
 ISSN 1354-3172

Overload
Journal of the ACCU C++ Special Interest Group

Issue 15

August/September 1996

Editorial: Subscriptions:
Sean A. Corfield Barry Dorrans
13 Derwent Close 2 Gladstone Avenue
Cove Chester
Farnborough Cheshire
Hants CH1 4JU
GU14 0JT barryd@phonelink.com
overload@corf.demon.co.uk

£3.50

Contents
Editorial 3

Software Development in C++ 4

Some questions about OOD 4

Explorations around a linked list 6

Go with the flow 11

So you want to be a cOOmpiler writer? – part VI 15

The Draft International C++ Standard 19

The Casting Vote 19

Making string literals constant – a cautionary tale 20

C++ Techniques 24

Circles and ellipses revisited 24

The Standard Template Library – sorted associative containers part 1 set & multiset 27

The return type of member functions 29

/tmp/late/* Constraining template parameter values 33

editor << letters; 35

Reviews 36

Java in a Nutshell 37

News & Product Releases 39

OMT User Group Seminar 39

ACCU and the ‘net 40

 Overload – Issue 15 – August/September 1996

 Page 3

Editorial
Designed for abuse
I am inspired by something Bjarne Stroustrup
told me in Stockholm at the recent ISO C++
meeting. Or rather I’m horrified. And surprised.
But first, let me digress.

Look around you and consider how much of
your world is open to abuse. Lots of things can
be used as weapons that were clearly not de-
signed as such. On a less dramatic scale, think of
the things pressed into service as screwdrivers.
And yet we generally have to be somewhat in-
ventive to come up with these unusual uses and
many times are driven by the necessity of what
we have on hand.

Machinery is generally designed to be safe in
use. It often has warnings that it should only be
used for its “intended purpose”. You wouldn’t
trim a hedge with a lawn mower for example, but
I’m sure it has been done. This is because man-
facturers like to protect themselves against law-
suits. Witness the (hopefully apochryphal) tale of
the woman who microwaved her pedigree cat
after giving it a bath, thinking that a microwave
was simply a different form of oven.

But what of programming languages? What are
they designed for? Problem solving... but there’s
more than one way to skin a cat (oops!) and pro-
grammers seem rather ingenious at figuring out
ways to abuse the language.

It was such an abuse that Bjarne described to me.
All the more horrifying because it would never
have occurred to me to do it. Redeclaring library
functions in block scope with default arguments.
“I’m going to be calling fgets lots of times here
with the same arguments, I think I’ll just rede-
clare it locally with three default arguments to
save me some typing.” Where’s my shotgun? I
was incredulous. “Oh yes,” said Bjarne, “they
really do do this.”

Perhaps you’re not surprised. Perhaps, heaven
forbid, you actually do this yourself? I would
hope most of you consider this to be an abuse of
language features.

When manufacturers of equipment get caught out
by the ingenuity of their users, they either redes-
ign the equipment to make it safer (e.g., making
the abuse impossible) or clearly label the equip-
ment “Not intended for XYZ” (as supposedly
happened in the cat-drying incident... American
microwave ovens are not for drying pets!). Lan-
guage standards committees have a similar label:
“deprecated”. In my opinion, they just don’t use
it enough! The suggestion was made in Stock-
holm to deprecate default arguments on block
scope declarations. It didn’t get much support
and that’s when Bjarne told me how common the
practice is.

At least we’ve banned implicit int...

An appeal!
This issue is late but at least it’s packed full of
interesting articles. Why is it late? Various
changes in my personal life have taken me away
from home almost every weekend since early
June. Since weekends are mainly when I get time
to work on Overload, that has meant, quite sim-
ply, that I haven’t had enough time to edit this
issue and stay on schedule. This is likely to con-
tinue for the foreseeable future.

In addition to the continued flow of articles, what
I now need to ensure the continued success of
Overload are some volunteers to help with the
bi-monthly task of editing. If you are interested
in helping, or simply want to find out more about
what is involved, drop me an email.

The Editor
overload@corf.demon.co.uk

 Overload – Issue 15 – August/September 1996

 Page 4

Software Development in C++
This section contains articles relating to software development in C++ in general terms: development tools,
the software process and discussions about the good, the bad and the ugly in C++.

In this issue, two thought-provoking articles from newcomers to C++ and OO: Graham Jones asks whether
Object Orientation is really the Emperor’s new clothes and Peter Moffatt reminds us of just how difficult
C++ can be when you first try generic programming. Richard Percy begins a series that will look at C++
from the point of view of a financial applications programmer and I continue looking inside a compiler,
this time concentrating on static and dynamic polymorphism.

Some questions about OOD
by Graham Jones

This article is in response to calls for contribu-
tions from non-experts. I have very little experi-
ence of writing C++, not really enough to have
sensible questions, but I have read and thought
quite a bit about OOD/OOA. I have read
Booch’s book on OOD, Gamma et al’s “Design
Patterns”, Russell Winder’s “Developing C++
Software”, and many back issues of Overload. I
have programmed in C for about six years – my
serious work in the past few has been developing
an OCR program for Acorn machines. Most of
my questions relate to attempts to apply what I
have read to this program.

OOD for OCR?
After a lot of thinking and trial designs, I don’t
know how to usefully apply OOA/OOD to the
OCR engine in my program (using OOA/OOD
for the interface is fine, but a minor issue either
way). The trouble seems to be as follows.

All the interesting candidates for objects in my
OCR program are abstract entities of my own
invention, and as the program develops, I keep
changing my mind about the nature of them. As I
understand it, one the main advantages of OOD
is that the class hierarchy is likely to be the most
stable part of the design. Thus your idea of a car
may change, your idea of a vehicle may change,
but at least a car goes on being a vehicle. This is
certainly not the case with any objects I might
have chosen in the past as objects.

Perhaps I am choosing the wrong classes. Cer-
tainly the ‘obvious’ ones that you might think of

for OCR – letter, word, line, etc, are pretty use-
less. The representation of each of these objects
and the operations possible on them changes of-
ten and radically during the OCR process. I
could have half a dozen kinds of ‘letter’ object,
etc, but even then most of the work would not be
methods on these classes, but conversions from
one representation to another. Even worse, these
classes and relations between them tend to be
very unstable when the OCR algorithms get
modified. In fact, such a set of classes has the
interesting property that their implementations
are often more stable in the face of change than
their interfaces.

As far as I can gather, a more usual set of classes
for a problem like OCR is to have ‘expert’
classes: a LineFinderExpert, LetterRecogniser-
Expert, WordExpert, etc. This is better, and it is
pretty much the way I have divided the program
into files. (By the way, I find it much easier to
think of objects as more flexible implementations
of the compilation units in C than as of exten-
sions of C structs. Is this sensible?) It would
make my program look more fashionable to use
‘expert’ classes but this does not ‘get at’ the
complexity of the program. It is a fairly crude
division, leaving large lumps untouched, and
even so it is by no means a clean division: there
is much complexity in when and how the ‘ex-
perts’ talk to each other. I’d say it was akin to
‘simplifying’ the problem of wiring a house by
dividing the house into rooms: useful, but not
very.

The way I tend to think of dividing the OCR
process up is in terms of functions. (Remember
them?) I basically see the process as made of
links like this:

 Overload – Issue 15 – August/September 1996

 Page 5

data in -> function -> data out

Some of them are complex enough to be called
subprograms. These functional units have proved
fairly stable as the program has developed. The
key to this seems to be the flexible way in which
such functions can be combined in new ways to
try out new ideas. And they do get at the essen-
tial complexity of the process. If I wanted to de-
scribe the way the program works, I could do it
in terms of these things. Trying to describe it in
terms of experts sending messages to one another
would make me ill.

So what should I do? Give up on OOD for the
really difficult stuff? Call my functions Functor
Classes (or somesuch) so I can pretend to be as
trendy as everyone else? Any other ideas?

Data Conversions
Converting from one representation to another is
the main focus of OCR, but similar conversions
occur in many areas of programming. If you
want to convert between linked list and array
representations of some data, where do the func-
tions that do the conversions go in a OO pro-
gram? Does a linked list know how to make
itself out of an array, or how to create an array
out of itself? Or both – or neither?

STL containers have constructors that allow
them to be constructed from any other con-
tainer, or rather from any pair of iterators
that define a range of objects to be contained
– Ed.

If you want to convert between different ways of
writing the date, you could go via a kernel class.
(See Francis’s articles in Overload 11 and 12.)
Each kind of date knows how to convert itself to
and from the kernel date class. At least, I think
that is what Francis intends, and it seems fair
enough. But suppose I replace ‘date format’ with
‘image format’. What if I want to convert be-
tween the dozens of ways people have dreamt up
of representing images as bitmaps? What would
the kernel be? Do you want to convert every
format into the kernel and back? Would there be
a kernel? How would you organise the convertor
code now?

What is OOD?
It might seem a bit late to ask this question, but it
was when I was trying to see what the OOD gu-
rus had to say about the problems above that I
began to wonder if I had got the basics right.

More worryingly, I began to wonder if they
knew what they were talking about either.

Grady Booch describes the 4 main elements of
OOD as modularity, abstraction, encapsulation,
and inheritance.

What is modularity? Booch uses “modularity”
only in relation to compilation units (as far as I
can see). Others use it more generally, e.g., Rus-
sell Winder moves some code (for searching for
an item in a binary tree) from the binary tree into
the units of the binary tree, and claims a “signifi-
cant increase in modularity”. What does it mean
to you?

What are abstraction and encapsulation? Booch
says that abstraction and encapsulation are com-
plementary: defining the outside view and hiding
the inside view of an object. Again, he seems to
restrict these words only to apply to one thing, in
this case objects. Surely they apply to functions,
compilation units, subprograms, assembler mac-
ros...?

I also find Winder’s concept of “encapsulation”
confusing. Winder develops a Complex class,
with real and imaginary parts represented by
doubles. He says “that we are using a Cartesian
representation should never come to the notice of
the user” [p165]. His constructor allows three
arguments to be passed, the third, if present, in-
dicating that the number should be constructed
from polar coordinates. “Unfortunately, this does
rather give the hint, to the user of the type, that
Cartesian representation is being used internally”
[p169]. Is Winder trying to hide things from a
program, or a programmer? Why hide things
from a programmer?

The meaning of “inheritance”, perhaps surpris-
ingly, seems clear enough. When to use it is an-
other matter.

So, according to Booch we have abstraction and
encapsulation applied to objects, modularity ap-
plied to compilation units, and inheritance. Am I
the only person who thinks this is rather wierd?

I guess I have a very basic view of design, as
consisting of two main principles: (1) decompo-
sition into smaller, simpler pieces, and (2) find-
ing and exploiting similarities among the pieces.

The first is the most important, and the hardest.
The difficulty is that the number and complexity
of the links between the pieces may increase as
fast as the complexity of the pieces decreases.
The concepts of abstraction, encapsulation and

 Overload – Issue 15 – August/September 1996

 Page 6

modularity are part of the decomposition process
– it is difficult to have one without the other two.
Programming languages provide various mecha-
nisms for implementing these concepts for vari-
ous kinds of pieces, but the concepts are the
important bit, not the mechanisms. Describing
these concepts as “Object Oriented” may make
commercial sense, but it makes no other kind of
sense that I can see. Applying them inconsis-
tently to different kinds of pieces seems even
more absurd.

Programming languages also provide mecha-
nisms for exploiting similarities among the
pieces: templates, aggregation, inheritance and
above all, functions, come to mind. I am baffled
as to why Booch only mentions the latter in his
formulation of OOD.

Grady Booch is a lot more experienced than me,
and so are many of you, so I’m sure someone
will enlighten me about the true meaning of ab-
straction, encapsulation and modularity.

What is OOD good for?
Sean said he was struck by the variety of applica-
tion domains described in “Design Patterns”. I
was struck by how few were to do with scien-
tific/engineering software, and how many to do
with GUIs. I suspect that the current popularity
of OOD has a lot to do with the current popular-
ity of GUIs. Has it proved itself in any other
area?

Graham Jones

I trust that many of you will have strong opin-
ions on this! My comment about “Design Pat-
terns” was intended to mean that not all the
examples were GUI-related, which is sadly so
often the case. My own OO experience is such
that I’ve never used it for GUI projects but
I’ve found it very useful in many other appli-
cation areas – Ed.

Explorations around
a linked list

by Peter Moffatt

Editor’s note: I thought long and hard about
including this article. At first I wanted to re-
ject the article, then I found myself inserting
editorial comments everywhere. Finally, I de-
cided to publish it pretty much as supplied
without comment. What convinced me to do

this is that Peter’s article highlights several
very common misconceptions and mistakes
made by those new to C++. The “gotchas”
which Peter trips over are: conversions, tem-
plate specialisations, arrays vs. pointers and
the more general one that what compilers al-
low or disallow isn’t necessarily right or
wrong respectively. I hope you will all think
very carefully about each of the decisions Pe-
ter made in arriving at his solutions and that
you will examine each of his conclusions in
depth. I also hope Peter will forgive me for
holding his article up as a good example of a
reminder to the “experts” of just how much
they take for granted – Ed.

