the
true expression of the “is-a” relationship, this
seemed a reasonable approach.

Of course, changing several inheritance relation-
ships to use virtual meant more classes to be

 Overload – Issue 13 – April/May 1996

 Page 11

initialised by the most-derived classes – classes
that had non-default constructors unfortunately.

Next time
Having battled with some basic aspects of the
type system, I shall turn my attention next to rep-
resenting statements and parse trees.

Sean A. Corfield
Object Consultancy Services

ocs@corf.demon.co.uk

Simple classes – Part 4:
Game of Life
by Roger Lever

This mini series started in Overload 10. The in-
spiration came from reading a very fascinating
book last Christmas, Stephen Levy’s Artificial
Life. (Not a programming book). As a result I
wrote a very simple version of Dr Conway’s
Game of Life, in fact that was January 95 – a
year ago!

Originally, the intention was to start with some-
thing very simple and then use that as the basis
for various different (and improved) versions.
Each transformation would be based on a theme,
for example portability, using templates, using
smart pointers, exception handling, debug and
code optimisation techniques. The approach (and
presentation) would have been very similar to
Ian Cargill’s book Programming Style, at least
that was the intention!

Inevitably, personal events have since overtaken
those ideas and also the march of C++ has intro-
duced new ideas such as the STL and Patterns.
However, it would be interesting if others took
up the gauntlet. Take one of these themes and
use the following code as a basis for that trans-
formation. If a number of existing and would-be
authors tackled this there would surely be some
very interesting reading in Overload! The collec-
tive effort would also significantly reduce the
time required for any one individual and possibly
each theme would be expanded and deepened by
a succession of input? What about changing one
function? One class? Everything!

Gameplan
Conway’s Game of Life has three very simple
rules based on the number of neighbours of each
individual. The individual will:

1) Survive to the next generation with 2 or 3
neighbours

2) Be born or Emerge in the next generation
with 3 neighbours

3) Die with less than 2 (isolated) or more than 3
(overpopulated)

Conway’s world here is laid out like a 2-D grid
with each cell location representing something
possibly alive or dead. Despite initial appear-
ances, these cells can appear to move around this
world – or be alive! To enable these ‘things’ to
stay on the world a toroidal grid is used, where
the top edge wraps around to the bottom and the
left edge wraps around to the right. This prevents
the simple problem of a thing disappearing off
the world via, for example, the lefthand side.
Each iteration through the grid constitutes one
generation and things live from one generation to
the next based on the immediate population.

Basic design
Everything could be written with one class
RWorld using Borland C++ and its BGI (Borland
Graphical Interface) library, however, not every-
one has Borland C++ (or wants to! :-). Therefore,
it was important to use a hardware abstraction
layer – class Screen. This enabled the platform
specific screen handling to be located in one eas-
ily changed class. Screen defined an interface for
RWorld to use, consequently RWorld need never
be concerned about the particular implementa-
tion. This was a useful starting point.

MSDOS and BGI screen handling
Since everything that was implementation spe-
cific such as screen resolution was in one class, it
seemed perfectly reasonable to leverage the BGI
as long as it was here too. So, for example, the
Borland specific call used to set the background
colour could be exchanged for the Microsoft ver-
sion instead. On that basis, Screen needed very
little real work, simply call the BGI version.

Screen
The important methods for Screen are to be able
to inspect and change the fore and background
colours at any point(s). This effectively places a
useful wrapper around this simple functionality
allowing the implementation to change without
affecting RWorld.

However, on examining the listing there are
some immediate questions:

 Overload – Issue 13 – April/May 1996

 Page 12

a) Why is everything hardcoded including
magic numbers?

b) Why are the size of the world and screen
dimensions not given?

c) Why is the accessor Colour colourAt-
Point(int x, int y) not const?

Some answers:

a) is not a major problem given the overall ap-
proach, portability is one of the themes and
maybe good practice should be too!

b) is a problem since Screen should contain all
the implementation specific code. In fact this
code is in the RWorld constructor. This
should perhaps be parameterised. Naturally,
the values themselves should be checked as
valid, particularly if they’re parameters to
RWorld or from main(). Currently main()
simply instantiates an RWorld object and re-
turns on completion.

c) find out!

RWorld
RWorld is the meat of the operation. It was high-
lighted in the previous section that RWorld
should not contain the hardcoded screen dimen-
sions. In fact RWorld started as an extremely
simple class but grew as things progressed. A
classic problem of analysis and design, not
enough time spent in thinking and planning.
Even what would at first sight appear to be an
extremely simple program warrants some atten-
tion to this very important phase. Certainly more
attention than is evident from the Basic design
section. As a result of starting too soon RWorld
literally contains code that really belongs else-
where:

1) hardcoded size of the world

2) kbhit() implementation detail to stop the
world cycling on and on

3) glider, tetromino... distinct things added to
the world

There are also organisational questions such as:

1) should the RWorld constructor really call
startRWorld()?

2) should Status use colour constants from the
BGI?

Implementation details
The key function that starts the world going is
firstly the initialPopulation() which can use ran-
domPopulation() or glider(), simply uncomment
one or the other. These populate the world with
either a random mess to see what happens, an
evolutionary approach, or discreet things to see
what they do. Secondly, to keep the world going,
there is startRWorld() which cycles through the
generations determining what happens based on
Conway’s rules:
void RWorld::startRWorld(void) {
 int numNeighbours = 0;
 while (!kbhit()) {
 for (int i = YDimStart;
 i <= YDimEnd; i++) {
 for (int j = XDimStart;
 j <= XDimEnd; j++) {
 numNeighbours =
 howManyNeighbours(j, i);
 nextGeneration(j, i,
 numNeighbours);
 }
 }
 drawNextGeneration();
 }
}

This is a very straightforward algorithm:

• Loop until the keyboard is hit, at which point
simply stop

• For each location from Top-to-Bottom, Left-
to-Right work out for each cell how many of
its neighbours are alive

• Based on the number of neighbours deter-
mine if it will live in the next generation

• Update (draw) the world with those born,
alive, died and dead.

The application of Conway’s rules is relatively
simple. The important point is to account for all
of the various states. Examining this function
there is a question: what about the DEAD? It
would appear from the program operation that
everything is in order, however, for those exam-
ining it for the first time should it work cor-
rectly?
void RWorld::nextGeneration(
 int x, int y, int countOfNeighbours) {
 Colour currentState =
 World.colourAtPoint(x, y);
 switch (countOfNeighbours) {
 case 2 :
 if (currentState == ALIVE)
 World.drawPoint(x, y,
WILLSURVIVE);
 break;
 case 3 :
 if (currentState == ALIVE)
 World.drawPoint(x, y,
WILLSURVIVE);

 Overload – Issue 13 – April/May 1996

 Page 13

 else
 World.drawPoint(x, y, WILLEMERGE);
 break;
 default:
 if (currentState == ALIVE)
 World.drawPoint(x, y, WILLDIE);
 break;
 }
}

The key function and a clear candidate for opti-
misation is howManyNeighbours(). I started with
the simplest (well it was to me!) version with a
view to improving it and optimising it later:
int RWorld::howManyNeighbours(int x, int
y) {
 Colour neighbour1 = DEAD;
 Colour neighbour2 = DEAD;
 Colour neighbour3 = DEAD;
 Colour neighbour4 = DEAD;
 Colour neighbour5 = DEAD;
 Colour neighbour6 = DEAD;
 Colour neighbour7 = DEAD;
 Colour neighbour8 = DEAD;
 int count = 0;

 // Alive so check the vicinity
for
 // neighbours using a toroidal
grid
 // N N N neighbours (N) 1, 2 and
3
 // YPosT
 // N X N neighbours (N) 4 and 5
 // XPosL X XPosR
 // N N N neighbours (N) 6, 7 and
8
 // YPosB
 // Toroidal grid wraps around
from
 // right back to left and bottom
to
 // top
 // Adjusting x and y for the left
 // and top of the grid
 int XPosL = x – 1;
 if (XPosL < XDimStart)
 XPosL = XDimEnd;
 int YPosT = y – 1;
 if (YPosT < YDimStart)
 YPosT = YDimEnd;

 // Adjusting x and y for the
right
 // and bottom of the grid
 int XPosR = x + 1;
 if (XPosR > XDimEnd)
 XPosR = XDimStart;
 int YPosB = y + 1;
 if (YPosB > YDimEnd)
 YPosB = YDimStart;

 neighbour1 =
 World.colourAtPoint(XPosL,
YPosT);
 if (neighbour1 != DEAD &&
 neighbour1 !=
WILLEMERGE)
 count++;
 neighbour2 =
 World.colourAtPoint(x,
YPosT);
 if (neighbour2 != DEAD &&
 neighbour2 !=
WILLEMERGE)

 count++;
 neighbour3 =
 World.colourAtPoint(XPosR,
YPosT);
 if (neighbour3 != DEAD &&
 neighbour3 !=
WILLEMERGE)
 count++;
 neighbour4 =
 World.colourAtPoint(XPosL,
y);
 if (neighbour4 != DEAD &&
 neighbour4 !=
WILLEMERGE)
 count++;
 neighbour5 =
 World.colourAtPoint(XPosR,
y);
 if (neighbour5 != DEAD &&
 neighbour5 !=
WILLEMERGE)
 count++;
 neighbour6 =
 World.colourAtPoint(XPosL,
YPosB);
 if (neighbour6 != DEAD &&
 neighbour6 !=
WILLEMERGE)
 count++;
 neighbour7 =
 World.colourAtPoint(x,
YPosB);
 if (neighbour7 != DEAD &&
 neighbour7 !=
WILLEMERGE)
 count++;
 neighbour8 =
 World.colourAtPoint(XPosR,
YPosB);
 if (neighbour8 != DEAD &&
 neighbour8 !=
WILLEMERGE)
 count++;
 return count;
}

There are at least two key approaches that imme-
diately suggest themselves for optimisation:

1) use a data structure to cache values already
worked out

2) use a data structure to cache ‘knowledge’ of
the world

3) must be plenty of others... one question is:
nextGeneration() and drawNextGeneration()
should these be separate?