I have recently been exploring various aspects of
C++ while working on a linked list program, us-
ing first Turbo C++ 2nd Edition, then Borland
C++ 4.02, and I thought that some of the things I
learned along the way might be of interest to
others. I wanted to produce a base list class to
handle lists of records or structures ordered on a
member field, so that the base class handled as
many as possible of the basic list functions of
inserting, removing and finding items, and dis-
playing the complete list, while details of the
actual list items and the sort key field were pro-
vided in a derived class for each individual list. It
was a fundamental objective that the base list
class should remain independent of the content
of any particular list, so that it could be used un-
changed by different applications. I decided not
to include the data items directly in the list, but
to use a list of “links” – structures containing
pointers to a data item, its key field, and the next
link. The following is a skeleton of the classes
and data members used:
 class item;
 class list
 {
 struct link
 {
 item* data;
 void* key;
 link* next;

 };
 link *headpointer, *current, *entry;

 };

 class item
 {
 int number;
 char name[11];

 };

 class derivedlist : public list
 {
 item *input, *dummy;

 Overload – Issue 15 – August/September 1996

 Page 7

 };

Traversing the list to add a link/item in order in-
volves a series of comparisons between an “en-
try” link/item, and successive “current”
link/items already in the list, where entry and
current are pointers-to-link. Much of the devel-
opment consisted of the evolution of base and
derived class comparison functions and various
ways of dealing with different key types. This
was done with a series of partial versions of the
program which accept new items and compare
each with the previous one, without maintaining
the list.

As entry and current are pointers, attempting to
overload the comparison operators to use if (en-
try < current) to compare items will not work –
(it compares pointers using the standard opera-
tors). Operators could be defined so that if
(*entry < *current) would do what was intended,
but I decided it was clearer to use a comparison
function lessthan(link*, link*).

This function must call further functions to com-
pare the key fields. How far is it possible for
these functions to be members of the base class?
If the key is of a type which can be compared by
the standard operators, the base class only needs
to “know” where the key is located in the data
item. If it were made a requirement that the key
value be held in a data field called “keyfield”,
then it could be accessed through the pointer-to-
item member of a link object by
 if (entry->data->keyfield <
 current->data->keyfield)

If the key is required to be accessed by the
pointer-to-key field in a link object, or if the key
cannot be compared by the standard operators (a
character string, for example) then the compari-
son functions can only be base class members if
they “know” the type of the key. A means of
passing this type information is provided by
templates, but before I had a compiler which im-
plemented them I looked at other ways round the
problem.

I assume that string keys in a defined key field
could be handled by defining a String class with
overloaded comparison operators, but I did not
explore this. Otherwise, it became apparent that
to handle all key types (including user-defined
types) the comparison functions must be derived
class members called from the base class. A base
class function can only call a derived class func-

tion if the latter is a redefinition of a virtual func-
tion declared in the base class. One version of
my list therefore relies on virtual functions to
solve the key type problem.

The body of function list::lessthan(link*, link*)
is
{
 return less(entry->key, current->key)
 ? 1 : 0;
}

and class list contains the pure virtual member
function
 virtual int less(void*, void*) = 0;

Any derived class must provide a function int
less(void*, void*) the body of which will com-
pare the item fields pointed to by
entry->key and current->key, after first casting
the void pointer to the correct type.

Thus for a key of type int:
 int less(void* entrykey,
 void* currentkey)
 { return *(int*)entrykey <
 (int)currentkey ? 1 : 0;
}

or for a key of type char[]:

 { return strcmp((char*)entrykey,
 (char*)currentkey) <
0
 ? 1 : 0; }

Virtual functions can also be used to print or dis-
play list data, with a base class pure virtual func-
tion
 virtual void print_item (item*) = 0;

redefined as required in each derived class and
called by
 print_item (current->data);

I would welcome comments on the soundness or
otherwise of the virtual functions method, given
the general intentions I have outlined. Listing
COMPARE1.CPP is the test program for the
comparison functions using this method, and I
have also used the same method in a full linked
list program LNKLIST1.

All the code from Peter’s article will be sup-
plied on a future CVu disk and made avail-
able on the FTP site – Ed.

The test programs simply accept new items and
compare each with the previous one, without
maintaining a list. A dummy current link/item is

 Overload – Issue 15 – August/September 1996

 Page 8

set up before the first actual item entry. Each
item has a number and a name field, the latter
being the key in these examples. Items are cre-
ated in a general function derivedlist::run(), and
a pointer or reference to each item, and to its key
field, are passed as the arguments to the
list::insert function.

In the test programs this simply sets up an entry
link/item, and derivedlist::compare then calls the
functions I have been discussing to compare each
item with the previous one and report the result.
The current link/item is deleted, and entry be-
comes current ready for the next comparison.

Using the same data items ordered on number
rather than name requires the redefinition of
function derivedlist::less for type int, and calling
list::insert with argument input->name replaced
by &input->number. Using different data items
obviously requires the redefinition of class item.

When I changed to a compiler which imple-
mented templates, I went on to develop a tem-
plate version, again using a limited-function
program (COMPARE2.CPP) to test the compari-
son functions.

The principle seemed to be to make the base
class a template class, declared
 template <class T> class list
{....};

with its argument the type of the item key. The
link data member pointer-to-key would be de-
clared as T* key, the key comparison function
parameterised as int less (T*, T*) and the class
instantiated with the required key type for a par-
ticular list. At first I confused the instantiation of
a class from a class template with the instantia-
tion of a class object from a class definition, and
did not see how the former was achieved in an
inheritance situation where no base class object
is instantiated. In fact, instantiation of the base
class type is achieved by using its name with the
required actual type parameter in the class deri-
vation list:
 class numberlist : public list <int>

or
 class addresslist: public list
<char[]>

I went through numerous minor versions with
link::data and link::key declared as pointers or
references, item::name declared as char* name
or char name[], with corresponding different
methods of setting up a new item in an input

function, and the class list template argument for
a string key declared as <char>, <char*> or
<char[]>. The most logical and consistent com-
bination seemed to be to use
 item* data;
 T& key;
 link* next; // in struct link,

 char name[11] // for a character
key
 // in item, and
 <char[]> // for the template
 // argument for this
key.

The base class template function int less (T&,
T&), compares keys of all types with comparison
operators, without the need for virtual or other
functions to be provided by the derived class.
The comparison function looks quite normal if
defined inline within the class definition, but if
defined outside it must take the form
template <class T>
int list<T>::less (T& entrykey,
 T& currentkey)
{ return entrykey < currentkey ? 1 : 0;
}

Even member functions which make no refer-
ence to the template type must be defined in this
way, presumably to indicate which class they
belong to. I wonder if template syntax couldn’t
have been made less cumbersome?

Whilst you could argue that list<T> == list
in this case, it would be an exception to the
many more general cases and would make the
language harder to learn and teach. Now that
we have member templates, omitting <T>
gives a completely different meaning:

template<class T>
int list::less(const T& entryKey,
 const T&
currentKey)
{ ... }

Here, less is a member template function of a
non-template class called list and would have
to have been declared:

class list
{
 template<class T>
 int less(const T&, const
T&);
};

I hope this convinces you – Ed.

Once again special handling is required for char-
acter string keys. The problem is addressed by
providing a “specialised” function, also in the

 Overload – Issue 15 – August/September 1996

 Page 9

base class. Because the less function defined
above will not work for a string key, a special-
ised function with char[] arguments is provided,
using strcmp().

When the instantiation of class list <char[]>
generates the function:
int less (char(&entrykey)[],
 char(¤tkey)[])

from the template but a specialised function with
the same signature is also defined, the specialised
function is called. Because this is not a template
function but must be defined as a member of the
<char[]> instance of class list, its definition is:
int
list<char[]>::less(char(&entrykey)[],

char(¤tkey)[])
{ return strcmp (entrykey, currentkey)
== 0
 ? 1 : 0; }

(I took some time to work out the declaration of
a reference-to-char[] used here. I suppose it is
consistent with char name[10], but why isn’t
that char[10] name anyway?) I thought this spe-
cialised function would need its own declaration
and tried to provide it, getting “multiple declara-
tion” errors until I realised that a single declara-
tion:
 int less (T&, T&);

in the template class definition declares both the
template and the specialised functions.

Providing a specialised function in the base class
only provides for a particular key type – in this
case a character string. We also need to be able
to handle other types (perhaps user-defined),
without comparison operators, which might be
used as keys by individual lists, without affecting
the independence of the base class.

We can deal with such types by combining the
template facility with virtual functions. If we
declare the template comparison function:
 virtual int less (T&, T&)

and if the template argument is <newtype> and
derivedlist contains a function:
int derivedlist::less(newtype&,
newtype&);

then the redefined virtual function will be called
in preference to both the template function and
any specialised function with the same signature
defined in the base class.

To summarise: keys of any type for which com-
parison operators are defined will be compared
by the template comparison function; keys of
particular types without comparison operators
but known when the base class is written can be
compared by a specialised function which over-
rides the template function; and keys of any
other type can be compared by a virtual function
provided by a derived class, which overrides
both template and specialised functions.

Thinking around the various methods I had used,
including the use of references instead of point-
ers, I wondered if it shouldn’t be possible to
make more use of overloaded operators to sim-
plify the comparisons. I had found they wouldn’t
work for link objects because they were neces-
sarily accessed by pointers. However, the rela-
tionship between each link and its associated
data item is fixed, and the data item could be ac-
cessed by reference.

If link::data is type item& then entry->data and
current->data are references to data items. If
comparison operators could be defined for class
item then the comparison if (entry->data < cur-
rent->data) should be possible. If the operator
was a class member function its definition could
be written to use the standard operators or strcmp
according to the key type for the item being de-
fined. In object-oriented terms, an item object
would “know” how to compare itself with an-
other. It became clear that neither derived
classes, virtual functions or templates were
needed, and there was no storage overhead as
only one copy of a member function is held in
memory however many objects of the class are
instantiated. The resulting partial program
(COMPARE3.CPP) is certainly shorter and sim-
pler than the other versions I have described.
(Though this dramatic simplification is less ap-
parent in the full list program LNKLIST3, where
a derived class is used mainly for input/output
and user control of list operations). A visibility
problem arose with LNKLIST3 which concerns
the independence of class list. Calling the class
item overloaded comparison operators from
inline functions in the class list definition gave
“illegal structure operation” errors because class
item had not yet been defined. In a single-file
version it was simple enough to rearrange the
class definitions, but in a multi-file or library
situation this need for the operators to be visible,
and also the need for list::remove to know the
size of an item in order to delete it, seems to re-

 Overload – Issue 15 – August/September 1996

 Page 10

quire that the complete class item definition be
written as a header file and #included.

I would welcome opinions on the relative merits
of the virtual functions, template, and “object-
oriented” approaches I have outlined.

I would also like to highlight a few specific prob-
lems in the hope that others may be able to offer
explanations or solutions where I have not found
them. Several difficulties seemed to relate to the
use of a nested class within a template class, and
others to function argument matching.

Two very similar problems occurred when

1. Defining a nested class member function
outside its class definition.

2. Defining a template class member function
with a pointer to a nested class as its return
type.

I tried to define a destructor for list::link as
template <class T>
list<T>::link::~link()
{ delete data; }

but found that it would only compile as a mem-
ber of a specific instance of the template class, as
list <char[]>::link::~link() {...}

Similarly, in the template full list program
LNKLIST2, a list member function lookup, re-
turning a pointer-to-link, would only compile as:
list<char[]>::link*
 list<char[]>::lookup(link* entry,
 link* current)
{...}

It seemed that I was trying to do something that
was not allowed, and I confirmed this by a refer-
ence in Lippmann, C++ Primer, 2nd edn., p.376 -

“Whenever a nested type...is referenced
outside the scope of the enclosing tem-
plate class, the template name must be
qualified with the full parameter list.”

The real problem here is that having to specify
the actual template parameters in these cases de-
feats the objective of making class list independ-
ent of the item and key details of individual lists.
It may be that class list should be redesigned
without a nested class, but I managed to find
other solutions.

I think Peter encountered a compiler bug that
prevented his code compiling and then was
confused by Lippmann’s comment into chang-

ing his code to something that happened to
work with his compiler! – Ed.

The link destructor was defined inline within the
struct definition, where it would have been in the
first place, except that in the non-template
COMPARE1 this would not compile because
class item had not yet been defined and the size
of data was not known. I believe that inline defi-
nition works in the template class, although the
order of definitions remains the same, because
the template functions are not actually set up un-
til the class is instantiated – after the definition of
class item.