Some possible themes

• Program reorganisation and removal of
magic numbers

• Templatize Screen for different implementa-
tions

• Optimisation of RWorld, in particular how-
ManyNeighbours()

• Add exception handling code

• Add new data structures using the STL

 Overload – Issue 13 – April/May 1996

 Page 14

• Use patterns in determining the organisation
of the classes

There are plenty of other ideas you could use. Go
for it. No matter how small or large it will be
useful, both to you and others. Write it up and
send it in to Overload.

Roger N Lever
rnl16616@ggr.co.uk

The full code accompanying Roger’s article
will appear on a future CVu disk and on the
FTP site – Ed.

Some pitfalls of class design: a
case study

by Nigel Armstrong

What characterises a good utility class? How do
you design it so as to make a user’s life easy?
Something I saw the other day set me thinking
about these issues, as it suggested that some of
the golden rules of class design are not as well
known as they should be.

I was looking at the definition of SNMP++, a set
of classes for use in developing SNMP tools.
SNMP, for those who don’t know it, is the Sim-
ple Network Management Protocol, which pro-
vides a standard communication mechanism for
management information over an IP network.
(Don’t worry, you don’t have to know anything
about SNMP to understand this article – just as
well, as I recently wrote a fifty-page paper pro-
viding just an introduction to it!).

Of the classes defined in SNMP++, I want to
take just one as an example. This class represents
an entity known as an Object Identifier (OID for
short). The concept of an Object Identifier was
developed as part of the OSI undertaking: it is
intended to provide a universally unique name
for each entity communicated by a protocol.

An OID is essentially just an array of integers.
Each integer in the array may be of arbitrary size,
but the overall array is constrained to a maxi-
mum of 128 entries.

So how would you start to design such a class?
The first thing that might strike you is that be-
cause this is simply an array, much of the donkey
work could be done by a template class:
typedef Array<int32> Oid;

assuming, reasonably in fact, that 32 bits is big
enough for any single element, or if you want to
be absolutely safe, but probably at the expense of
performance:
typedef Array<BigNumber> Oid;

But neither of these is a satisfactory solution. An
OID is a specialised object, not just any old ar-
ray. Apart from anything else, it has a special
printed representation, with the elements sepa-
rated by dots, such as “1.3.6.1.4.1.1503”. Any
OID class worthy of the name must at least pro-
vide a constructor from a string in this format,
and some way of converting an OID to such a
string.

Given that we need a special class, let’s look at
part of the definition of the Oid class in
SNMP++:
Oid::Oid(); // construct an empty oid
Oid::Oid(const char *dotted_string);
 // construct from a dotted string
Oid::Oid(const Oid &Oid);
 // copy constructor
Oid::Oid(const unsigned long* data,
 int len);
 // construct with
 // a pointer & length

char *get_printable(const unsigned int
n); // n is how many elements
char *get_printable(const unsigned long
s, // s is start position
 const unsigned long n);
 // n is how many elements
char *get_printable();
 // returns entire string

Let’s start with the constructors. The default con-
structor it may be argued, is not strictly neces-
sary, as it encourages a C style of coding, where
objects are created before they are initialised.
However it may be needed to integrate with cer-
tain template libraries, so we shall regard it as a
necessary evil.

The constructor from a dotted string is obliga-
tory, in my opinion, as this is the one that will be
used to initialise constant Oids:
const Oid nigelsOid =
 “1.3.6.1.4.1.1503.22.1”;

Note: this actually uses the dotted string con-
structor and the copy constructor although
the copy constructor may be elided – Ed.

The copy constructor is also obligatory. I would
have liked to see some variants on this by which
an Oid can be constructed as a sub-string of the
source, but there are member functions (which I

 Overload – Issue 13 – April/May 1996

 Page 15

shan’t discuss here) by which the Oid can be ed-
ited after construction.

The only constructor that is of real concern is the
one that constructs from a pointer and length.
The comment is not entirely clear but suggests
that the Oid is to be constructed from an array of
integers. The question I have is where is this ar-
ray supposed to have come from? How was it
created? What is it for? To me such interfaces
only encourage a poor quality of coding, in
which developers continue to exercise all their
ancient C vices, simply because they can.

Now we move on to the set of functions
get_printable, which is really ill-conceived. All
these functions return a non-const char*: who
owns this storage? Is it the Oid? Is it static? Is it
dynamic? Or is it the client code? The fact that it
isn’t clear is the first problem. But even if it were
clear from the documentation – and it isn’t,
though my guess would be that the Oid owns the
string – there are still further problems. Let’s be
generous and assume that the Oid allocates the
string and frees it on destruction.

But consider the following code:
Oid nigelsOid = “1.3.6.1.4.1.1503.22.1”;
char *string1 =
nigelsOid.get_printable();
char *string2 =
nigelsOid.get_printable(3);
string2[0] = ‘\0’;
char *string3 =

nigelsOid.get_printable(1,2);

After this code is executed what does string1
point to? A null string? The string “3.6”? A freed
memory area? It might be any of these, by my
reckoning.

The documentation of SNMP++ asserts that “a
user does not have to be an expert in C++ to use
SNMP++”. I would paraphrase this as “a user
only has to be able to guess how the classes have
been implemented to use SNMP++” !

This is the sort of class which inexperienced C++
developers feel comfortable with. It resembles
the C APIs they are used to, where historically
such horrors are commonplace. (You only have
to look at the C and U**X standard libraries for
plenty of examples).

So how should one design an Oid class? As a
starting point, here’s the equivalent part of my
own Oid class definition:
Oid(const Oid &, long start = 0,
 long length = 0);
Oid(const Oid &, const Oid &);

Oid(OidEleIterator &);
Oid(const char *);
Oid(OidEle);

friend ostream &operator<<(ostream&,
 const Oid&);

Notice that there are a variety of constructors.
The first two allow construction from other Oids,
one by substringing, the other by joining two
Oids together. The third uses a special class
called an OidEleIterator – this is an abstract base
class, an example of the design pattern Iterator.
Its definition is:
class OidEleIterator
{
public:
 virtual OidEle First() = 0;
 virtual OidEle Next() = 0;
 virtual bool NotAtEnd() = 0;
 virtual ~OidEleIterator() {}
};

The idea behind the OidEleIterator class is that it
provides a general interface for the development
of efficient initialisation mechanisms, whatever
the format of the originating data. OidEleIterator
has to be sub-classed by the developer, who then
provides the appropriate code to traverse the
source data structure. So for example if the
source data is in an array of longs, a developer
would create a class to walk the array, returning
an element of the Oid at each step.

Going back to the Oid class, the next constructor
creates an Oid from a dotted string, and the last
creates one which has only a single element.

Finally, there is a friend function in classic C++
style to allow the Oid to be printed (or if required
converted to an ostrstream, if a true string form
is needed). There might also be interfaces for
conversion to and from string, but I didn’t have
that need at the time of development.

Note: ostrstream has been deprecated in fa-
vour of ostringstream. Furthermore, the
friend is unnecessary if a ostream&
print(ostream&) member is included – the
operator<< can simply be syntactic sugar for
such a call – Ed.

You will note that I didn’t include a default con-
structor. I mentioned before that I thought it was
probably necessary, in order to allow a user to
code:
Array<Oid> arrayOfOids;

or (if you must):
Oid o[20];

 Overload – Issue 13 – April/May 1996

 Page 16

but perhaps there is some other way of permit-
ting the class to participate freely in unantici-
pated data structures. Can the readers of
Overload throw any light?

In a short article it is possible only to touch on
the vast subject of good class design. However, it

is clear how in the design of even a very simple
class there are potentially many issues to be con-
sidered.

Nigel Armstrong
nigel_armstrong@tertio.demon.co.uk

The Draft International C++ Standard
This section contains articles that relate specifically to the standardisation of C++. If you have a proposal
or criticism that you would like to air publicly, this is where to send it!

This issue sees a report from the March ‘96 meeting in Santa Cruz.

The Casting Vote
by Sean A. Corfield

At this point in the process, you should not be
expecting large changes. In fact, France took the
position some time ago that there should be no
more extensions and the UK also wants to see
stability. So now we are attempting to make only
small changes. Sometimes those small changes
can be very illuminating, especially when the
committee have to adopt a change that makes the
draft more compatible with existing practise
rather than the other way around.

Stabilisation
At the Santa Cruz meeting we were supposed to
be ready to ship out the second Committee Draft,
triggering a second ANSI Public Review. How-
ever, discussions within WG21 on Sunday eve-
ning made it clear that too many small changes
were planned for this meeting and we would
have no choice but to slip the schedule by one
meeting. Most committee members are now con-
fident that we can achieve an appropriate level of
stability by Stockholm (July ‘96) to be able to
move on to the next ballot. It’s possible that we
might make this up later as the improvements in
the draft should help it go through subsequent
ballots more smoothly.

Despite the noticeable slowing of change, a re-
markable number of issues were dealt with this
time around.

Conversions
Two conversion-related issues were cleared up,
one of which brings the draft in line with existing
practice:
struct A {
 operator int();
 int a;

};
struct B : A {
 operator long();
 int b;
};
B b;
int i = b;

The draft used to say that B::operator long()
would be called here but most compilers throw
all the conversion operators into the pot and pick
the best match, A::operator int(). The commit-
tee agreed this was more intuitive and decided to
make the majority of compilers a little more con-
forming!

The other conversion issue concerns “slicing”
where a derived class object is assigned or
passed to a base class variable by value. This is
often not what was intended and can lead to sub-
tle bugs.
A a = b; // from above
// b.b is silently thrown away

The committee decided to remove this conver-
sion since it does not fit in with the other “poly-
morphic” conversions and code can easily be
fixed by using references to the base class in-
stead.

Template cleanups
A common question asked regarding templates is
“when are they instantiated?”. The draft doesn’t
say. Conceptually, instantiation occurs some
time between actual compilation of a file and
link time. For some compilers, that actually
means during compilation. Why is this impor-
tant? It gives guidance to implementors, library
vendors and users about how they should be ex-
pected to deal with compilation and linking of
template code and what should be expected of
libraries. A proposal by myself and Dag Brück of
Sweden, accepted in Santa Cruz, replaces the
basic eight translation phases, inherited from C,
with nine – the extra phase being instantiation

 Overload – Issue 13 – April/May 1996

 Page 17

between translation (phase 7) and linking (origi-
nally phase 8). The exact wording may change as
a result of other template resolutions but the draft
is now quite clear that libraries can be built from
code that uses templates and that instantiation is
a pre-link-time activity that may require template
source code to be available. Of course, imple-
mentations behave “as-is” so they may roll in-
stantiation into either compilation or linking
depending on how the implementation is con-
structed.

Another comment that is heard regularly
amongst those who’ve read the draft is “what on
Earth does clause 14 [templates] actually
mean?”. Partly from its ARM heritage and the
result of many, many changes being applied
since, the clause describing templates had be-
come very difficult to follow and was imprecise
at best. I have been trying to find time to rewrite
the clause for over six months so my hearty
thanks to Josée Lajoie, the X3J16 vice chair, who
has done a tremendous job of reorganising the
clause and clarifying the wording. The commit-
tee voted unanimously to adopt her rewrite and
several committee members have reviewed it and
made comments, most of which have been inte-
grated already. I shall be integrating the remain-
ing comments and completing the cleanup over
the next couple of weeks.

Controversy<>
A much-debated issue finally came before the
full committee. Since the days of the ARM, the
intent has always been that template definitions
were somehow “found” when needed for instan-
tiation. The first C++ compiler, Cfront, worked
this way as have some other compilers since.
There are difficulties with this approach, how-
ever, and many compiler vendors, especially on
PCs, decided to require that template definitions
were available at compile-time by forcing users
to include the entire definition and all supporting
machinery in header files. Instantiation is then
performed during, or immediately after, compila-
tion.

Eventually, in November ‘94, the committee
agreed to sanction this extension and made some
minor changes to the draft to allow multiple cop-
ies of template bodies to appear in multiple trans-
lation units, breaking with the traditional
interface / implementation separation granted for
normal functions.

However, the pro-“inclusion” faction within the
committee continued to lobby – they wanted the
“separation” facility removed so they would not
have to support it. The battle has been generally
waged with hot air and Fear, Uncertainty and
Doubt. In Santa Cruz, several hundred man-
hours were devoted to rehashing old ground and
hearing the same tired arguments over and over
again. No new technical information was pre-
sented. Separation was “slow” and “hard to im-
plement”. Inclusion “leaked names” and “went
against sound engineering principles”. The pro-
inclusion group put forward a proposal to re-
move support for separation, thus breaking
Cfront-developed template code, and it was clear
this would get a majority vote within X3J16. It
was not clear that WG21 were in consensus on
this and, after much political wrangling, the for-
mal vote was in favour but with adoption de-
ferred to Stockholm to allow further technical
work to be done. That technical work can focus
on the shortcomings of both models and hope-
fully generate a clear consensus within the inter-
national committee.

Library fashions
Transparent locales are out, bidirectional streams
are in!

The locale issue has proved controversial at pre-
vious meetings and at least it is now laid to rest.
If you don’t know what a transparent locale is,
the decision is unlikely to affect you.

The lack of bidirectional streams might be more
surprising. iostream and fstream are so common
in implementations that it seems incredible that
the standard didn’t support them. Now it does,
although I noted that no national body had ob-
jected to their absence, i.e., their addition does
not resolve a specific ballot comment.

Still to come
After all the minor issues dealt with this time
(there were around sixty formal motions), the
issues lists are shrinking to encouragingly man-
ageable sizes and most issues should be closed
out before we ship the second CD.

One of the “big” outstanding issues is name in-
jection which just refuses to die. Every time we
think we have got it licked, a new problem with
our solution crops up and we go back to the
drawing board.

Implementation experience with the combination
of templates and namespaces is beginning to

 Overload – Issue 13 – April/May 1996

 Page 18

throw up some interesting (i.e., hard) problems
and member templates are sure to provide similar
puzzles to be solved.

The library still needs a lot of work: some of it
has never been implemented because it relies on
language features that simply aren’t supported by
compilers yet. As more people focus on the li-

brary, more issues come to light and so the issues
lists ebb and flow.

Our best guess says Stockholm will see sufficient
stability to move on. Further slippage would cer-
tainly be bad for C++ and its users.

Sean A. Corfield
Object Consultancy Services

ocs@corf.demon.co.uk

C++ Techniques
This section will look at specific C++ programming techniques, useful classes and problems (and, hope-
fully, solutions) that developers encounter.

STL is the focus of this issue: Peter Wippell tells the tale of his introduction to STL, I revisit the issue of
input iterators that I raised a few issues back and also address Jiri Soukup’s criticisms of pointer safety and
The Harpist starts a series explaining the high-level issues behind STL. Kevlin Henney also continues his
excellent series on template techniques.

I do not love thee, STL!
by Peter Wippell

Inspired by the publicity in Overload and else-
where, and not wishing to be the last person on
the planet without it I decided at last to try out
STL. Although the experience has made me a
strong supporter of it, I met several obstacles on
the way – hence my title! Here is an account of
what happened, in the hope that flagging my
problems may clear the way a bit for other peo-
ple.

Version and source
I used the version of STL, dated February 1996,
which I got from the Borland Programmer’s Re-
source Disk. This version is later than the STL
library on Overload Disk No 5. Maybe there is a
later version still, but I haven’t searched for one.

Source file format
On attempting to view the source and readme
files, they looked like echoes from a bygone age,
owing to a shortage of carriage returns. Further-
more, their ReadOnly attributes were set. To
make them suitable for use in a PC environment,
I had first to clear the attributes, MS-DOS com-
mand
ATTRIB -R

and then run CRLF.EXE – a useful utility, which
can be found on CVu disk 7.1!

Documentation
Unfortunately STL documentation comes in a
PostScript file which my 9 pin dot matrix knows
nothing of. To read it I had to get a the shareware
application, GHOSTSCRIPT, from somewhere
on Compuserve. Having figured out how
GHOSTSCRIPT’s FORTH style (?) syntax
worked and a considerable time later I ended up
with 20 out of 65 pages of an excellent manual,
no printer paper and needing a new printer rib-
bon! Luckily, before I could work out how to tell
GHOSTSCRIPT to restart the manual at page 21,
I was rescued by the discovery of the same man-
ual, in Windows help format, in the Borland li-
braries forum on Compuserve. This file is
excellently put together and solved my documen-
tation problem – especially so because a few
mouse clicks links it into Openhelp for the BC++
IDE, enabling you to call up the help on any STL
keyword directly by just clicking on that word in
your source code.

Compiling an example program
The introduction to the manual contains two ex-
ample programs, and compiling these, I sup-
posed, would at least show if STL could work
with my BC++ 4.5 IDE.

The first example consists of a program which
takes a single integer as a command line argu-
ment, It then reads a stream of integers from cin,
and writes, to cout, all members of the input
stream not divisible by the argument. The pro-
gram is certainly impressive since it does a great
deal with a single function call.

 Overload – Issue 13 – April/May 1996

 Page 19

The manual didn’t say which include files are
required. It turned out that STL’s ALGO.H was
all that was needed. However, even with this, the
example would not compile immediately for two
reasons:

(1) Error: Too few arguments in template class
name ‘istream_iterator’ in function main(int,
char * *). Apparently, either STL or Borland
or both haven’t yet implemented default pa-
rameters for templates. The error is corrected
by giving istream_iterator another parameter
of type, ptrdiff_t.

(2) Error: Body has already been defined for
function ‘max(const T &, const T &)’ and a
similar message for the min function. This is
corrected, in BC4.5, by defining the Borland
manifest constant __MINMAX_DEFINED,
above “#include <algo.h>”

With these two corrections the code compiled
and ran with no problems under MS-DOS and
under Windows using Borland’s EasyWin.

I did have one niggle with the example code,
though. If no command line parameter is pro-
vided, an exception is thrown of type char*,
“usage: remove_if_divides integer\n”. This
doesn’t work because the “throw” isn’t in a try
{} block, and there is no catch {} block. If the
authors omitted these for brevity, it would surely
have been better to write the message to cerr
rather than throw an exception.

It is up to each implementation how it handles
an uncaught exception – I expect the example
code assumes that the implementation will
say something like “uncaught exception X” –
Ed.

A second example
The second “more realistic” example, which the
authors give, is of a program, that reads a file
into a vector of strings, randomly shuffles the
lines and writes the result to cout. (Incidentally,
this program is remarkably like Francis’ random
number program published recently in .EXE.
STL uses its own random number generator
which seems to have a greater range than
rand()).

Compiling this code became a nightmare, once I
had included CSTRING.H, which contains the
Borland ANSI string class. There were many
error messages, the most common one reporting
redefinition of “operator >=(string, string)”.

The IDE itself kept reporting fatal errors, and
crashing, which this compiler has never done to
me before. Eventually after writing my own sim-
ple string class, disabling pre-compiled headers
and using EasyWin, it suddenly started to com-
pile without error. After that, to my surprise, I
found that it compiled and ran even using the
original ANSI string class and other settings.
Only one warning remains:

 “Warning STL\ITERATOR.H 366 Functions
containing some return statements are not ex-
panded in line.”