The lookup function was changed to pass back
the pointer-to-link as a reference-to-pointer ar-
gument (which is within the scope of class list)
rather than as the function return value, which is
not. The definition header thus became:
template <class T>
void list<T>::lookup(link* entry,
 link* current,
 link*& found)
{...}

A similar difficulty arose when defining a nested
class outside the scope of a template class.

In COMPARE1 class item is declared within
class list and subsequently defined at file scope
as:
 class list::item {....};.

I think I would change this now, but I have left it
to illustrate this point. When I changed class list
to a template class I could not find a correspond-
ing template definition which would compile,
and declared and defined class item independ-
ently.

Is the constructor of a class nested in a base class
accessible in a derived class?

Struct link is declared and defined within class
list. In COMPARE1, derivedlist::run sets up a
dummy node for the first comparison with
dummy = new item (0, “”);
current = new link (dummy, dummy->name);

which creates a link object and calls the link con-
structor link(item*, void*) to initialise the point-
ers current->data and current->key. In
COMPARE2, with list a template class, the same
use of new with the link constructor gives a
compiler message “No match for link(item*,
char*)”. In this case the link constructor is
link(item*, T&), where T is the key type supplied
by the template argument, in this case char[].

 Overload – Issue 15 – August/September 1996

 Page 11

The cause of the error seems to be the reference
key rather than the template class. I got round the
problem by using a list protected member func-
tion with the same arguments as an intermediate
stage:
void set (item* data, T& key)
{ current = new link (data, key); }

called by:
set (dummy, dummy->name);

I do not understand, and would be glad if some-
one could explain:

a. Why the actual arguments (dummy, dummy-
>name) are interpreted as (item*, char*),
when name is defined as char[11];

b. Why these actual arguments in a call from a
derived class function match(item*, T&) as
the formal arguments of a standard base class
member function (set), but do not match the
same arguments of the link constructor when
operator new is used in the derived class
function.

A related problem arose in the template version
of the list program.

The base class list contained a protected member
function void find(T&) which was called from
the derived class function addresslist::run() by
find(input->name), and in turn called a private
base class function void find(link*).

The problem occurred as a compiler message
“No match for find(char*)...” at the first call.

Now to my mind what ought to happen is that
input->name, having been defined as char
name[11] should match the T& argument to the
first find function, instantiated as char(&key)[] –
that is, the name of a character array should
match a function argument of type reference-to-
character-array. I also felt that the use of two find
functions ought to be safe (a) because their dif-
ferent arguments distinguish them under over-
loading rules, and (b) because one of them is
private to the base class.

However, I tried changing one of the names, and
this was successful. I had just read somewhere
that argument matching and overload resolution
takes place before access control, which led me
to conclude that what was probably happening
was that find(input->name), taken as find(char*)
was matched with find(link*) in preference to
find(char(&)[]), and that find(link*) was then
found to be private and thus inaccessible from a

derived class function. I would welcome confir-
mation of this or an alternative explanation, and
any general observations on handling the types
char[] and char*. I wonder if it has anything to
do with item objects (with char name[11] as a
data member) being created on the free store
rather than as local data?

Peter Moffatt

I hope that some of our more expert readers
will provide reasoned commentaries on Pe-
ter’s experiences with C++ – Ed.

Go with the flow
by Richard Percy

Preface
This series of articles tackles the subject of cash-
flow and related techniques and their implemen-
tation in C++. It is aimed squarely at
programmers in the finance arena and is intended
to show how object-oriented methods and C++
can be used to provide simple, effective, reusable
system solutions to some of their day-to-day
problems.

Although the subject matter of this series is fi-
nance-centred, I hope that the design and coding
issues addressed will benefit programmers in
other areas. Of course, I would appreciate greatly
any feedback concerning these articles to Over-
load or to the mail address below.

Analysis and initial prototypes
Introduction
The requirement for cashflow analyses and pro-
jections is almost as old as some of the account-
ants I know. However, these days business needs
seem to prescribe more and more of the kind of
financial projection that used to take analysts
hours of painstaking, error-prone work before the
computer age. Indeed, cashflow projections have
come to form a significant part of many financial

 Overload – Issue 15 – August/September 1996

 Page 12

computer systems from management information
systems to personal pension quotations.

It would seem, therefore, that an efficient, reus-
able system design for this type of work is in
order. For ad-hoc cashflow analysis, the spread-
sheet has the area well-covered. Moreover, its
widespread use for this work gives a clue to the
nature of the cashflow problem: its principles are
simple and easy to apply, yet great flexibility is
demanded by its consumers.

The sections that follow attempt to define the
problem with enough precision to formulate and
apply the solutions suggested. The discussion has
a bias towards my particular area of expertise:
life insurance and pension products.

Requirements
We require a generalised cashflow calculation to
be implemented in C++ with the following ser-
vices:

• Generation of a cashflow of any type from a
given start position for a specified number of
periods or until a certain condition occurs, if
earlier. The position in each period may de-
pend on any other previous position.

• Optional storage of all intermediate posi-
tions.

• The option to choose at run-time the function
to generate each position.

• The option to convert the cashflow to a dif-
ferent type mid-term.

• Simulation runs from a given start position
with/without variation of parameters.

• Model point (“portfolio”) runs using the
same parameters for each run but different
start positions.

The following sections describe some practical
applications of the requirements listed above.

Endowment policy quotation
A unit-linked endowment policy quotation for a
known sum assured requires the premium to be
calculated so that the projected unit value at ma-
turity is equal to the sum assured. This is
achieved by simulation runs on the company’s
pricing basis, each with a different premium.

The policy illustration is then required. This in-
volves calculating the projected unit value at ma-
turity using the basis prescribed by the Personal

Investment Authority, which is normally differ-
ent from the pricing basis.

Only the final projected value is required to be
stored. The cashflow in each period depends
only on the previous period, so there is no need
to store intermediate values.

Stock volatility
The discounted mean term of an investment can
be obtained by simple cashflow calculations. The
cashflows in all periods are generated then dis-
counted and summed.

An investment decision may rest on calculating
the volatility of various stocks at different rates
of interest.

Profit testing
A company selling investment products must
formulate its pricing basis by calculating the pro-
jected profit on what it thinks is the going to be
the total portfolio.

The company establishes representative products
called “model points” and assumptions (e.g. cus-
tomer lapse rate). It then simulates the effect on
the total profit if these assumptions and/or the
charging basis are varied.

A solution
The solution I will outline below will address
most of the requirements above. I am leaving out
the two requirements for the time being because I
think that they will cause complications in the
model that will make it difficult to understand at
this early stage. These are:

• The position in each period may depend on
any other previous position.

• The option to convert the cashflow to a dif-
ferent type mid-term.

These also have limited application (for example,
moving averages and investment policy conver-
sions) and the work required to implement them
may be onerous. I will address them again as the
model is developed.

 Overload – Issue 15 – August/September 1996

 Page 13

The model I am developing consists of two main
components:

• A Cashflow template class that offers ser-
vices.

• Its clients.

The Cashflow class interface
The interface of the initial Cashflow template
class consists briefly of the following:

• A constructor that initialises the cashflow
storage and takes as an argument a cashflow
“vector” object that it adds to its internal
store.

Cashflow(Vec* pStartPos);

• A function to generate the cashflow for a
specified number of periods. The function
takes as an argument the address of a mem-
ber function of the vector class that is re-
quired to have certain arguments.

// RollFunc type is a pointer to
a
// member function of class Vec
typedef bool (Vec::*RollFunc)
 (const unsigned long,
Vec&);

// generate the entire cashflow
// using duration-limited roll
// forward
void RollUpLim(RollFunc,
 const unsigned long
duration);

• Functions to print the cashflow vectors to a
stream.

virtual ostream& PrintOn(ostream&
=
 cout)
const;
template <class Vec>
ostream& operator << (ostream&,
 const
Cashflow<Vec>&);

• A destructor that clears all resources allo-
cated by the cashflow object.

virtual ~Cashflow();

The client class interface
The Cashflow class requires its clients to have
the following functions implemented:

• A default constructor and copy constructor.
TestVec(double U=0, double G=0,
 double Q=0, double S=0,
 double P=0, double M=0)
: uv(U), g(G), qx(Q),
 sa(S), p(P), md(M) {}
// default copy, assign and

// destructor are OK

• Overloaded comparison and stream opera-
tors.

bool operator == (const TestVec&,
 const
TestVec&);
ostream& operator << (ostream&,
 const
TestVec&);

• At least one cashflow projection function.
bool ProjectionRF(
 const unsigned long
newDuration,
 const TestVec& oldRow);

Implementation of the Cashflow class
The implementation shown here compiles with
Borland C++ version 4.02.

I must apologise in advance for my heavy use of
the Borland-specific classes to provide array con-
tainers, strings and exception-wrapping. I had
intended to start off with the Standard Template
Library and, indeed, I downloaded a tailored ver-
sion for version 4.5 from a Web site to this end.
However, this did not work with my version and
so I have elected to use what I already have for
this initial prototype.

Storage of the cashflow is managed by a Borland
template-based array as a private data member:
typedef TIArrayAsVector<Vec> CfArray;
CfArray huge* pcf;

The array is initialised in the constructor (which
also adds the start position)...
template <class Vec>
Cashflow<Vec>::Cashflow(Vec* p)
: pcf(new CfArray(cfInitUpper, 0,
 cfGrowth))
{
 pcf-
>OwnsElements(TShouldDelete::Delete);
 // array "owns" elements
 pcf->Add(p);
}

...and trashed in the destructor:
template <class Vec>
Cashflow<Vec>::~Cashflow()
{
 pcf->Flush(); // delete all elements
of
 // underlying array and
 // free all memory
 delete pcf;
}

This model only contains the cashflow genera-
tion process and a routine to print the entire cash-
flow. The generation is very simple, in spite of
the forbidding syntax. The duration-limited-

 Overload – Issue 15 – August/September 1996

 Page 14

rollup function works with a simple loop, each
iteration of which creates a new vector, adds it to
the internal array and calls a member function of
the client class to fill in the values.
template <class Vec>
void
Cashflow<Vec>::RollUpLim(RollFunc
pfRollUp,
 const unsigned long
dur)
{
 if (0 == pfRollUp)
 throw xmsg(string(
 "Null pointer passed"));

 bool cont;
 unsigned long c = 0;
 Vec* pNewRow;

 do
 {
 pNewRow = new Vec();
 pcf->Add(pNewRow);
 cont = (pNewRow->*pfRollUp)
 (c,

*(*pcf)[static_cast<int>(c)]);
 c++;
 }
 while (cont && c < dur);
}

Printing is achieved by creating an iterator and
using it to call the client class’ overloaded <<
operator.
typedef TIArrayAsVectorIterator<Vec>

CfIterator;
template <class Vec>
ostream& Cashflow<Vec>::PrintOn(
 ostream& o)
const
{
 CfIterator iter(*pcf);
 while (iter)
 {
 o << *iter++;
 }
 return o;
}

The prototype seems to work well and is rea-
sonably efficient and simple to use. I have hid-
den the underlying implementation of the storage
as far as possible so that I can substitute an STL
container at a later date. The only external evi-
dence of the array implementation is the fact that
the client class must provide an overloaded ==
operator, which is required by the Borland con-
tainer.

The model now requires further interface func-
tions to fulfil the requirements listed at the start. I
will look at providing these in the next article.
We will also require some “helper” classes to
provide generalised formatting for the numbers

and targeting functionality. I will also address
these in this series.

Implementation of the client class
The implementation of the required functions of
the client class needs little explanation. I have
provided an example that shows a projection cal-
culation for a unit-linked endowment policy.
This is an accurate representation of the way
such calculations are done in practice but the
details are greatly simplified. Most functions are
trivially implemented but the rollup routine re-
quires a few comments.

The unit value in each month is calculated by
taking the unit value in the previous month, add-
ing the premium and subtracting charges, then
inflating the result at an assumed interest rate to
simulate the effect of unit price growth.