Why did it give so much grief? The reason why,
I cannot tell. I can only guess that some typo in
the code, in conjunction with the new templates,
put the compiler into a state which it couldn’t
deal with. I have noticed confusion before about
which functions were defined and which not,
when I ported working Borland template code
from Windows to MS-DOS, so there probably
are compiler problems in this area.

Note: the string class is part of the draft ISO /
ANSI standard (not just ANSI!) and Borland
have tracked it closely. However, the draft
says that the class definition should be acces-
sible from the header <string> – <cstring.h>
is supposed to be the same as the C
<string.h> header! – Ed.

The second example doesn’t meet its
specification
There are some oddities / errors in the way this
example works:

(1) The STL description says that it shuffles the
order of the “lines” in the input file. It
doesn’t. It shuffles the order of the words in
the input. This is because the string extrac-
tion operator copies scanf’s odd behaviour.

(2) The output is all on the same line with no
spaces between the strings

(3) You have to terminate input from the key-
board with a CTRL-Z which may surprise
modern PC users.

(4) The random generator is not seeded. Given
the same input, the program always produces
the same output.

Conclusion
I intend to use STL from now on and expect it to
improve my programs considerably. But I’ll
watch out for UNIX / MS-DOS differences.

 Overload – Issue 13 – April/May 1996

 Page 20

Peter Wippell
101612.3202@compuserve.com

You can’t get there from here – a
closer look at
input iterators

by Sean A. Corfield

Introduction
Back in Overload 10, I touched on the subtleties
of input iterators in my cOOmpiler column. At
the time, I wasn’t sure what the committee would
decide in terms of requirements on input iterators
so I didn’t know whether my iterator-style lexer
was “valid”, i.e., whether it satisfied the re-
quirements that would be specified in the draft
standard. As things turned out, it didn’t. In fact,
it didn’t even satisfy the requirements that were
in the draft at the time – I just didn’t understand
them!

Recap: the wrong semantics
Essentially, the semantics I had implemented
were that multiple applications of the * operation
would yield successive values and ++ was a no-
op. Since input iterators are suitable for one-pass
algorithms this seemed appropriate. My iterator
looked roughly like this:
class Lexer {
public:
 Token operator*();
 Lexer& operator++()
 { return *this; }
//...
};
Token Lexer::operator*()
{
 // get the next token from the
 // input stream and return it
}

Recap: the right semantics
The draft actually requires that * can be applied
multiple times and yield the same value, with ++
being used to “advance” the input position. Since
the first operation on an iterator is likely to be *
this means that input iterators are required to
maintain a buffered value. So a framework some-
thing like the following is required:
template<typename T>
class InputIt {
public:
 T& operator*()
 { prime(); return buffer; }
 InputIt& operator++()
 { prime(); ready = false;
 return *this; }
private:

 T buffer;
 bool ready;
 void prime();
};
template<typename T>
void InputIt<T>::prime()
{
 if (!ready)
 {
 // obtain the value to
store
 // in the buffer - this
might
 // be expensive
 ready = true;
 }
}

This implementation delays the processing until
the item is needed which might make testing for
the “end” harder. An alternative is to prime the
buffer at construction time and at the end of each
++ operation. This has the disadvantage that an
iterator that is constructed but never used still
“reads” an item.

Copying an iterator
At the Tokyo C++ meeting in November ‘95,
Andrew Koenig gave a presentation about input
iterator semantics. A controversy had arisen
within the committee about what happens when
you copy an input iterator. Sounds simple? What
about this example:
Iterator i = // something
Iterator j = i;
++j;
*i; // what happens here?

Although both i and j are iterators on the same
source, incrementing j might not be expected to
affect the value returned by *i – otherwise the
sequencing semantics of i would be compro-
mised by actions performed on copies. Suppose i
was incremented as well – where do both itera-
tors point? At the same element? At consecutive
elements? The latter compromises the sequenc-
ing semantics, but the former would require an
unbounded buffer to retain an image of the
source being iterated over.

Clearly, copying an iterator is a special opera-
tion. Koenig explained that there were several
options for restricting the semantics which gen-
erally meant “invalidating” certain operations
after a copy. The most restrictive possibility is to
deem a copied iterator as “invalid” – in the above
example, having copied i to j, i becomes invalid
and so *i has undefined behaviour. This turns out
to be too restrictive – writing functions that take
iterators as value arguments becomes very diffi-

 Overload – Issue 13 – April/May 1996

 Page 21

cult because calling the function invalidates the
original arguments in the caller.

A less restrictive approach is to say that incre-
menting an iterator invalidates all copies – again
this invalidates i in the example above but pass-
by-value is less likely to invalidate an iterator.
The fact that most useful algorithms need to in-
crement iterators proves how incredibly restric-
tive an input iterator is – most algorithms require
forward iterators unless written very carefully.

A common idiom
Much of this discussion would be irrelevant
were it not for a very common construct inher-
ited from C that is intended to be preserved for
iterators: *i++. The post-increment operator must
perform special magic in order to side-step the
restrictions on copied iterators – the obvious im-
plementation is:
Iterator Iterator::operator++(int) {
 Iterator temp = *this;
 ++*this;
 return temp;
}

The iterator is copied to temp, the original is in-
cremented and then temp is copied to the return
value object. No matter which approach we take,
there is no alternative to rendering temp invalid
after the increment.

The “special magic” is to preserve the semantics
of *t given that t is the result of i++. This can be
achieved by a proxy object, constructed from the
(cached) current value referenced by the iterator:
IteratorProxy Iterator::operator++(int)
{
 IteratorProxy temp(**this);
 // this->operator*()
 ++*this;
 return temp;
}

The proxy takes a copy of the “current” object
and remembers it. The only operation applicable
to a proxy is * which yields that remembered
object. Strictly speaking the proxy should pro-
vide the same interface as the iterator for consis-
tency but the draft does not require this, which
makes writing the proxy and specifying the draft
easier.

Summary
When writing algorithms, it is important to bear
in mind whether the algorithm should work with
an input iterator or one of the less restrictive
forms. Similarly, when writing iterators it is im-
portant to consider whether they satisfy the strict

requirements of an input iterator and, if not,
whether they actually satisfy the different re-
quirements of a forward iterator – they must be
copyable and support multiple passes over the
data set.

In my original article, I could not easily have
satisfied the requirements of a forward iterator
but with some extra work I could have imple-
mented the correct semantics for input iterators.

Sean A. Corfield
Object Consultancy Services

ocs@corf.demon.co.uk

The Standard Template
Library – first steps:
sequence containers

by The Harpist

Everyone kept telling me what an excellent thing
the STL was. My initial problem was that they
kept using terms for which I had too imprecise
an understanding. I suspect that the majority of
programmers have similar problems. What I am
going to do in this article and subsequent ones is
to try to explain the STL so that you will have
some map that you can use to navigate through
all the apparent complexities.

I am going to assume that you know what tem-
plate classes and template functions are, though
it would be helpful if one of the standards ex-
perts could explain the more recent develop-
ments because I keep hearing about things that
certainly are not in the ARM.

Some terms
There are several terms that you must understand
if this article is going to make any sense to you.

Iterator:

This is a generalisation of the concept of a
pointer. It comes in many flavours but for the
purpose of this article you can think of it as a
pointer with possibly added ability so that it can
navigate through a container of objects.

Container:

A container is a data structure that actually con-
tains objects. It is responsible for the lifetime of
those objects. The simplest container is a plain
C-style array.

Collection:

 Overload – Issue 13 – April/May 1996

 Page 22

A container of (smart) pointers or references to
objects. It is not responsible for the objects them-
selves and so an object can be in more than one
collection. The simplest instance of a collection
is an array of pointers.

Examples:

Container of T’s
class T; // some type T
T arr[10];

This code creates an array of 10 T’s. If T is a user
defined type with a default constructor that con-
structor will be called 10 times. When arr goes
out of scope the 10 T’s will be destroyed.

Collection of T’s
class T
T* parr[10] = {0};
for (int i=0; i<10; i++) parr[i]=new T;
// code using parr
for (int i=0; i<10; i++) delete parr[i];

Note that the T’s have to be created (in this in-
stance dynamically) and destroyed by some ac-
tion of the programmer.

There are some less obvious differences between
collections and containers. One is the issue of
assignment. If you assign a container to another
you have just destroyed the contents of the sec-
ond one and copied the contents of the first. That
could be quite expensive. Copying a collection
has no direct implications on the collected ob-
jects (though in the case above, you might just
have thrown away the only handles (pointers) to
the collected objects).

If you have a choice, opt for a container as it will
look after its contents for you. From now on I am
going to focus on containers, because collections
are containers...

Types of container
There are two main classifications of container:

Sequential:

That is a container in which objects are in some
sense contiguous to each other. The concepts of
‘next’ and ‘previous’ have a well-defined mean-
ing. An array is a sequential container. The con-
cepts of ‘first’ and ‘last’ have a meaning for
sequential containers.

Associative:

These are the containers for which there is no
natural concept of ordering. Such things as maps
and sets are examples of associative containers.

A good example of an instance of such a con-
tainer is a dictionary. You would not normally
look up the 200th word in a dictionary, instead
you look up a definition for a given word. There
may still be some concept of ordering, but it is
no longer the dominant method for accessing the
container.

In the remainder of this article I will only con-
sider sequential containers. I will deal with asso-
ciative containers another time.

Performance characteristics
When you choose a container type there are a
number of things that you will want to consider.
For example, how easy is it to insert a new ele-
ment at the beginning, or how easy is it to access
an element somewhere in the middle.

STL uses two criteria for determining the an-
swers.

Overhead:

What extra do you have to pay for extra facilities
as compared with a plain array? This is really a
measure of the complexity of the implementing
code. For example, an array can be accessed by a
plain pointer, some containers require more so-
phisticated iterators and hence the overhead is
higher.

Performance Time:

This may be ‘constant’ which means the time
taken for the specified action is independent of
the number of objects in the container. It may be
linear which means that in the worst case the
time taken will be proportional to the number of
objects in the container. In theory it could be
other things such as quadratic (related to the
square of the number of objects). In practice all
simple container operations are either constant
time or linear time.

STL’s sequential containers
STL provides three container template classes to
provide sequential containers. In general you
should choose one of these in preference to a C-
style array. They are more versatile and are ca-
pable of handling polymorphic types as long as
you choose an appropriate iterator type.

The three template classes are: vector<T>, de-
que<T> (double ended queue) and list<T>. All
other sequential containers provided by STL are
based on one of these via an adaptor template
(more about those another time).

 Overload – Issue 13 – April/May 1996

 Page 23

vector<T>

This is closest to an array but it has a couple of
added features. The first is that it is expandable.
When the currently allocated memory is full, it
obtains a larger block of storage, copies itself
into the new block and then frees the old storage.
Generally adding a new object at the end of a
vector is a constant time operation (using cur-
rently unassigned memory) but there will be oc-
casional instances when there is no spare
memory and the move to new storage must be
initiated. The reason for this arrangement is to
ensure that objects in a vector are really contigu-
ous, just as they are in a plain array.

Inserting / deleting objects other than at the end
is a linear time activity because all the objects
latter in the vector have to be moved up / down
to deal with the space for the object being in-
serted / deleted.

All access to vector elements is in constant time.
The overhead for a vector is small because it can
be handled by simple C-style pointers. Even if
you elect to use some form of smart pointer as
the iterator type, these can still be very simple
with minimal extra work (bounds checking etc.).

Where you previously used a plain C-style array,
you need good reasons for not at least replacing
it by a vector<>. You pay a small overhead for
the level of indirection that allows the expansion
mechanism to work.

deque<T>

The double ended queue (often just used as a
single ended one, but the extra functionality
comes at very little extra cost) is also expandable
but uses a different expansion mechanism. Mem-
ory for objects is provided in blocks which need
not be contiguous. deque<> maintains iterators
(pointers) to each block, the first object and the
last object. This means that you can add / delete
extra elements in constant time to both the be-
ginning and the end of a deque<> (there is a
slight performance blip when a new block of
storage has to be obtained, but nothing like that
suffered in the equivalent case for vector<> be-
cause the existing objects are left where they
are). Access to all elements is also constant time,
but the overhead is higher because the storage in
blocks has to be handled via an extra level of
indirection. This is the price paid for the extra
versatility and avoiding the need to move the
whole lot around when available memory has
been used. Inserting / deleting from the middle of

deque<> is a linear time action because other
objects have to be shuffled up or down. This
process is optimised because the adjustment can
be made from the closer end.

list<T>

The previous two sequential containers are really
improved variations on the array theme. This one
is something different. Those of you who have
done a computer science course will be familiar
with the various linked list data-structures. The
particular one implemented in the STL is the
doubly linked list. That is, each node in the list
contains an object and has a pointer (iterator) to
both the previous and the next node. This means
that it is a little ‘fatter’ than the minimalist singly
linked list, but you get back a little extra by way
of performance. You can move both forward and
backward in the list, you can add items anywhere
in constant time, you can get both the first and
the last object in constant time, but accessing any
other object means that you must traverse the list
from one of the ends.

In addition to this extra cost for accessing an in-
ternal object, there is also a considerably higher
overhead because such things as iterators have to
be smarter. Adding objects involves constructing
nodes etc.

Unlike vector<> and deque<>, list<> does not
come with a built in operator[] because that
function does not readily fit the concept of a list.

Problems
STL as specified by ANSI X3J16 / ISO WG21
includes a number of excellent features that have
yet to be implemented by most compiler vendors.
(You should note that the version of STL distrib-
uted by Microsoft is the original Hewlett-
Packard version and not either the first Commit-
tee Draft version nor the version which will be in
the final C++ Standard). The completed STL will
include facilities by which the user can provide
an allocator (of memory) function of their choice
as well as a range of other enhancements. Full
implementation of STL must wait for compilers
that can handle the latest refinements in tem-
plates.

However the above does not mean that you can-
not get good use from the current versions. The
sooner you get used to using STL containers in-
stead of C-style arrays or hand-coded list classes
the better. As you move to programming in ex-
ception handling environments you are going to

 Overload – Issue 13 – April/May 1996

 Page 24

find increasing pay-back for using STL and not
having to worry about resource leaks. Of course
you will need to focus on the code you write, but
as there will be less of it you will have more time
to get it right.

The biggest problem with using STL is when
things go wrong. If you think the error messages
generated by current compilers are unreadable,
wait till you see a few from template compila-
tions. Two things are major causes of problems
with templates.

Never use #defines of your own (the ones in
standard headers should be OK because the writ-
ers of STL could allow for those – well, sentinels
on header files will squeeze in as long as you
stick to the industry standard form for these). As
#defines have no respect for scope, the chance of
your stomping on an internal STL identifier are
just too high. If you do so, you are going to
waste many hours tracking the cause of the prob-
lem – you will be getting error messages about
template compilation resulting from something
that has been changed by the pre-processor. That
means the code you will be looking at will not be
the code the compiler is complaining about.

The second problem is instantiating (or attempt-
ing to) a template with a type that does not meet
the templates requirements. For example de-
que<> has four requirements: a public copy con-
structor, a public default constructor, a public
destructor and a public copy assignment opera-
tor. Built-ins have these anyway, and the com-
piler provided versions exist for user defined
classes that have not done anything to inhibit
them. However, if you try to instantiate a de-
que<> for some type that is missing one of these
you are going to get an error message when your
code causes instantiation of the specific template
code that required it.

Until you are well familiar with using STL con-
tainers, check the specific requirements of the
one chosen before you use it. That will save you
much grief.

Conclusion
As you can see, I am not trying to teach you how
to use STL but trying to give you enough feel so
that you can get started for yourself. Get using
vector<> as soon as possible. Then become a
little more discriminating and add deque<> and
list<> into your range of choice.

Do you have any particular preference as to what
I should tackle next? Would you like to contrib-
ute some documented code using one of the
above containers? If we are to make progress we
need some form of interaction. Unless you share
your experiences each of us will have to learn
from our own isolated mistakes (and in doing so
generate our own, probably faulty, mental model
of the STL). One of the things that an organisa-
tion such as ACCU is about is helping people
climb the learning curve faster by sharing ex-
periences. So get coding, documenting and shar-
ing.

The Harpist

Using STL with pointers
by Sean A. Corfield

In Overload 9, Jiri Soukup criticised the Stan-
dard Template Library (STL) as being unsafe
with pointers since it was a breeding ground for
dangling pointers and memory leaks. The com-
ment instantly offended me but I thought I would
let a few issues go past to see if anyone else
would rise to the bait. Bryan Scattergood
touched on the issue in Overload 8 with his arti-
cle on memory management and now I will take
it up again.

Breeding dangling pointers
First of all, let’s see why Jiri thinks STL is so
dangerous. STL’s containers are value-based,
i.e., they expect the contained objects to obey
simple construction, copy, assignment and de-
struction semantics. Consider the following sim-
ple example:
list<Shape*> shapes;
shapes.push_back(
 new Triangle(1.0, 1.0, 1.0)
);
shapes.push_back(new Square(2.3));
shapes.push_back(new Circle(42.0));

The shapes list now contains three pointers to
different Shapes, but who “owns” them? Who is
responsible for deleting them? If we were now to
copy the list and attempt to free up an element of
the old list, what would happen:
list<Shape*> newShapes(shapes);
 // copy list
delete shapes.front();
 // delete the
Triangle
shapes.pop_front();

When pointers are “copied”, what they point at is
not – this leaves the first element of newShapes

 Overload – Issue 13 – April/May 1996

 Page 25

dangling because the object it pointed at has
been deleted.

Similarly, if we pop all the elements off the lists
we get memory leaks because, now, no-one owns
the objects – they are no longer accessible.

A deep copy pointer
It looks as if our problem is to do with the se-
mantics of the builtin pointer type. Perhaps we
can solve the problem by encapsulating a pointer
and changing its semantics? As a first cut, we
can design a very simple deep copy pointer:
template<typename PointedAt>
class Deep {
public:
 Deep(PointedAt* x = 0)
 : p(x) { }
 Deep(const Deep& d)
 : p(new PointedAt(*d.p)) { }
 Deep& operator=(const Deep& d) {
 if (this != &d) {
 delete p;
 p = new PointedAt(*d.p);
 }
 return *this;
 }
 ~Deep() { delete p; }
 PointedAt& operator*() const
 { return *p; }
 PointedAt* operator->() const
 { return p; }
private:
 PointedAt* p;
};

Returning to our first example:
list< Deep<Shape> > shapes;
shapes.push_back(
 new Triangle(1.0, 1.0, 1.0)
);
shapes.push_back(new Square(2.3));
shapes.push_back(new Circle(42.0));

The actual arguments to the push_back calls are
really constructed temporary Deep<Shape> ob-
jects that own the new’d object. The first thing
that happens is that the temporary is copied into
the actual list element, which duplicates the
Shape object, and then the temporary is de-
stroyed, which deletes the original new’d object.
Not very efficient but it looks like it works.

If we copy the list, each element will be copied
so the new list will have its own copies of the
Shapes. When we pop elements off, the encapsu-
lated pointer is destroyed which in turn deletes
the allocated Shape object. So, no memory leaks
either.