The only charge is for mortality, which is ob-
tained by applying a crude probability of death
during the month to the difference between the
sum assured and the unit value (the “sum at
risk”).
bool TestVec::ProjectionRF(
 const unsigned long
newDuration,
 const TestVec& oldRow)
{
 g = oldRow.g;
 qx = exp(newDuration/100.0) /
50000.0;
 sa = oldRow.sa;
 p = oldRow.p;
 md = max(qx * (sa - p -
 max(oldRow.uv, 0.0)),0.0);
 double um = oldRow.uv + p - md;
 uv = um * (1 + g);
 return uv > 0 ? true : false;
}

Performing the calculations
The entire calculation is performed by creating a
start position, creating a Cashflow object then
running the projection. The start vector must be
allocated dynamically and the Cashflow class
takes care of deallocation. Note that if an excep-
tion is thrown back to main() then all dynami-
cally allocated objects are cleared up by the
destructor of the Cashflow class.
int main()
{
 int retCode;
 try
 {
 cout << "Constructing cashflow..."
 << endl;
 Cashflow<TestVec> t(new
 TestVec(0.0, .008, 0.0,
 50000.0, 50.0,
0));
 t.RollUpLim(&TestVec::ProjectionRF,

 Overload – Issue 15 – August/September 1996

 Page 15

 25*12);
 cout << "...finished roll forward!"
 << endl;
 cout << t << endl;
 retCode = 0;
 }
 catch (xmsg x)
 {
 cout << "\nException!\n\n"
 << x.why() << endl;
 retCode = 32767;
 }
 catch (...)
 {
 cout << "\nException!\n\n"
 "Program threw an unhandled
exception"
 << endl;
 retCode = 32767;
 }
 return retCode;
}

If you run this example you will note that the
calculations are performed in the blink of an eye
(or quicker!) but the printing is rather slow. This
is a limitation of the console, not of the Cashflow
code.

The final projected value for this policy, which
has a sum assured of £50,000, premium of £50
per month and term of 25 years, is nearly
£60,000.

Richard Percy
106041.3073@compuserve.com

So you want to be a cOOmpiler
writer? – part VI
by Sean A. Corfield

Introduction
In previous columns I’ve looked at representa-
tion of information within a preprocessor and a
parser but I haven’t said much about parsing it-
self. I maintain that parsers aren’t really that dif-
ficult so this issue might be light relief for some

of you who felt last issue’s multiple inheritance
scenario was a bit of a nightmare!

In the draft C++ standard, the clause describing
statements is just about the shortest clause in the
document. Statements are simple. Discuss.

Parsing considerations
Apart from expression statements and declaration
statements, C++ begins each statement with a
unique keyword: if, while, do, switch, for, goto,
return, break, continue. This makes parsing
quite simple because we can determine what is
expected to come next based on a single token
lookahead:
Token token = lexer.get();
switch (token)
{
case IF: return ifStmt(lexer);
case SWITCH: return switchStmt(lexer);
case OPEN_BRACE:
 return compoundStmt(lexer);
//...
default:
 // must be a declaration or expression
 return declOrExpr(token, lexer);
}

Before you all howl in protest at the multiple
returns, let me just say that I wouldn’t write it
like that – I’m just saving space on the page!

What am I assuming here? This is the body of a
general stmt function that takes a lexer as an ar-
gument (well, actually a phase six token stream)
and returns a statement, or rather a Statement*.
The functions called above are similar and each
reads from the lexer, constructs a statement and
returns a pointer to it. Let’s take a look at one of
those functions in more detail.

ifStmt is called after we have seen the keyword if
so the next token expected is (. After that we ex-
pect an expression, a), and a statement. This is
optionally followed by else and another state-
ment. It will look something like this:

Statement* ifStmt(TokenStream& lexer)
{
 Statement* statement = 0;
 Token token = lexer.get();
 if (token == OPEN_PAREN)
 {
 Expression* condition =

expression(lexer);
 if (condition) // parse succeeded
 {
 if (lexer.get() == CLOSE_PAREN)

 Overload – Issue 15 – August/September 1996

 Page 16

 {
 Statement* trueStmt =
stmt(lexer);
 if (trueStmt)
 {
 Statement* falseStmt = 0;
 if (lexer.lookahead() == ELSE)
 {
 lexer.get(); // skip else
 falseStmt = stmt(lexer);
 }
 statement = new
IfStmt(condition,

trueStmt,

falseStmt);
 }
 }
 }
 }
 return statement;
}

For simplicity I’ve omitted error reporting. As an
exercise, you might like to consider different
ways to implement robust error reporting and
recovery.

As you can see, this calls the general statement
parsing function recursively to handle substate-
ments. This top-down parsing approach is called
recursive descent parsing and is a common and
simple technique that allows parsers to be written
for complex languages.

Other parsing techniques
Another approach for parsers is to use yacc (Yet
Another Compiler Compiler) that takes a gram-
mar description and produces a parser that is a
complicated state machine. Instead of the fairly
readable code above, a state machine parser uses
a switch statement to determine what to do with
any given token based on the current “state”. A
state machine to parse C code has several hun-
dred states. For C++, the grammar is too compli-
cated and ambiguous for a mechanical translator
like yacc and some fairly “clever” tricks need to
be performed by the lookahead to seed the token
stream with “hint” tokens. Cfront is based on
such an approach.

What to do with statements
Having built our statement, what would we like
to do with it? If we’re going to do source code
analysis (my original project, you may recall),
we would want a method to check the semantics
of statements and their subcomponents. For an if
statement, that might look like this:
void IfStmt::semantics()
{
 condition->semantics();
 trueStmt->semantics();

 if (falseStmt)
 falseStmt->semantics();
 if (condition->type() == ASSIGNMENT)
 warning("Possible = instead of
==?");
}

Perhaps, instead, we wish to generate assembly
language from it – compile it. A compile method
might look like this:
void IfStmt::compile()
{
 condition->compile();
 Label* label = getLabel();
 branchIfZero(label);
 trueStmt->compile();
 if (falseStmt)
 {
 Label* end = getLabel();
 branch(end);
 label->write();
 falseStmt->compile();
 end->write();
 }
 else
 {
 label->write();
 }
}

The same recursive approach that we used in the
parser appears naturally in the methods that op-
erate on the statements produced by the parser.

Separation for reuse
You might be asking why doesn’t the parser per-
form the desired operations as it builds each
statement? I hope you can answer that question
yourself with a little thought – separating the
operations from the parser means that the parser
can be reused for any other tools we may want to
build that accept the same source language.
However, as written, the parser is still quite
closely linked to the actual operations because it
has to know about the types of the statements. In
order to produce a truly generic parser we need
to somehow abstract out the specific types and
their operations. Since the parser creates the ob-
jects directly, the solution is slightly harder to
find than it might first appear.

A common approach for providing different be-
haviours for a common type is to use inheritance
with the varying behaviour implemented in dif-
ferent derived classes. However, this means that
the specific derived class objects must be created
directly by the parser. That’s precisely what we
are trying to avoid.

Offhand, I can think of two solutions, I’m sure
there are others. The first solution came to mind
because of my fondness for templates. The sec-

 Overload – Issue 15 – August/September 1996

 Page 17

ond solution came about as I tried to make the
first solution more elegant.

A parser template
For each different application of our parser, we
end up with a separate method in each derived
statement class that performs a specific operation
(code generation, source code analysis etc). If the
parsing functions were templates, the operation
could be a template parameter somehow, which
could be used to create the appropriate derived
class instance, e.g.,
template<class Operation>
Stmt<Operation>* ifStmt(PhaseSix& lexer)
{
 Stmt<Operation>* statement = 0;
 Token token = lexer.get();
 if (token == OPEN_PAREN)
 {
 Expr<Operation>* condition =

expression<Operation>(lexer);
 if (condition) // parse succeeded
 {
 if (lexer.get() == CLOSE_PAREN)
 {
 Stmt<Operation>* trueStmt =

stmt<Operation>(lexer);
 if (trueStmt)
 {
 Stmt<Operation>* falseStmt =
0;
 if (lexer.lookahead() == ELSE)
 {
 lexer.get(); // skip else
 falseStmt =

stmt<Operation>(lexer);
 }
 statement = new

IfStmt<Operation>(condition,

trueStmt,

falseStmt);
 }
 }
 }
 }
 return statement;
}

Note that the Operation template parameter is
not used in the signature of the parsing functions
– we rely on explicit qualification of the template
function calls. Unfortunately, this is a relatively
new feature and not widely supported. Below I’ll
show how to work around this.

What is the Operation class and how does it
solve our problem? Since we are trying to add a
method to our framework of statement classes,
Operation can be used to provide a base class for
Stmt as follows:
template<class Operation>

class Stmt : public Operation
{
//...
};
template<class Operation>
class IfStmt : public Stmt<Operation>
{
//...
};
class Compiler
{
public:
 virtual void compile() = 0;
};
class Analyser
{
public:
 virtual void semantics() = 0;
};
// use these to read and compile a
// statement:
stmt<Compiler>(lexer)->compile();
// and to read and analyse a statement:
stmt<Analyser>(lexer)->semantics();

This technique of deriving from a template pa-
rameter allows us to introduce methods and other
information above an existing class and can be
very powerful, e.g., when a class is written that
depends on, as yet unknown, abstractions or
functionality.

To provide the actual method in the derived
classes, we can specialise it:
template<> // recent syntax for
 // specialisation
void IfStmt<Compiler>::compile()
{
// as above
}
template<>
void IfStmt<Analyser>::semantics()
{
// as above
}

Unfortunately, we need to declare the method in
each of the derived classes that we intend to spe-
cialise it for which means we also have to spe-
cialise those derived classes:

template<>
class IfStmt<Compiler>
: public Stmt<Compiler>
{
public:
 // other methods
 void compile();
};

 Overload – Issue 15 – August/September 1996

 Page 18

This isn’t really very elegant but at least the
parser is now generic.

A parser factory
This mixture of compile-time polymorphism
(templates) and run-time polymorphism doesn’t
work too well in this instance. Our problem lies
in having to select the operation (compile, ana-
lyse) at compile-time. If we have a hierarchy of
statements that “compile” and another hierarchy
of statements that “analyse”, can we choose at
run-time which one we want? Yes, we can use a
statement factory to create the appropriate ob-
jects for us.
class StatementFactory
{
public:
 virtual ~StatementFactory() { }
 virtual Statement*
 newIfStmt(Expression*,
 Statement*,
 Statement*) = 0;
 //...
};
class CompilerStatementFactory
 : public StatementFactory
{
public:
 CompilerStatementFactory() { }
private:
 Statement* newIfStmt(Expression* e,
 Statement* t,
 Statement* f)
 { return CompilerIfStmt(e, t, f); }
 //...
};

The parser would then be constructed with the
appropriate factory object and would use
statement = myFactory->newIfStmt(a,b,c
);

instead of
statement = new IfStmt<Operation>(a,b,c
);

(or however we created the specific types of
statement objects). Note that the abstract base
class has a virtual destructor but no constructors
– the default will be sufficient (we could declare
a protected default constructor if we really
wanted to be more precise). Furthermore, the
derived factory classes have only a public con-
structor and then all the methods are private –
why? Because they are only ever called through
the public methods in the base class – they are
“merely” an implementation detail.

More genericity, please waiter!
Some people are never satisfied! We now have a
parser that can be told, at run-time, to build ei-
ther a compiler representation or an analyser rep-

resentation. Can we actually make it more
generic? How about if we could build a generic
representation and then tell that what to do?

If we consider what operations we need to per-
form, we see that we can use a trick very much
like that for the parser factory to defer the opera-
tion until run-time. This time we use a generic
operation method within each statement class
that delegates to a factory-like object method for
each derived statement class’s operation method:
void IfStmt::operation(
 const Operation& anOperation)
{
 anOperation->ifStmt(condition,
 trueStmt, falseStmt
);
}
class Operation
{
public:
 virtal void ifStmt(Expression*,
 Statement*,
 Statement*) = 0;
 //...
};
class CompilerOperation : public
Operation
{
private:
 void ifStmt(Expression*,
 Statement*, Statement*);
};
void CompilerOperation::ifStmt(
 Expression* condition,
 Statement* trueStmt,
 Statement* falseStmt
)
{
 condition->operation(*this);
 Label* label = getLabel();
 branchIfZero(label);
 trueStmt->operation(*this);
 if (falseStmt)
 {
 Label* end = getLabel();
 branch(end);
 label->write();
 falseStmt->operation(*this);
 end->write();
 }
 else

 {
 label->write();
 }
}

Static vs. dynamic
I hope this instalment has shown how sometimes
a dynamic (run-time) solution can be more ele-
gant than a static (compile-time) one. I hope
you’ve also seen a pattern in the solutions above,
where a (deep) class hierarchy can be mapped
onto the methods in a (shallow) factory hierarchy

 Overload – Issue 15 – August/September 1996

 Page 19

and the resulting combination provides an ele-
gant double-despatch, polymorphic in both the
type of the “factory” and, in our case, type of the
statement.

Next time
In the dark prehistory of this irregularly sched-
uled column, I threatened articles on templates,
overloading and a myriad other things. For the
next couple of issues I’m going to take a break

and then go back and critically review some of
the material in the first six articles – now is a
good time to send me comments and / or ques-
tions on what you’ve read so far. It’s also a good
time to make requests about what you’d like to
see covered in future articles in this column.

Sean A. Corfield
Object Consultancy Services

sean@ocsltd.com

The Draft International C++ Standard
This section contains articles that relate specifically to the standardisation of C++. If you have a proposal
or criticism that you would like to air publicly, this is where to send it!