What is a copy?
I said it “looks like it works” – can you see what
is wrong? Look closely at the Deep copy con-
structor. When it duplicates the contained object,

it uses the copy constructor of that object. This
may seem reasonable and is guaranteed to work
for a large range of types, including builtins, but
it doesn’t do what we want in this case. When we
push a Triangle onto the list the compiler con-
structs a Deep<Shape> from a Triangle*. When
we copy that element, the Deep copy constructor
creates a new Shape constructed from the old
Triangle object – assume the Shape copy con-
structor takes a const Shape& argument. Oh
dear! We started with a Shape* pointing at a Tri-
angle but we end up with a Shape* pointing at a
Shape! Worse, and even more likely, is when
Shape is abstract – we cannot instantiate Deep
for abstract types because both the copy con-
structor and assignment operator require Pointe-
dAt to be a complete, concrete type.

The problem is that our copy constructor is not
polymorphic. Nor can it be, given that it is tied to
the static type of its class. We need a polymor-
phic pseudo-copy constructor and we can
achieve this by placing a restriction on the ob-
jects we use with containers. In every class C we
must define a cloning method:
virtual C* clone() const
{ return new C(*this); }

Redefining Deep’s copy constructor (and as-
signment operator) in terms of this has the de-
sired effect:
Deep(const Deep& d)
: p(d.p->clone()) { }

The call to clone is polymorphic, despatching (in
our example above) to Triangle::clone which
copies itself and returns a pointer to the copy.
This also allows Deep to work with abstract
classes.

Note that as written, this relies on covariant re-
turn types where a derived class method may
have a return type that is not identical to that in
the base class:
struct Base {
 virtual Base* clone() const;
};
struct Derived : Base {
 virtual Derived* clone() const;
};

Some compilers do not allow this yet but it
works almost as well when the return types are
the same:
struct Base {
 virtual Base* clone() const;
};
struct Derived : Base {
 virtual Base* clone() const;

 Overload – Issue 13 – April/May 1996

 Page 26

};

Unfortunately, this is rather error-prone because
it is too easy to omit an overriding definition of
clone in a derived class.

A more complicated alternative
Having shown a simple solution above and noted
two serious flaws (it is inefficient and error-
prone), we need to consider a more appropriate
solution. The root of both flaws is deep copy se-
mantics. The deep copy semantics led directly to
the inefficiency and the bug in our “obvious”
solution led to the error-prone clone mechanism.

What is the problem we are really trying to
solve? Memory management for container ele-
ments. Since we are working with pointers we
probably want shared objects, i.e., multiple
pointers pointing to a single object. We want
copying to be quick and we want objects to “go
away” only when no-one else is pointing at them.
In other words, we need a reference-counting
pointer.

Barton & Nackman give an example of this.
What follows is my own variant which is slightly
more efficient. The key is to maintain a count of
“owners” alongside each object.
template<typename PointedAt>
class Ref {
public:
 Ref(PointedAt* x = 0)
 : p(x), r(new unsigned long(0)) {
}
 Ref(const Ref& x)
 : p(x.p), r(x.r) { ++*r; }
 Ref& operator=(const Ref& x);
 ~Ref() { dec(); }
 PointedAt& operator*() const
 { return *p; }
 PointedAt* operator->() const
 { return p; }
private:
 PointedAt* p;
 // pointer to count of other
owners
 unsigned long* r;
 void dec();
};
template<typename PointedAt>
void Ref<PointedAt>::dec()
{
 if (*r) // there are other
owners
 {
 --*r;
 }
 else
 {
 delete p;
 delete r;
 }
}
template<typename PointedAt>
Ref<PointedAt>&
Ref<PointedAt>::operator=(

 const Ref<PointedAt>& x)
{
 if (this != &x)
 {
 dec();
 p = x.p;
 r = x.r;
 ++*r;
 }
 return *this;
}

Since copying a Ref no longer involves copying
the object pointed at, we no longer have to worry
about the polymorphic type of that object nor the
cost of duplicating it.

Some caveats
This solution isn’t perfect because you can still
trip over memory leaks and dangling pointers but
you have to work harder to do so:
Triangle t(1.0, 1.0, 1.5);
Ref<Shape> rt = &t; // bad!
// when rt goes out of scope, t will be
// “deleted”
Ref<Shape> rc = new Circle(7.7);
return rc.operator->(); // bad!
// this hands back a pointer that
// immediately gets deleted
// when rc goes out of scope

Again, imposing stylistic restrictions can solve
the problem:

1. only use Ref for heap objects,

2. use Ref<T> everywhere instead of T*.

Reworking our example, we get:
Triangle t(1.0, 1.0, 1.5);
Ref<Shape> rt = new Triangle(t);
 // force a copy on the heap
Ref<Shape> rc = new Circle(7.7);
return rc; // use a return type of
 // Ref<Shape> not Shape*

For common pointer usage, it does make STL
“safe” which was our original goal. It removes
the housekeeping effort involved in keeping
track of pointer ownership and it effectively
means that code need never delete anything – a
simplistic form of garbage collection. Using Ref
everywhere instead of raw pointers has a further
beneficial side-effect: it makes code exception
safe.

Exception safety
How does memory management relate to excep-
tion handling, you may ask? Consider the fol-
lowing fragment:
Shape* p = new Square(1.75);
throw AnException();

When the exception is thrown, local variables are
destroyed but the Square allocated above will

 Overload – Issue 13 – April/May 1996

 Page 27

become a memory leak. Change this to use Ref
and the problem goes away:
Ref<Shape> p = new Square(1.75);
throw AnException();

When p is destroyed, it is the last (only) refer-
ence to the allocated Square so the object will be
deleted and the memory will be freed.

More speed!
Since one of the criteria for a good solution was
efficiency, you might be interested in some fur-
ther efficiency gains which can be obtained by:

1. using a pool allocator for the reference count
so that space for counts can be obtained and
released very quickly,

2. using a shorter type for the count if appropri-
ate, e.g., if you know that you will not have
more than 65535 owners per object you
could use unsigned short,

3. modifying the assignment operator slightly
to remove the self-assignment test by incre-
menting the reference count of the rhs before
decrementing the reference count of the lhs
(this).

These are left as an exercise for the reader. You
may also like to consider what impact using Ref
would have on your legacy code and on your
coding style.

Sean A. Corfield
Object Consultancy Services

ocs@corf.demon.co.uk

/tmp/late/*
Specifying integer size

by Kevlin Henney

The exact specification of a C and C++ integer is
based on the ignorance and apathy model: you
shouldn’t know and you shouldn’t care. That’s
the theory. You have some minimum guarantees
such as shorts have at least one’s complement 16
bit precision and longs at least 32, with ints be-
ing neither shorter nor longer than short or long.
However, more than once in your programming
career you will want to use an integer that is
guaranteed to be a certain size, whether for port-
ability or calculation. That you do not specify the
size is one of C and C++’s strengths, as well as a
weakness. It prevents you from making unneces-
sary and unreasonable assumptions; it can pre-

vent you from carrying out necessary and
reasonable implementation decisions.

The traditional solution is to stash a bunch of
typedefs away in a header, and maintain it as
required for portability. This homegrown solu-
tion has been rerolled countless times over the
last two decades. The C9X standardisation proc-
ess is under way and looks set to address the is-
sue for C. There have been a couple of proposals
on the table. I do not intend to go into them here,
but if you are interested I would recommend tak-
ing a look at the following:

• Ian Cargill, “C9X: The State of Play”, ISDF
Newsletter, September 1995

• Rex Jaeschke, “Standard C: An Update”, Dr
Dobb’s Journal, August 1995

• ftp://ftp.dmk.com/DMK/sc22wg14/c9x

• http://www.lysator.liu.se/c

I thought I would take a look at how we can han-
dle this simply and elegantly in C++ without
adding anything to the standard language or li-
brary.

No more, no less
Many coding guidelines caution the gentle pro-
grammer away from the use of bit fields. Much
of the concern is because of the way they have
been abused in the past to dodge the mask and
map onto low level bit layouts. Such a mapping
makes strong assumptions about alignment and a
whole host of other unportable features. But bit
fields have their occasional uses, and they have
some handy properties. Just as with any other
low level feature the place for them in C++ is
hidden away inside a class. Here is a sketch of an
adaptor class that allows you to supply a base
type and an exact bit precision:
template<typename int_type,
 size_t bit_size>
class exact
{
public:
 // construction (all defaults are
OK)
 exact() {}
 exact(int_type initial)
 : value(initial) {}

public: // integer behaviour
 operator int_type() const
 { return value; }
 exact &operator++();
 exact operator++(int);
 ...

private: // state
 int_type value : bit_size;

 Overload – Issue 13 – April/May 1996

 Page 28

};

For discussion of typename see my last column
(“Constraining template parameter types”, Over-
load 12); use class if your compiler does not
support it. The idea here is that you specify ac-
tual types by providing a base type, which is how
the type will overload, and a reduced bit size for
the representation.
exact<char, 5> c5; // a 5 bit char
exact<int, 12> i12; // a 12 bit int
int regular = c5 + i12;
i12 = regular;

The idea of the overload class is an important
one. It determines what type your specified type
is pretending to be:
void overload(char);
void overload(int);
overload(c5); // calls overload(char)
overload(i12); // calls overload(int)

Clearly you would also provide all of the regular
operations, such as negation, compound assign-
ment, etc. This class is a good one to explore as
you are trying to emulate a built-in type and so
you must follow form — note that this includes
leaving the value uninitialised by default. For
instance you must provide both pre- and post-
increment operators:
template<typename int_type,
 size_t bit_size>
exact<int_type, bit_size> &
exact<int_type, bit_size>::operator++()
{
 ++value;
 return *this;
}

template<typename int_type,
 size_t bit_size>
exact<int_type, bit_size>
exact<int_type,
bit_size>::operator++(int)
{
 return value++;
}

The postfix operator looks like a binary operator
with the right operand missing, and the explicitly
named version can be though of in these terms.