In this issue I report on the most recent C++ committee meeting and Francis takes a closer look at one of
the changes made at that meeting.

The Casting Vote
by Sean A Corfield

Poised on the brink...
As I have explained in previous columns, the
process we follow in standardising C++ means
that once we reach a certain stage, we can no
longer make “large” changes. Stockholm, July
‘96 was that stage and we resolved to make no
further changes unless the National Body com-
ments require us to do so.

This left us in a somewhat difficult position since
we had some fairly large unresolved issues on
the table. Fortunately, as in so many projects, the
impending deadline spurred us on and we made
great progress, finally reaching consensus on
some long-standing issues.

Lists of lists
Over the last few years, the number of large is-
sues has dwindled and we have quietly got on
with solving the smaller problems. Each part of
the language and each part of the library has pro-
vided a steady stream of minor things to deal
with. Each part has had a nominated member of
the committee as list-keeper and they have
worked with subgroups to produce workable
resolutions that the committee as a whole should
adopt. For example, in Core III (formerly Exten-
sions) WG, John Spicer of Edison Design Group
has handled the template issues, Bill Gibbons
(ex-Taligent, now HP) has handled the name-
space issues and pointer to member issues and
Dag Brück (Dynasim, Sweden) has handled the
exception handling issues. Like the other WGs,

we worked through each list, discussing and
generally approving the suggested resolutions.
Each list went forward to the full committee for
approval of the resolutions and thence into the
Working Paper. We cleared all of the exception
and namespace issues and all but two very minor
template issues.

The various Library WGs had the longest lists to
process and they managed to clear nearly every-
thing (literally hundreds of issues) and that got
them a round of applause from the full commit-
tee!

This doesn’t mean we’re finished, just that we
can now concentrate on the even smaller issues
that make standards such a thrilling business (if
you like that sort of thing).

Where should I put my templates?
Revisited
An ongoing theme of this column is templates
and in particular the source model required for
portability. You may remember that in my previ-
ous Casting Vote column, I said that X3J16
voted in Santa Cruz to remove separate compila-
tion, pending a further vote in Stockholm. Much
has happened since! Silicon Graphics (SGI)
worked very hard to produce a solution that
would be acceptable to enough people that we
could vote to keep separate compilation. Their
solution involved several changes that restricted
templates and made them more intuitive regard-
less of the source model.

Ultimately we still needed one key piece to solve
the puzzle: how to determine whether a template
definition should be available outside its transla-

 Overload – Issue 15 – August/September 1996

 Page 20

tion unit. SGI’s proposal originally suggested
that declaring a template extern should have the
desired effect. Overloading extern in this way
was not terribly popular with the WG so I sug-
gested export. After some further discussion,
this was accepted.

This means that existing template code that uses
the source inclusion model will continue to work
pretty much unchanged. Code that is intended to
work when template definitions are compiled
separately must be modified to declare the defi-
nitions with export. Since no two compilers
handle separate compilation of templates in the
same way, this shouldn’t be too much of a prob-
lem – such code isn’t portable at the moment
anyway.
// export tells the compiler that this
// definition might be referenced from
// another translation unit so it must
// squirrel the definition away
somewhere:
export template<typename T>
void soSomething(T t) { ... }

// this template is not exported so the
// compiler can assume that it will be
// defined identically in every
translation
// unit that references it - it need
only
// perform any instantiations found in
this
// translation unit:
template<typename T>
void doSomethingElse(T t) { ... }

Stringing us along
Some years ago I proposed that string literals be
made const. The proposal was quietly brushed to
one side and I let it lie. The UK panel remained
unhappy about the issue and recently Kevlin
Henney produced a new proposal to achieve the
same goal. Although our proposals were largely
identical, so much has changed both within the
language and within the committee mood that
Kevlin’s proposal was accepted. See Francis’
article below for more details on this.

Out! Out! Damned name injection!
Yes, we finally got rid of nasty old name injec-
tion. Again, this has been mentioned in several of
my past columns and various attempts have been
made to remove it in the past. Bill Gibbons fi-
nally came up with a proposal that solved
enough of the problems to gain support from the
majority of the committee. Quite simply, if a call
to a function f involves a type T, friends of T
(declared in T or its base classes) are considered
in the lookup of the name f. This mirrors, to

some extent, the operator lookup rules adopted
recently – the so-called “Koenig lookup”. This
lookup has now been uniformly adopted for all
operator and function calls, both inside and out-
side templates.

Note that this is a fairly major change, affecting
far more than just friend name lookup: it means
that the language now has one well-defined
process for all name lookup, regardless of tem-
plates, that has the appropriately intuitive behav-
iour in the presence of namespaces, i.e.,
whenever an object whose type is from a name-
space is used in an expression, all “related” func-
tions and operators are “automagically”
considered. This should make namespaces much
easier to use.

Inching closer
The amount of consensus in Stockholm means
that we should now release the second Commit-
tee Draft after the Hawaii meeting, triggering a
second ANSI Public Review, and hopefully
moving on to a Draft International Standard in
the middle of 1997. At that point, the draft be-
comes something that can be referred to with
authority because the remainder of the standards
process – bar minor typos – is a rubber-stamping
exercise as far as the majority of working pro-
grammers is concerned.

Sean A. Corfield
Object Consultancy Services

sean@ocsltd.com

Making string literals
constant – a cautionary tale

by Francis Glassborow

In the dim distant past when K&R were dream-
ing up C the possibility of write-protected RAM
had yet to surface from the primordial chaos. The
C language as originally designed had no const
keyword. It wasn’t until almost a decade later
that C++ had to invent the word because its use
of reference parameters for large objects required
it. C grabbed the concept as being helpful for
some aspects of optimisation, added volatile
(which is a kind of anti-optimisation qualifier)
and placed both in its proposed standard. For a
language with such an anti-new-keyword mind-
set this introduction of two new keywords must
have been quite traumatic.

Once const had been introduced to the lan-
guage it became possible for compilers to place

 Overload – Issue 15 – August/September 1996

 Page 21

suitable static (Computer Science sense) data in
write protected memory. Indeed, the const
qualification of static data was useful when writ-
ing for embedded systems as it indicated that the
data could be stored in ROM rather than the very
precious RAM.

Unfortunately there was one place in the lan-
guage where the qualification would have been
natural but would make manifest that reams of
existing code was already broken. This was the
area of string literals. These are clearly concep-
tually constant, and good optimisers might well
economise on string literal space by overlaying
one string on another. Ideally programmers
should make no assumptions as to how string
literals are implemented. In practice a whole
generation of programmers have made assump-
tions and many have written code that writes to
the notional storage for a string literal. I know
that that provides undefined behaviour, but if it
works why change it?

More to the point is that many ‘correct’ programs
include lines such as:
char * message = “Invalid input.”;

If we make a string literal an array of const
char the above line is broken. As there was no
overwhelming reason for C to change string lit-
erals from array of char to array of const
char it did nothing. If programmers were stupid
enough to write:
scanf(“%s”, “This is a buffer”);

that was their problem.

C++ is in a different position because it supports
function overloading based on the type of the
arguments in the call. So:
void foo(char *); //A
void foo(const char *); //B
main() {
 const char * help = “help”;
 foo(help); // calls B
 foo(“help”); // calls A
 return 0;
};

This is potentially a nasty surprise, particularly
as we are yet to have compilers that tell us which
overload choice they have made (note to imple-
mentors, many of us would love to have a facil-
ity for enquiring about the choice in critical
sections of our code, perhaps via a #pragma
directive).

No, save us from #pragma! Please provide
compiler options instead! – Ed.

The obvious step is to make a string literal an
array of const char in C++. This was re-
sisted on the grounds that it would break existing
C code. One design criteria for C++ was to avoid
gratuitously breaking C code. In my opinion this
design constraint should not have been applied to
this case.

Several years ago Sean Corfield produced a pa-
per for WG21/X3J16 proposing that string liter-
als (and wide string literals) should be made into
const qualified types with special deprecated
conversions that would allow them to be treated
as unqualified types. Fools who insist on writing
to string literals would sometimes get their code
compiled (though hopefully with a warning
about a deprecated conversion), careless pro-
grammers who write lines such as:
char * message = “This is careless”;

will get warnings about using deprecated conver-
sions. Where the issue is a matter of choosing the
correct overload the compiler will choose the one
the programmer expects.

This paper failed to get to the joint committees
because it fell at the vetting stage by the Core
working group.

Interlude Ð how the standards com-
mittees work
Any proposed substantive (non-editorial) change
to the Working Paper (that which will eventually
become the Standard) must be supported by a
paper that describes the change and the reasons
for it. These papers can be very brief, but they
must exist. They can be written by anyone but
must be funnelled through the C++ specialist
group of a National Body such as BSI or directly
through ANSI X3J16

These papers are then considered by working
groups. Each working group is made up of peo-
ple who have a particular interest in the parts of
the WP it covers. A working group may also
identify and generate papers on its own behalf.

When a working group considers a paper they
may reject it, return it to the author for rework-
ing, modify it themselves and issue a revised pa-
per during the meeting or simply accept it. In
either of the latter two cases it then presents the
paper to the joint committees. If there is any sign
that there may be disagreement a straw poll is
taken to determine the general opinion. Only
items receiving substantial support go forward
for a formal vote. At this final stage all voting

 Overload – Issue 15 – August/September 1996

 Page 22

members of X3J16 who are present are required
to vote, they are not allowed to abstain on a vote
on a technical issue. Immediately afterwards the
ISO WG21 vote is taken. Abstentions are al-
lowed in this vote but if there are more than two
negative votes the issue would almost certainly
go back for further review.

The early stages are designed to filter out trivial
or ill-considered changes. Even carefully consid-
ered proposals may have surprising side effects
(more about these in the context of string literals
in a moment). The latter stages are intended to
ensure that work proceeds by consensus. Unfor-
tunately there are a number of holes. Consensus
takes time to reach and is not always possible
when there are strongly held opposing positions.
It assumes that papers will be considered on
merit, but a small work group may not represent
the attitudes of the majority. The requirement for
all ANSI members to vote is based on the as-
sumption that representatives at a Standards
Committee will always know enough to have a
valid opinion. This last assumption is seriously
flawed in the case of C++. The breadth from lan-
guage design through syntax, environment, C
compatibility to a massive library section means
that it would be a very rare person who had a
firm grasp of the technical implications of a
change in more than half the WP.

The most critical stage for any proposal is that of
getting through the work group to reach the full
committees. It is assumed that those proposing
changes will have enough personal interest to be
present and to support their proposal. Only the
most clear cut changes (such as my proposal to
make explicit that main returns an int) will get
through a work group if the proposal’s author or
another ‘champion’ isn’t present. This works fine
for X3J16 members because they can usually
find someone to champion a proposal if they
cannot do so themselves. It is much harder for
the various ISO delegations. These are often only
one or two people and they may have papers
written by others of their national body which
they want to promote. A two person delegation
will struggle to cover the ground, even if they are
fortunate to have both a library and a language
expert.

One thing to keep in mind is that Standards
Committees are not there to develop the best
possible item. Their purpose is to develop rules
to promote commerce. A proposed change to
C++ that was technically excellent but that re-

sulted in large scale complaints from users be-
cause it broke their code would be likely to fail.
Even if existing code was already broken, many
commercial implementors might prefer to leave
the issue to tool vendors.

Back to string literals
The reason (I believe) that Sean’s paper to make
string literals array of const char failed is
that he was not present when the relevant work
group considered it. With hindsight he would
have made arrangements either to be fetched
from the work group he was in when the issue
came up, or he would have found someone else
to champion it. It takes time to develop relation-
ships so that other people will champion your
work and it is in the nature of things that you are
best known by members of your own work
group.

I actually asked the working group chair to
include me in the discussion of the proposal
but, probably because I was still new to the
committee, I was passed over. It doesn’t tend
to happen to me these days! Ed.

As the problem of string literals is clearly a bad
wart Kevlin Henney independently produced a
paper that proposed a solution very close to
Sean’s. The timing was such that the paper could
only be considered in Stockholm. After that it
would be considered as too big a change unless a
NB made it a stopper issue at CD vote (a very
unlikely event—we can live with non-const
string literals even if we would prefer not to).

I arranged to be called from my work group
(Core I) when Kevlin’s paper was considered by
Core II. When I arrived I found that most mem-
bers of the work group were lukewarm. John
Bruns of NationsBanc-CRT was very strongly
for it but the rest were, on balance, against. Steve
Adamczyk of the Edison Design Group was
strongly opposed because he believed that there
was more code that would be broken than that
which Kevlin had identified. I think that given
more time the proposal might have been sent
back for reconsideration. Here are some of the
problems Steve identified.
throw (“help”)

that would currently be caught by:
catch (char *)

would not be caught if string literals were
const. Actually, I wonder if cv-qualification

 Overload – Issue 15 – August/September 1996

 Page 23

should be stripped from the argument of a
throw as the alternative would seem to be too
error prone.