One neat feature of bit fields is that they will per-
form all of the hieroglyphic masking code behind
your back, so that an exact<unsigned, 4> type
will wrap around from 15 to 0. A word of cau-
tion: there is no guarantee that these types will fit
into the smallest number of bytes, you still have
a platform’s alignment preferences to deal with.
So i12 above is not guaranteed to be no more
than two bytes in size. The aim of this class is to
deal with precision not overall alignment.

Something to watch out for is that the signedness
of the plain signed types, such as int, is not guar-
anteed in a bit field. The signedness will follow
the signedness of char. This will not affect the
public interface in any way and will only affect
promotions in the internal implementation.
Rather than force the class client to specify
signed int where they meant int, judicious cast-
ing of value to int_type in the cases where this
would make a difference is a good idea.

This class can also be used to constrain the preci-
sion of enum types. Granted that enums do not
support lvalue arithmetic operations unless you
overload them to. However, unless otherwise
stated, a compiler is required to instantiate only
member functions that are actually used. So as
long as you don’t attempt to use operator++ on
an enum adaptor, the compiler won’t either. For
the moment you may find that your compiler
does not implement these semantics — no great
loss, as the intended audience of this class is
regular integers.

Precision decision
It is often desirable to simply use an existing
type directly rather than adapt one for such
common bit widths as 8, 16 and 32. Using tem-
plate specialization we can create an automatic
compile time lookup for our required type. A
trait, bit size in this case, allows us to look up a
type. This is the inverse of looking up traits
based on a type (something I will cover in a fu-
ture column). By default the general template is a
lifeless affair that serves only as a place holder:
template<size_t bit_size> struct
int_exact
{
 static const bool is_specialized
=false;
 class type {};
};

The bool constant — which must also have an
uninitialised definition elsewhere in a program
— allows a piece of code to query whether or not
a type size maps to an actual type. If your com-
piler does not support static const initialisation
in the class body, simply use an anonymous
enum value. It is important that this value is a
compile time constant.

The null type also acts a place holder for any
declarations, although clearly there are no useful
operations on it. As a point of style I have used
struct rather than class for the template. There is
nothing particularly object-oriented about this
type: it does not describe anything with identity,

 Overload – Issue 13 – April/May 1996

 Page 29

behaviour or state. It is all public and, in truth, it
is acting like a templated namespace would do if
such a beast existed.

I digress. This template is of no use without its
specializations. For a 64 bit platform, such as
Digital UNIX (née OSF/1) running on DEC
AXPs, the following do the trick:
template<> struct int_exact<8>
{
 static const bool is_specialized =
true;
 typedef signed char type;
};
template<> struct int_exact<16>
{
 static const bool is_specialized =
true;
 typedef short type;
};
template<> struct int_exact<32>
{
 static const bool is_specialized =
true;
 typedef int type;
};
template<> struct int_exact<64>
{
 static const bool is_specialized =
true;
 typedef long type;
};

I am using the new specialization syntax here,
but if your compiler does not support this simply
drop the template<>. A full implementation
would also provide a parallel trait lookup for un-
signed types. The actual values and types sup-
ported are clearly platform specific, but we have
abstracted the lookup mechanism so that the use
of the types may be made portable:
uint_exact<8>::type octet;
uint_exact<32>::type hash_value;
cout << “64 bit ints are ”
 << (int_exact<64>::is_specialized
 ? “” : “not ”)
 << “supported” << endl;

Less is more
A more common and slightly looser requirement
is to require integers with a minimum precision.
The principle is the same, but now we want to
perform a linear search through our traits at
compile time rather than simply a straight
lookup:
int_least<7>::type ascii; // at least
7
 // bit
precision
int_least<9>::type extended;
uint_least<31>::type shift_buffer;

This involves creating loops and taking decisions
at compile time. We can achieve this with tem-

plates using recursion to loop and the conditional
operator to decide:
template<size_t bit_size> struct
int_least
 : int_least<(bit_size > 64)
 ? -1 : bit_size - 1> {};

This is pretty serious code, right? We are looping
using recursive inheritance up to a maximum of
64 bit precision, beyond which we map the value
to a known out-of-band value. What we are do-
ing is searching through the range based on the
induction that if we need at least N bits, then a
type with N + 1 bits will also do. The lookup
actually looks backwards because of the way we
implement it (see below).

Great, so we’ve got a potentially infinite inheri-
tance loop that allegedly does something clever,
but what? To bottom out the induction we need
to plug in the values we know about, i.e., special-
ize when we hit the required values and inherit
from the exact size definitions given in the pre-
vious section to give us our type and flag:
template<> struct int_least<-1>
 : int_exact<0> {};
template<> struct int_least<0>
 : int_exact<8> {};
template<> struct int_least<9>
 : int_exact<16> {};
template<> struct int_least<17>
 : int_exact<32> {};
template<> struct int_least<33>
 : int_exact<64> {};
template<> struct int_least<49>
 : int_exact<64> {};

We catch that out-of-band value by mapping it to
a type that represents no value. All the others
make sense when you look at them in terms of
ranges: anything requiring at least 0 to 8 bits can
use an 8 bit integer, anything requiring at least 9
to 16 bits can use 16, etc. The reason the search
looked downwards was to find the first speciali-
zation that used the next precision up.

One implementation point to note here is that I
added the specialization int_least<49>. Why not
let int_least<33> carry the can? This is a minor
portability issue relating to the minimum port-
able depth of recursive instantiation you can ex-
pect from a compiler. This magic value is 17, so
I have provided two separate specialisations for
33 to 48 and 49 to 64 bits rather than one for 33
to 64.

Summary
Templates can be used for a whole lot more than
simple containers and algorithms that are oft
quoted as their rationale. The standard library

 Overload – Issue 13 – April/May 1996

 Page 30

makes great use of adaptors that allow one type
or object to masquerade and be plug compatible
for another; in this case we have also used the
wrapper concept to hide away a low level im-
plementation detail. Getting the compiler to per-
form a type look up for you at compile time is a
neat and safe way of expressing something that
cannot be done with either macros or any other
form of hackery.

You can take these ideas further and have an al-
ternative to exact that defaults the actual integer
type based on int_least. Or you can provide a
wider implementation type if the base type
would be too small for the specified number of
bits. All this, as they say, is left as an exercise for
the reader.

Kevlin Henney
kevlin@two-sdg.demon.co.uk

editor << letters;
Some more Microsoft oddities feature this month but it is not the sole topic this time!

In a response to Dave Midgeley, Peter Wippell
writes:

“Borland C++ Insider” by Paul Cilwa ISBN 0-
471-30338-0) Wiley 1994, 457 pp, £23.95 deals
with version 4.0 concentrating on the “Experts”
and much of the book takes you through an ex-
tended example using Doc/View. I enjoyed using
the book as a tutorial and learnt a lot from it.
However it seems to have been put together
rather hastily and the racy style might not appeal
to everybody. I am using BC++4.5, and I discov-
ered that Borland had made many improvements
to the “Experts” since 4.0, making some criti-
cisms in the book out of date.

By contrast, Doc/View does not appear to work
properly with persistent streams. This bug had
clearly frustrated the author, but he claims to
have provided a work around. Unfortunately I
experienced the same problem and couldn’t get
rid of it!

The review will be in the next CVu, I hope. But
of course, I’ll happily answer any further ques-
tions on the book now, if you want to know
more. There is also some information on
Doc/View in the Borland Tutorial, and there is
more basic instruction on the use of “experts” in
BC++ 4.5.

Peter Wippell
101612.3202@compuserve.com

I wonder if you or any of the Overload readers
can explain the following peculiarity in VC++4.

If I declare a char array as
char myarray[12];

and a function

myfunc(char *&);

and try to call
myfunc(myarray);

the compiler quite rightly complains that it can-
not convert myarray to a non-const char *&.

However, if I overload myfunc() with a further
definition thus:
myfunc(char *);

and make the same call (actually the call I
wanted to make in the first place), the compiler
complains that the call is ambiguous. How can it
be ambiguous, when one possibility is quite
clearly illegal?

Now, VC++2 handles the call with no problem.
Is this something to do with the new tighter
typeing in VC++4?

Dave Midgley
100117.2522@compuserve.com

My first reaction is that the call should
be ambiguous – both are callable within
the type system with no preference for ei-
ther call, but the restriction on binding a
converted type to a non-const reference
is then applied. That is why the first call
is illegal but the second call is ambigu-
ous. Many compilers will tell you that
the second declaration of myfunc is ille-
gal (without a call) because T and T&
cannot be distinguished – the committee
recently changed the rules so that ambi-
guity is only detected at the point of call.

Francis forwarded the following bug report from
Roger Woollett:

 Overload – Issue 13 – April/May 1996

 Page 31

/* This code appears to show a bug in
 * Visual C++ version 4
 * It compiles ok but fails to link
with:
 * unresolved external symbol
 * "public: __thiscall
 * RList<double>::RLink::RLink(void)"
 *
 * works fine if RLink constructor is
 * defined inline.
 */

template <class Type>
class RList
{
public:
 RList()
 {m_pBase = new RLink;}

private:
 class RLink
 {
 public:
 RLink();
 };

 RLink *m_pBase;
};

// could I have this syntax wrong?
template <class Type>
RList<Type>::RLink::RLink()
{
}

int main()
{
 RList<double> List;

 return 0;
}

Regards

Roger Woollett

It certainly looks like a bug to me, Roger
– your syntax is correct.