This is particularly unpleasant because the failure
to catch after the change might not be detected
till the program failed to handle the exception.
The issue here is that programmers should im-
prove their testing of exception catching. The
other issue is that you should have some very
special reasons for not const qualifying the
type in a catch statement.

IMO, a good compiler could easily warn
about any catch that has a pointer or refer-
ence to a non-const type: since the thrown ob-
ject is a copy, such practice is suspect at best.
Ed.

Another problem is the following code which is a
simplistic example of a fairly common idiom:
char * p=0;
int i=0;
p= i ? “non-zero” : “zero”;

The problem is that, according to the strict se-
mantics, the strings have been converted to
pointers before the problem assignment. The re-
turn from the conditional operator will be of the
most restrictive type resulting from the types of
the second and third operands. In this case it will
be a char * now and a const char * in the
future. Note that the deprecated conversion Kev-
lin’s paper provides is specifically for string lit-
erals and not any other arrays of char. This
code will fail noisily, it could also be fixed by a
sensible vendor extension. In other words we can
keep current code working while encouraging
better code in the future.

The last of Steve’s problems will cause a shock
to quite a few of you. Consider:
char (& x)[4] = “Yes”;

“What is that?” I hear you say. Well just read it
and see: “x is a reference to an array of 4 char.” I
doubt that breaking this will break very much
code. Note in passing that C++ (C also) does
have array types, it is just that they decay for
most uses to pointers. I somehow hope that im-
plementors don’t even try to mend any code of
this kind that is broken by changing string liter-
als to arrays of const char.

Normally points such as the above would result
in a proposal being returned for reconsideration
so that the paper at least mentioned them even if

it was to recommend no action. At Stockholm
this was not an option. When I arrived to support
Kevlin’s paper one of the first things I had to say
was that either we make the change now (which I
believed was for the better) or we would never
be able to fix the problem. Somehow, John Bruns
and I convinced Jim Welch of Watcom that go-
ing with the proposal was the lesser of evils. This
shifted the work groups position so that (if I saw
correctly) even Dan Saks reluctantly supported it
going forward to the full committees. Once it got
there it got enough support to go on to a formal
vote but not before another problem was aired.
Consider:
void foo(const void *);
void foo(char *);

and a call such as:
foo(“I am not a void star”);

With non-const string literals this code selects
void foo(char *), with const string lit-
erals the call is ambiguous. I think this will be a
rare problem but at least it fails safe.

I had a nasty moment on Thursday night when I
found Jerry Schwarz of Declarative Systems
strongly opposed. I have a high regard for Jerry’s
opinions and I was worried that he would take a
substantial block of X3J16 votes with him. In the
event X3J16 voted 25-6 in favour and WG21
voted 7-0 in favour.

A cautionary tale?
Well if you want to contribute to language
change you have either to get yourself to Stan-
dards meetings or you must find someone else
who will act on your behalf. Standards are not
necessarily about making life better or more con-
sistent in the long term for the working pro-
grammer.

By the way, Jerry’s reason for voting against the
change was that it would produce several years
of inconsistency between implementations and if
we were going to have that we might as well go
the whole way and not bother with deprecated
conversions. It is quite possible that in other cir-
cumstances no change would have been made
because half X3J16 wanted the conversions and
half did not even though all wanted constant
string literals.

I understand that Microsoft Visual C++ has been
quietly implementing const string literals for
several years. Anyone able to confirm that?

 Overload – Issue 15 – August/September 1996

 Page 24

Francis Glassborow
francis@robinton.demon.co.uk

C++ Techniques
This section will look at specific C++ programming techniques, useful classes and problems (and, hope-
fully, solutions) that developers encounter.

Alec Ross takes a step back from last year’s circular discussion to consider the bigger picture, The Harpist
continues his exploration of the Standard Template Library, Francis summarises the responses to last is-
sue’s question on member return types and Kevlin continues his excellent template techniques series.

Circles and ellipses revisited
by Alec Ross

The shapes of things to come
Last year’s discussion on polymorphic objects,
the “circles and ellipses” series [1-7] opened a
variety of avenues for its readers to explore.

I find the circle/ellipse problem interesting, not
just in itself, but for the thoughts it elicits on
some OOA/OOD concepts, and implementation
techniques which can be used for this and similar
problems. The question has now been raised and
well answered, but some further observations
might be of interest.

This and following articles will look at some of
the issues and approaches which can be used. In
summary, these involve changes in views of
type, techniques to morph objects defined on the
stack as well as in free store, and extensions to
related patterns.

Reverting to type
The notion of a “type”, particularly as exempli-
fied by an abstract data type, is a basic one for
C++ programmers. I guess it informs our intui-
tion, in ways of looking at computing systems
informally and, for some, it provides a formal
framework.

If we know what a type is by its operational
definition, what about a definition which in-
cludes morphing some or all of its instances into
other type(s)? And, just as a class can have
nested classes within it and an object can have
members which are objects, is it useful to con-
sider a wider view of types which also includes
clusters of related, interacting types in the sense
of parameterised patterns? [8]

A programmer’s concepts and use of type will be
conditioned by their knowledge and experience
of what is available and useful, and could be lim-
ited by ignorance or lack of imagination as to
what might be possible. For example, for dec-
ades commercial data processing has used the
concept of entities (corresponding to objects) and
entity life history (ELH) [9], mapped to designs
and implementations with fixed-size records
consisting of a given set of data members only,
and with no support for inheritance, polymor-
phism or generics. Whilst C++ has brought OO
support, it has static typing plus inheritance
polymorphism only and it does not directly sup-
port a notion of type where attributes and meth-
ods can be added or removed dynamically. This
kind of behaviour is more widely in demand than
for just a few relatively exotic systems with ob-
ject frames with slots which can be dynamically
populated with different members. Sometimes
one might wish to dynamically change the im-
plementation of a member function (on a per ob-

 Overload – Issue 15 – August/September 1996

 Page 25

ject or class-wide basis) whilst retaining its se-
mantics; or one might want to cut in different
semantics; or perhaps it might even be desired to
change the interface itself. The Common Object
Request Broker Architecture (CORBA) of the
Object Management Group explicitly recognises
a possible desire to change an objects type dy-
namically, as does OLE. What is of interest here,
however, are much simpler, more lightweight
mechanisms – not spanning any process bounda-
ries.

Life-cycle examples
As an example of this kind of requirement, sys-
tem designs that use the concept of an object life
cycle should be able to reflect this cycle fairly
directly in code. That is, it should be possible to
construct an object and mutate it through various
stages with different behaviours before destroy-
ing it.

A given message would have different results
depending on the current “type” of the object
involved. To give a concrete example, one might
have a class “Man” with, say, seven states. It
might have a GoToSchool() method in only one
of its states. Alternatively, its public interface
might offer this method for all age states, but
give a different result depending on the state
concerned. The first of these approaches could be
implemented using derivation, with GoTo-
School() declared and defined (only) in a
Schoolboy class publicly derived from Man. The
second option could have Man’s public interface
declare the method with suitable definitions be-
ing provided in each class. (This second choice
would typically result in the Man class having an
interface which was the union of all derived in-
terfaces.)

The change of perceived type should be simply
and cleanly achieved in the client code. As an
example illustrating this requirement, consider a
personnel system for schools with C++ classes
representing pupils and teachers. The system
could create a Pupil object but might be asked to
cope with this same pupil graduating and becom-
ing a Teacher. If this single object were defined
as an automatic, it would have a single symbol
name and fixed storage allocation on the stack.
There is something inelegant about implement-
ing the state transition via a destructor-
constructor call pair explicitly for each use at the
client level. Also, for an instance which was an
automatic, one would not be free to deallocate
and reallocate stack store for the object which

would typically use different amounts of store
for the data members used by the two states. It
seems more satisfactory if our client code can
deal with the evolution of instances of a Person
class through states of Pupil and Teacher – with
any implementation nastiness hidden away.

More general patterns
These individual morphing transitions (e.g., cir-
cle to ellipse), and lifecycle examples can be
seen as specific cases related to a number of de-
sign and programming problems and techniques.
For example the change in type involved can be
seen as a “real” change in type, or as a change in
state of an object of a supertype whose type is
preserved across the transition.

With this in mind, one can conceive a range of
design patterns for the supertype:

• A binary switch (i.e., a flip-flop object with
two observable states)

• a switch with unlimited state transitions al-
lowed

• a counted flip-flop, i.e. one with a limit on
transitions

• with this limit dynamically adjust-
able

• with this limit preset and fixed

• a one-time switch, as a special case of the
above

• a bi-directional one-time switch (either state
a -> b or state b -> a)

• a unidirectional one-time switch (i.e. the ini-
tial state is given, e.g. alive –> dead)

• An N-ary switch (with similar variants to the
above)

• A ganged switch (changing two or more
linked objects, types, or a mixture in syn-
chronism with each other.)

• A switch carrying history (i.e., information
on previous states)

• retain all previous history

• retain a sample of previous history

• retain according to single fixed rule
(eg all of the immediately previous
state’s data, or simply an indication
of the previous subtype)

 Overload – Issue 15 – August/September 1996

 Page 26

• retain according to a predefined rule
for each type

• retain according to a run-time deter-
mined rule for each type

• retain according to a run-time deter-
mined rule for each object

• A switch allowing dynamic change of its
own morphic type

• A switch supporting various client views of
its own type

• ... , and so on.

Whilst some of this indirection may seem fanci-
ful, there is a very common use of state change
in those schools of systems analysis and design
which use the concepts of the Entity Life History
(ELH), or Object Life Cycle (OLC).

Since programmed implementations generally
have a time-space trade-off, fast implementations
may involve carrying around some data from at
least the immediately previous state. One might
thus be tempted to make a virtue out of necessity
here, and add “history” methods almost for free.

Getting hysterical
The data retained after a state transition could be
complete or partial state information from:

• the last state

• all previous states

• the last of each different type of state

One would want to pick the simplest switch type
suitable. In practice this could often mean a
choice between variants of a given pattern with
or without hysteresis – depending on the assump-
tions made. For example, the minimum storage
cost associated with a totally amnesiac design
would be desirable where there were many ob-
jects, and memory was limited. This option
might also be appropriate where the lifetime
states of an individual object followed an irre-
versible pattern; but any requirement to reverse
the state change, jump to a previous state, or
even access states’ historic data would suggest a
use of a type with hysteresis. A further option
which could be used in the second of the above
cases would be to keep an object’s history record
in a separate list, whether or not the object kept
details of its own past states.

Storage of all of a previous state’s data by the
object could also simplify code – since there

would be no need to implement any selective
storage from previous members whose values
were used in construction of the new state. Evi-
dently too, some destructor calls could be
avoided.

Has anyone seen or used patterns such as these?

Distinguishable states
In distinguishing types there are issues around
boundary conditions. We have the concept of
distinct types but also, possibly, limits on distin-
guishability. There may be issues of accuracy
and precision in measurement, calculation and
representation of real numbers in the available
floating point formats. For example, in a
morphable object which could represent a circle
or ellipse, is a test for the eccentricity == 0 a
valid test for its being a circle? If the eccentricity
value were set to 0 by a constructor, and subse-
quently left unchanged, this test would be rea-
sonable – but if it were the result of computation,
computational accuracy would suggest that the
test should allow some margin of error. Some
values close to zero could correspond to either a
circle or an ellipse, due to computational errors.
Also, an ellipse with a very low eccentricity
might be indistinguishable from a circle when
displayed on a given graphics device. If the cir-
cle calculation were much faster, one might wish
to use it, even if the eccentricity value indicated
an ellipse.

One technique to assist in handling these cases is
to introduce an intermediate state, or range of
values, and deal with such border conditions ex-
plicitly. For example, one could have a test for a
clear-cut circle and a clear-cut ellipse and for
something in between. An object or value which
fell into this latter category could be treated ac-
cording to a defined strategy: being forced off
the fence according to predetermined rules; or
perhaps being given special treatment as a new,
ambiguous state.

The problem here is of course much wider than
the context of deciding on a type. There is a re-
quirement for some kind of switch where each
case corresponds in general to a range, typically
of real numbers. The aggregation of cases might
span some number range completely or there
could be gaps and in some instances one might
even want to allow overlapping ranges. It would
be desirable to have some elegant, efficient and
generally applicable algorithms and coding idi-

 Overload – Issue 15 – August/September 1996

 Page 27

oms to handle this hashing. Would anyone like to
contribute here?

Changing type: mechanisms
Further articles will explore some techniques to
achieve type evolution of the basic kinds out-
lined at the start of this article, illustrated with
C++ code.

Thanks
The author would like to thank Kevlin Henney
for several helpful comments and suggetions on
an earlier draft of the material in this introduction
and in some following articles.

Alec R L Ross
alec@arlross.demon.co.uk

References
[1] The Harpist, “Related Objects”, Overload,

Issue 7, p 22-25

[2] Francis Glassborow, “Related Addendum”,
Overload, Issue 7, p 26

[3] Kevlin Henney “Circle & Ellipse – Vicious
Circles”, Overload, Issue 8, pp 22-25

[4] Francis Glassborow, “Circle & Ellipse – Cre-
ating Polymorphic Objects”, Overload,
Issue 8, pp 26-28

[5] The Harpist, “Having Multiple Personalities”,
Overload, Issue 8, pp 28-32

[6] The Harpist, “Joy Unconfined – reflections
on three issues”, Overload, Issue 9, pp
11-13

[7] The Harpist, “Addressing polymorphic
types”, Overload, Issue 10, pp 15-19

[8] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, “Design Patterns:
elements of Reusable Object-Oriented
Software”, Addison-Wesley, 1995, es-
pecially the “State” pattern, pp 305-
313

[9] R. N. Maddison et al, “Information System
Methodologies”, Heyden/BCS, 1983,
reprinted 1986.

The Standard Template
Library – sorted associative

containers part 1
set & multiset
by The Harpist

Before I discuss the set and multiset containers I
would like to spend a little time on an issue that
arose from my article in Overload 14. When I
originally sent the item to Sean via Francis it
contained a bug that my compiler could not de-
tect. Fortunately Sean spotted it and corrected it.
(I hope you appreciate Sean’s comments as much
as I do, without such a knowledgeable editor I
think articles written by the one-eyed would lead
the blind into terrible problems.)

However the problem is one that will bite many
of us and is worth looking at. What is the differ-
ence between declarations A and B in the follow-
ing code:
class Mytype {
public:
 Mytype(int); // constructor
// whatever
};
main() {
int i=0;
Mytype m1 = i; // decl A
Mytype m2(i) ; // decl B

You may well think that it is merely one of style.
Declaration A uses the C style of initialisation
while declaration B uses the C++ function style
initialisation. Indeed most books tell you that
there is no difference. That is entirely wrong
(though it did not have to be as the language
could have defined them as equivalent).

Declaration A works by first constructing a tem-
porary Mytype from i and then calling the copy
constructor to copy the temporary into m1. These
means that m1 is technically constructed by a
copy constructor. In practice all compilers use
the licence given by the Working Paper and op-
timise away the copy – that is the construct the
temporary in the memory for m1. However be-
fore they do that they have to check that the ini-
tialisation would work if the copy constructor
was used. Until recently there have been a couple
of cases where this would fail. The common one
is where Mytype has a private copy constructor.
The other main case was where the initialisation
was more complicated requiring an extra type
conversion with the result that two user defined
conversions were used to go from the rhs to the

 Overload – Issue 15 – August/September 1996

 Page 28

lhs. When the Standards Committee introduced
the keyword explicit to allow constraining
single argument constructors to construction and
not for implicit conversion they introduced a new
way for the above code to fail. If I qualify the
copy constructor as explicit then declaration
A will fail as that is an implicit use of the copy
constructor.

Because of the way auto_ptr<> works its
copy constructor must never be called unless ex-
plicitly required by the programmer who pre-
sumably knows what they are doing. This means
that you cannot write:
auto_ptr< vector<Mytype> > mt =
 new
vector<Mytype>;

Well, you can write it, but as soon as your com-
piler understands explicit it will spit it back.
We need to change our coding habits and aban-
don the C style initialisation (unless it is C that
we are writing). Start removing those ‘=‘ signs
from declarations in your source code.

That brings me to another point that I had en-
tirely missed. There is no point in writing code
such as the above declaration. All the STL con-
tainers are expandable and so they must be using
dynamic memory. We do not need to use new to
create them. If that is not immediately clear to
you, think a bit about why you allocate an object
dynamically. Now why would you want to ex-
plicitly dynamically allocate a vector (deque, list
etc).

On to this issue’s topic

set<> and multiset<>
What is the primary characteristic of a mathe-
matical set? It has no repeats. What is the pri-
mary characteristic of a STL set? It is ordered.
This is true of both set<> and multiset<>.
The difference is that the former is also a
mathematical set while the latter may include
‘duplicates’. Note the quotation marks, dupli-
cates means objects that compare equal (strictly
speaking both Compare(t1, t2) and Com-
pare(t2, t1) return false).

Both set and multiset take three template
parameters though two of them can be defaulted
(once your compiler knows how to do that). The
first template parameter is the type of object be-
ing contained, the second one is the functor
(function object) that provides a comparison fa-

cility. The third template parameter is the alloca-
tor.

The purpose of the last template parameter is to
provide a mechanism whereby you can support
different memory models. STL provides a
class allocator which is the default for the
last template parameter in all container classes
(including list, deque and vector). Compilers that
do not support default template parameters have
to fix this up behind the scenes because the last
thing you need is to worry about allocators until
you have to. The whole raison d’être of the STL
is to save you having to worry about this kind of
detail.

The second template parameter for set and
multiset is a type that provides a suitable
comparison. Note that this is not a function, to
work as a template parameter we need it to be a
type. The default for this template parameter is
itself a template class less<>. The defini-
tion of this is:
template <T> class less {
public:
 bool operator()(const T & t1,
 const T & t2) {
 return t1<t2;
 }
};

This is a typical function object template, and
you will need to get used to these if you are to
progress with a C++ style of object oriented pro-
gramming. Note that less<T> depends on <
being defined for T. If it isn’t, you will either
have to provide the definition yourself or you
will have to provide your own functor for
set<T, yourFunctor > and mul-
tiset<T, yourFunctor >. In other words
you must provide a rule for determining a strict
ordering of the objects that you are storing in a
set or multiset container.

set and multiset each have three construc-
tors. There is the (explicit qualified) con-
structor for an empty set that takes an optional
comparison functor parameter and allocator, so I
can create an empty set of Mytypes (another
departure from maths as there are many distinct
instances of the empty set, even of the same
type) with:
set<Mytype> set_of_mytype;

or by providing a comparison functor:
set<Mytype, greater<Mytype> >
 descending_set_of_mytype

 Overload – Issue 15 – August/September 1996

 Page 29

N.B. Could Sean clarify why the constructor im-
plies that you could write:
set<Mytype> descending_set_of_mytype(

greater<Mytype>());

(Note that greater is another STL function
object).

Note quite! Omitting the type in the template
argument list causes the parameter Compare
to default to less<MyType>. The constructor
will accept any comparison “object” of that
type. Unfortunately (for you) the type of
greater<MyType>() is different to
less<MyType>! You could however derive a
class from less<MyType> and supply that al-
though since the function call operator()() is
not polymorphic you might get a surprise! –
Ed.

There is a straightforward copy constructor
which is not declared explicit. And finally
there is the constructor to allow construction of a
set (multiset) from another container ob-
ject. This is a template member function (or
should that be member template function?) so
that you can copy from any container.

The committee removed the editorial distinc-
tion between template function and function
template some time ago – it was clearly too
subtle. Originally, one meant the template
and the other meant the instantiation... but I
can’t remember which was which!

Note that you can construct a container from
any pair of iterators that define a range
[lo,hi) so the template constructor to which
you refer is more flexible than you indicate –
Ed.

This requires at least two parameters of an ap-
propriate input iterator type. For example given
that lst is a list of Mytype then I should be
able to write:
set<Mytype> example(lst.begin(),
 lst.end());

to create a sorted set of the distinct elements of
lst (duplicates as defined by less<Mytype>
will be discarded).

Among the member functions of set (and mul-
tiset) you will find several versions of in-
sert() and erase(). One version of each
takes an object of the appropriate type and either

inserts or erases an item (only inserts to a set if
not already there, erases all matching items if
any). Another pair of insert() and erase()
member functions take a suitable iterator
(pointer) for an object of the appropriate type.
The iterator forms of erase only remove the
specific item. There are also insert() and
erase() for ranges defined by iterators.

Those are the most immediately useful member
functions.

Now a task for you (because you certainly will
not learn about the STL without using it).

Write a program that creates a container of words
(making the first letter upper case) that only con-
tains one word starting with each letter of the
alphabet. You must be able to input words in any
order, only the first example of a word starting
with any letter will be placed in the container.
The program should end when you have twenty-
six words (those with non-Anglo-Saxon alpha-
bets can use their own if the want), one for each
letter.

When you have done that, write a program that
will read in a file and print out an alphabetical
listing of all the distinct words in the file.

Warning
I am not going to provide you with a solution to
either of these problems though I would be
happy to look at yours and to publish them. In
other words I am not going to provide you with a
cheat, if you want to learn to use the STL, you
will have to try for yourself.

The Harpist

Please send all contributions directly to
Francis so he can pass them on to The Harp-
ist – Ed.

The return type of
member functions

by Francis Glassborow et al

In the last issue of Overload I asked you to put
your thoughts about the return type of a member
function on paper and send them to me. I had
three submissions which is three better than
none. My thanks to Chris Southern, Ulrich Eise-
necker and Klitos Kyriacou. It would have been
nice to have had a larger mailbag. Perhaps some
of you were put off by my offer of a reward.

 Overload – Issue 15 – August/September 1996

 Page 30

Chris wasn’t, he just declared himself a non-
competitor. So I will kick off with his contribu-
tion, follow with my bit then conclude with Kli-
tos’ winning submission. As Ulrich covered
much the same ground as the others I shall leave
his response out.

Chris Southern’s view
Here is my minor contribution to a discussion of
member function return types. It is not to be con-
sidered a competition entry. I can well afford to
buy my own copy. Indeed it has been on my pur-
chase list since it was referred to as a work in
progress in the C++ Report.

First we must establish the parameters of the
problem. We require the best choice for the re-
turn value for an arbitrary member function of an
arbitrary class. The class independence of the
problem is our first clue, it must surely preclude
the choice of another class as candidate. This
leaves us with the built in types and the class
itself.

Perhaps one’s immediate response would be int
to return a success or failure result. See page 21
of Overload 14. Not under any circumstance a
bool, as I am given by my betters to understand
that this type is broken. Given the unknowable
nature of the member function this can not be
regarded as a general purpose better choice. Suc-
cess or failure will not be an appropriate concept
for all functions. The rest of the built in types are
even less suitable. What general float or
char could be returned from our hypothetical
function?

We are left with the class itself. Now I must be
getting somewhere as wiser heads have been here
before me. The stream classes and section 6.5.1.1
of the Design and Evolution of C++ bear wit-
ness. For a class T a good alternative to
void for a return value for a member function is
of type T& and of value *this.

The style permitted by the returning of the refer-
ence is that of cascading member function calls:
aSet.add(Oranges).add(Lemons);

The reasons for using a reference are mandated
by the functionality being provided here. The set
being added to should be the same set, not a
temporary that will be deleted shortly!

I am fairly certain that the last reference I came
across to bool being broken was in an article by
[Francis]. I am surely not alone in being far too

unsure of my ground to justify such a statement
to an employer or colleague. Could we please
have a reasoned critique. It would also be nice to
know what the standards committee gave as their
justification for including it.

Chris Southern
csouthern@brasspaw.compulink.co.uk

What is wrong with bool
I know I am prone to strong language and often
describe something as broken when others hap-
pily use it. I think that the current type of a string
literal (now fixed by the Stockholm meeting of
the C++ Standards Committees) is broken. Oth-
ers happily fix their problems with various ban-
daids and splints. But you only use such when
something is broken.

Conceptually a Boolean type should only support
two values, ‘true’ and ‘false’. You should not be
able to do any kind of arithmetic with Boolean
values and the only operators that should be sup-
ported are ‘=’, ‘==’, ‘!=’ and ‘!’. In other words
you should be able to compare for equality, as-
sign and invert them.

The concept of Boolean has nothing to do with
arithmetic. I do not believe that there should be
any conversions to or from a Boolean type. In-
deed, a Boolean type naturally only require a
single bit of storage. To put it another way, a
Boolean type should be packable in a way that is
transparent to the user. Unlike any other type in
C++, the conceptual size of a Boolean type is
smaller than a char. That is immediately prob-
lematical because the sizeof operator returns
an (unsigned) integer type that gives the storage
requirement as a multiple of that required by a
char.

It is possible to provide a user defined type that
meets almost all the above criteria (I am not sure
about supporting packing, if anyone would like
to explore this I am sure that the idea would have
more general use).

Unfortunately, such a user defined type has
minimal value. The built in logical operators
conceptually evaluate to a Boolean value. That
means that a useful Boolean type needs to be a
built-in type. Under continued pressure the C++
Standards Committees provided a Boolean type
and called it bool. They also provided two
keywords true and false as representing the
two values of bool. They then defined the built-
in logical operators as returning a bool. They

 Overload – Issue 15 – August/September 1996

 Page 31

also defined the various conditional clauses
(if(), while(), and the middle expression of
for()and the easily forgotten conditional op-
erator) as taking bool values.