Dear Sean,

Francis tells me that you are still short of mate-
rial for publication. I must say that I find this
very disappointing. Until those with less experi-
ence start asking questions, expressing opinions
etc. it is hard for the experts to respond. An addi-
tional problem is that the small band of regular
contributors are giving up time to write for noth-
ing which they might well be using construc-
tively either for earning money or for their
personal enjoyment.

I know that Francis often wishes he had more
time to devote to doing things for the hell of it
rather than concentrating on a never ending
process of learning new things that he can then
write about for the benefit of others. I do not
think that the membership is being fair by ex-
pecting their research to be done for them, par-
ticularly when this appears to include researching
what questions need answering.

Enough of the grumbling. I attach an article
(probably the first of several) in which I distil
some of my experiences as I have attempted to
get to grips with the Standard Template Library.

The Harpist

The Harpist’s article appears in C++
Techniques in this issue.

questions->answers
Hopefully, starting a regular series, Kevlin Henney has volunteered to host the Question and Answer sec-
tion – your questions can be sent direct to Kevlin but please mark them as for publication in Overload. I
will continue to take questions but may well pass them to Kevlin.

Everyone has questions. When it comes to C++
and OO development this is certainly very true.
What I hope to do in this occasional series is to
try providing some answers, perhaps prompting
further questions but hopefully casting more
light than darkness. The problem faced in start-
ing up such a column is where does the initial
stream of questions come from? As I was asked a
few at the AGM I will fall back on these. For
future columns I hope you will put finger to key-
board with any problems or queries you have:
What exactly are templates? Should I be using
void pointers here? Why does the compiler say

this? Is this function portable? Was it Henry the
mild mannered janitor?

Getting started in OO
Programming in C++ does not imply that you are
doing object-oriented programming. Neither
does the use of inheritance and virtual functions
in your code; just as the simple absence of gotos
does not mean your code is structured. These are
all language features and not, as it were, features
of the mind.

Object-orientation is way of thinking about soft-
ware organisation and there are any number of

 Overload – Issue 13 – April/May 1996

 Page 32

books to help and hinder you on your way. The
question “What book(s) should I read to get into
OO?” is therefore a common one. The following
is a book I stumbled across some time ago and
would heartily recommend to all, regardless of
position or experience:

 David A Taylor, Object-Oriented
Technology: A Manager’s Guide, Ad-
dison-Wesley, 1990, ISBN 0-201-
56358-4

This is a well illustrated book weighing in at
only around 150 pages. Don’t be misled by the
title: it targets one sector of the market, but
probably because focused and directed marketing
is fashionable. What is meant is that it is an in-
troductory and relatively non-technical guide.

The history of software development ideas —
from chaos through structured design — is cov-
ered and the motivation and terminology of OO
is introduced. It has stood the test of time well,
and that it is simple and to the point — without
being simplistic or curt — is a welcome change
from a number of books. Once you have read this
book you may feel better prepared to return to
your code and go further with both your ideas
and choice of reading.

Writing C++ rather than C
There is a lot to cover in teaching C++ as a vehi-
cle for OOP. In their rush to educate, a number
of books and courses inevitably fail to teach
some of the mundane features of the language.
That C++ is also a better C should not be forgot-
ten: not everything is about classes and inheri-
tance. Examples of this include

• declarations as proper statements and condi-
tional expressions,

• support for proper compile time constants
over macros,

• aggregate initialisers are not constrained to
being only compile time expressions, and

• tag names are also type names.

The last one is a convenience that has passed a
number of C++ programmers by, potentially to
the detriment of their code’s credibility. In C the
tag names for struct, union and enum types do
not name types: the tag must be prefixed with
struct, union or enum as appropriate. To get a
convenient type name, the following approach is
typical:
typedef struct point

{
 int x, y;
} point;

struct point a_point; /* legal C and C++
*/
point another; /* ditto */

This is also perfectly legal, but slightly pointless,
C++. A common question, when encountering
class and its parallels to struct, is given that the
class keyword is optional in declaring an object
of that type, are struct, union and enum also
optional? The answer is “yes”:
struct point
{
 int x, y;
};

struct point a_point; /* legal C and C++
*/
point another; // legal C++ only

There are a number of good uses for typedef in
C++; compensating for a historical quirk in C is
not one of them.

Empty classes
How large is an empty class? This seemingly
simple question has a number of different an-
swers depending on the context. Let us clarify
what we mean by empty by first listing classes
that are definitely not empty:

• Classes with any non-static data members
have at least the cumulative size of those
data members; possibly more where the
compiler inserts padding for alignment pur-
poses, e.g.,

class has_members
{
 ...
private:
 int a_member;
 string another;
};

• Polymorphic classes, i.e., those with at least
one virtual function. Virtual functions may
be introduced in the current class or by one
of its bases, but the principle is the same:
there must be some hidden member that in
some way relates to the actual type of the ob-
ject (traditionally the vptr referring to the
vtable, an aggregate of function pointers).

class polymorph
{
public:
 virtual ~polymorph();
};

• An otherwise empty derived class with non-
empty base classes, eg.

 Overload – Issue 13 – April/May 1996

 Page 33

class otherwise_empty : public
has_members
{
};

The following class is definitely empty:
class empty
{
};

But what of its size? The bottom line is that no
object can have a zero size, i.e., sizeof(type) > 0
is true for all declared objects.

What would it mean for a free object to have
zero size? One practical way of looking at the
result of sizeof is that it is the alignment adopted
in an array. Any array of zero size objects would,
by this definition, also have zero size. This
would spell trouble for the technique commonly
used to determine the number of elements in an
array:
empty array[size];
const size_t array_size = sizeof array /
 sizeof
*array;

Another consequence is all members of the array
would exist at the same zero offset. In other
words, allowing zero sized objects would lose us
the simple guarantee that different objects have
different addresses.

So free standing empty objects need non-zero
size for separation and not for data. Alignment
requirements vary from system to system: any-
where from one to eight bytes.

What about empty classes used as base classes?
This area has been the subject of some relatively
recent work by the joint ISO and ANSI commit-
tees. The result is that in such cases an imple-
mentation can ignore the standalone size of an
empty class so long as it satisfies the unique ad-
dress requirement. Thus the address of the inher-
ited empty part must be different from the
addresses of any other members or inherited
parts.

What has this bought us? Surely we still require
a separately aligned space to satisfy our require-
ment? As it happens in many classes there is a
great deal of existing space we can reuse. Con-
sider an int member: taking its address gives us a
pointer to a valid object. What about halfway
through the int? This is not a pointer to a valid
whole object: what type is it? Half an int?
There’s no such thing! The upshot of this is that
we can choose for the address of our content free
subobject to be part way through another object.

In closing I will leave you to think about a rather
interesting consequence: the size of a class may
be smaller than the cumulative sizes of its base
classes and data members.

Kevlin Henney
kevlin@two-sdg.demon.co.uk

 Overload – Issue 13 – April/May 1996

 Page 35

Credits
Founding Editor

Mike Toms
miketoms@calladin.demon.co.uk

Managing Editor

Sean A. Corfield
13 Derwent Close, Cove

Farnborough, Hants, GU14 0JT
overload@corf.demon.co.uk

Production Editor

Alan Lenton
alenton@aol.com

Advertising

John Washington
Cartchers Farm, Carthouse Lane

Woking, Surrey, GU21 4XS
accuads@wash.demon.co.uk

Subscriptions

Dr Pippa Hennessy
c/o 11 Foxhill Road

Reading, Berks, RG1 5QS
pippa@octopull.demon.co.uk

Distribution

Mark Radford
mark@twonine.demon.co.uk

Copyrights and Trademarks
Some articles and other contributions use terms which are either registered trademarks or claimed as such.
The use of such terms is intended neither to support nor disparage any trademark claim. On request, we
will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of ACCU. An author
of an article or column (not a letter or review of software or book) may explicitly offer single (first serial)
publication rights and thereby retain all other rights. Except for licences granted to (1) Corporate Members
to copy solely for internal distribution (2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy deadline
All articles intended for inclusion in Overload 14 (June) should be submitted to the editor by May 31st.
The intention is to claw back the delay in production of Overload 13 over the next few issues.

 Overload – Issue 13 – April/May 1996

 Page 36

FULL PAGE ADVERT GOES HERE!

	Editorial
	An object lesson in usability
	On the move

	Software Development in C++
	Those problems revisited
	Problems with new
	Polymorphic arrays?
	Self assignment
	Breaking data hiding
	Conclusion

	So you want to be acOOmpiler writer? – part V
	Introduction
	The ABC of ABCs
	Virtual base classes
	Some guidelines
	Back to my problems
	Next time

	Simple classes – Part 4:Game of Life
	Gameplan
	Basic design
	MSDOS and BGI screen handling
	Screen
	RWorld
	Implementation details

	Some pitfalls of class design: a case study

	The Draft International C++ Standard
	The Casting Vote
	Stabilisation
	Conversions
	Template cleanups
	Controversy<>
	Library fashions
	Still to come

	C++ Techniques
	I do not love thee, STL!
	Version and source
	Source file format
	Documentation
	Compiling an example program
	A second example
	The second example doesn’t meet its specification
	Conclusion

	You can’t get there from here – a closer look atinput iterators
	Introduction
	Recap: the wrong semantics
	Recap: the right semantics
	Copying an iterator
	A common idiom
	Summary

	The Standard TemplateLibrary – first steps:sequence containers
	Some terms
	Types of container
	Performance characteristics
	STL’s sequential containers
	Problems
	Conclusion

	Using STL with pointers
	Breeding dangling pointers
	A deep copy pointer
	What is a copy?
	A more complicated alternative
	Some caveats
	Exception safety
	More speed!

	/tmp/late/*Specifying integer size
	No more, no less
	Precision decision
	Less is more
	Summary

	editor << letters;
	questions->answers
	Getting started in OO
	Writing C++ rather than C
	Empty classes