Now C++ is required to support existing C code
as far as possible. I do not think that the C++
community would have accepted the wholesale
breaking of their existing code that would have
resulted had there been no implicit conversions
from arithmetic types to bool. Of course the
code in question is of dubious merit but C never
implemented a Boolean type so programmers
had to improvise.

Though it is conceptually wrong, I can live with
these inward conversions to bool. However
when the issue was discussed various people
pointed out that there is a body of existing code
that depends on true/false taking the numerical
values 0/1. We recently had an example in CVu
where the adjustment for a leap year was handled
by adding the return value of a function
leapyear(). Conceptually leapyear()
returns a Boolean value (either the argument
represents a leap year or it does not).

I think the C++ Standards Committees should
have had the courage to break such code (actu-
ally a little thought would show that very little
code would be broken immediately. Only that
which uses the values of logical operators would
break). In the event, they lost their nerve (or to
put it another way, some of the big users be-
lieved that too much existing code would break).
I think that is sad but it is one of the compro-
mises that occur when a language has escaped
from its designers before the design is complete.

I undertook a test implementation of bool and
analysed a lot of source code to see what it
would break. My findings were that it would
break very little although there was one un-
fortunate and rather common idiom: that of
incrementing a Boolean using ++. That lead
the committee to support ++ as an anachro-
nism that meant “var = true”. See the Design
& Evolution of C++ for a reference to my
work on this issue – Ed.

What, to my mind, finally moved bool from the
class of heavily compromised features to the
class of broken ones was the later decision to
support the increment (++) and decrement (--)
operators for bool. As I understand it this was
to support passing bool as a type to a template.

I am certain that instantiating a template that uses
increment/decrement operators is conceptually
wrong. Even if some elements of the template
will work with a bool those parts that rely on
increment/decrement will not work properly. The
user should get an error if he/she attempts to use
such functions. Now they will not even get a
warning.

Decrement is not and never has been sup-
ported for bool. Increment was included in
the original proposal – see above – and none
of this had anything to do with templates!
Just for a change :-) – Ed.

The result of all this is that if you want to return
true/false from a function, or you want to provide
a suitable conversion for a class such as many of
the iostream ones you need to return a
const void*. Note the use of const. I
missed that refinement when I wrote about it
previously. While you are getting a pointer, it is
not one that is intended for use. There are no im-
plicit conversions from a void *, the rules say
that a null pointer is treated as false and all others
are treated as true. In fact const void* pro-
vides almost exactly what we want for a Boolean
type. Unfortunately the four operators that
should work on a Boolean type do not and the
built-in logical operators return a different type.

This feature of C++ will remain to cause un-
pleasant surprises to future programmers who
first learn Java and then try to write C++. Per-
haps some implementors will provide an exten-
sion that makes the C++ bool a real Boolean
type so that we can check our code for silly
hacks.

Why not take advantage of the source code
analysis tools available on the market that al-
ready perform exactly this sort of checking
within the standard definition of the lan-
guage? – Ed.

My view (member function return
type)
Member functions come in various flavours.
There are a group of special functions (construc-
tors etc.) which are not an issue here. Then there
are the read access functions (that return an ap-
propriate type to provide the required value),
comparison functions (that return a Boolean
value), operator functions that return an appro-
priate type (that which is most like the behaviour

 Overload – Issue 15 – August/September 1996

 Page 32

of the built-in types). Finally there are two
groups of functions that are really procedures (it
is what they do that matters), these are the ones
that programmers often declare as returning
void.

This last group breaks into two sub-groups, con-
stant member functions and the rest. A good ex-
ample of the former is printOn(ostream
&). Personally, I am quite happy to have this
function return a void because I am going to
use it to support an operator<< function.
There does not seem any strong reason for
choosing another return type.

Having printOn() return ostream& is much
more convenient – Ed.

That just leaves member functions that change
the state of the object. It seems perfectly reason-
able to use several such functions in succession.
Being able to write something such as:
turtle.forward(10).left(90);

Seems better to me than
turtle.forward(10);
turtle.left(90);

Or to put it another way, if I have an object and
change it, I should be left with a changed object
rather than nothing.

Such functions should logically return a refer-
ence to the calling object. If you are worried
about how this works with virtual member func-
tions, relax because several years ago the C++
Standards Committees fixed that problem. The
return type of a virtual member function can vary
as long as the later return types are derived from
the earlier ones (something I think is called co-
variance, but Sean will correct me if I am
wrong).

This time you are correct! :-) – Ed.

Conclusion, member functions that modify the
state of an object should return a reference to the
object.

Klitos’ view
Your article, “Return from a member function”
(Overload 14) has aroused my interest and
started me thinking. I shall arrive at my answer
by addressing a number of concerns: (1) theory
and concept; (2) conformance with established
practice; (3) syntactic convenience; (4) perform-
ance issues; and (5) type safety. You mention

set/put functions; these, and, I would imagine,
most other typically void member functions
change the state of an object in some way.

1. Conceptually, the result of applying a modi-
fier function to an object is a modified object
(even if only part of it – a data member – has
been modified).

2. Throughout the existence of C and C++, built-
in (and user defined) types have been modifi-
able using the assignment operator. Given
‘int n = 1;’, the value of the expression
‘n = 2;’ is the new value of n (an rvalue in
C and an lvalue in C++). In the case of struc-
tures, given:

struct complex {
 double re; double im;
} c = {1, 2};

the result of ‘c.re = 3;’ is the new value
of c.re.

So far, the evidence from both (1) and (2) sug-
gests that a member function should return a ref-
erence to itself (‘return *this;’), but (2)
also begs us to consider making a data-member
modifier function return a reference to the data
member it is modifying. However, there are
strong cases against the latter: it would break
encapsulation, and many member functions mod-
ify more than one data member anyway.

3. Suppose you have a class ‘Car’ holding vari-
ous details, all optional, on a car. A function
‘averagePrice(const Car&)’ returns
the estimated price of a given car, using what-
ever information it has on it.

Example using void member functions:
Car car; // Default constructor sets all
 // details to ‘unknown’;
car.setAge(3);
car.setMilage(25000);
cout << averagePrice(car) << endl;

The above prints the average price of all 3-year-
old cars with 25000 miles on the clock. If mem-
ber functions returned a reference to the object,
the above could have been written more conven-
iently:
Car car;
cout << averagePrice(car.setAge(3)
 .setMileage(25000)) <<
endl;

Moreover, if all you want to do is find the aver-
age price of 3-year-old 25000-milers and do not
want to have a ‘Car’ object hanging around after
that, you can use a temporary object:

 Overload – Issue 15 – August/September 1996

 Page 33

cout << averagePrice(Car().setAge(3)
 .setMileage(25000)) <<
endl;

This is not just syntactic sugar; it is something
you cannot do at all with void member func-
tions: that is, you can’t use void member func-
tions in this way on unnamed objects.

4. The extra ‘return *this;’ statement at
the end of a member function can consume a
few CPU cycles unnecessarily if the return
value is not used. However, many member
functions are inline, and a good compiler will
optimise out the extra unused statement. If a
member function is too long to code as an
inline function, you can make it a private im-
plementation function and have the public
member function call it before returning the
object:

class Car {
public:
 // [other methods...]
 Car& setMake(string mk)
 { doSetMake(mk); return *this;
}
private:
 // [other methods...]
 void doSetMake(string mk);
 // Defined in a separate file.
 }

5. There is a small problem with type checking in
the presence of inheritance:

class Van : public Car {
public:
 Van& setMaxLoad(double);
 // [other methods...]
};

// This won’t compile:
cout <<
averagePrice(Van().setAge(3)

.setMaxLoad(100));
// This will compile but is very
// clumsy:
cout << averagePrice(

dynamic_cast<Van&>(Van().setAge(3
))

.setMaxLoad(100));

What would you suggest as a satisfactory solu-
tion? I can’t think of any, but I don’t think the
problem is a dangerous one. That is, it may pre-
vent code brevity, but it does not allow you to
call a method on the wrong type.

It will be interesting to see whether self-returning
member functions become more common in the
future.

Klitos Kyriacou
kkyriacou@datastream.com

Conclusion (Francis)
I think the most important lesson from all this is
do not just emulate code you find in books.
Think about it and for all but the best books your
solution may well be better.

Another thing for you to consider
Now for something completely different.

I came across the following code recently:
class X {
// full class definition
};
class X1: public class X {
// nothing but the constructors for X1
that
// do nothing
// except call the corresponding
// constructors for X
};

Can you think of any practical use for such an
apparent redefinition?

Francis Glassborow
francis@robinton.demon.co.uk

My experience is that most member functions
that return void ought to return a reference
(or const-reference) to the class type. Call
chaining is such a useful technique that once
you start using it you will wonder how you
managed without it! – Ed.

/tmp/late/*
Constraining template

parameter values
by Kevlin Henney

A previous /tmp/late/*, “Constraining template
parameter types” (Overload 12), explored how
certain type constraints could be enforced at
compile time by the programmer. The aim is to
attempt to state, in code, specifications that
would otherwise be held as comments or de-
tected explicitly at run-time. Unless you enjoy
testing and believe that cure is better than pre-
vention, a higher level declarative approach has
all the hallmarks of good practice.

Types are not the only thing that can be con-
strained. More generally, applications rely on
certain assumptions that are platform or compila-
tion specific. Documenting these value based
constraints is all very well, but the truth is that no
matter how good our software process, the spec
is in the code. Unless we can state implementa-

 Overload – Issue 15 – August/September 1996

 Page 34

tion constraints in the code, they are effectively
invisible.

Don’t tell the user,
tell the compiler
One way to enforce these constraints is to use
assert within a function. This is not a good idea:
unless that code is guaranteed to be executed, the
constraint will never be checked. But, for exam-
ple, checking that a given constant supplied by
the user is in a range specified by a library is
surely something that, being constant, should be
checked at compile time rather than being left to
vagaries of run-time path coverage? Appropriate
use of the assert macro is about as rare as a ful-
filled electoral promise.

The most obvious compile time mechanism is the
preprocessor. So, for instance, here is an attempt
to ensure that the platform you are running on is
a two’s complement machine:
#if ~1L + 1L != -1L
#error “This is not a two’s complement
box”
#endif

And here we attempt to ensure that the alphabet
is encoded continuously and sequentially:
#if ‘a’ + 1 != ‘b’ || ‘b’ + 1 != ‘c’ ||
...
#error “Character encoding has holes”
#endif

The problem is that there are no guarantees that
the preprocessor is using the same character set
or arithmetic as the execution platform. This
separation of translation phases and behaviour is
common in cross compilers. Another obvious
problem with the preprocessor is that only pre-
processor constants may be used, i.e., no const or
enum constants.

The specialist
We can reify an assertion, i.e., treat the actual
assertion as an object, and then write
static compile_assert<~1 + 1 == -1>

twos_complement;

Template specialisation is the key to the solution:
template<bool expression>
struct compile_assert;
template<> struct compile_assert<true>
{};

Here we forward declare a template class, but
provide no definition. We provide a specialised
definition for the case where the compile time
expression being tested is true. And in the case

of false? Well, the compiler doesn’t know what
the compile_assert would look like in this case
so it fails to compile. In other words, what we
wanted. You will find that naming your assertion
variable meaningfully helps.

The cost of this is minimal: no run-time over-
head, and a minimum alignment of static mem-
ory taken up. If your compiler does not yet
support bool and you are concerned that a spe-
cialisation on 1 misses all the other valid, non-
zero cases:
template<int expression>
struct compile_assert {};
struct compile_assert<0>
{ compile_assert(); };

Here the class is defined for all non-zero cases,
and for 0 the constructor is inaccessible, and
hence objects of this type are undeclarable. Note
that I have used the older specialisation syntax
— if your compiler does not support bool, it is
unlikely that it supports the newer full specialisa-
tion syntax (i.e., template<>).

In range
It is possible to make certain kinds of assertion
easier to write using derivation. We can special-
ise expression types, e.g.,
template<int value,
 int minimum, int maximum>
 struct in_range : compile_assert
 <minimum <= value && value <=
maximum>
{ };

This will fail to compile if value is not in the
range [minimum, maximum]:
static in_range<id, 0, max_id>
id_in_range;

Perhaps, given STL’s practice for intervals
[minimum, maximum) might be more in the
spirit of C++? Ed.

The sequential alphabet problem (originally
posed in Overload 12, “Rot in L”) can be solved
using a similar method:
template<char value, char next>
 struct in_order : compile_assert
 <value + 1 == next> {};

We can group assertion expressions together for
cohesion, convenience and to save (a marginal
amount of) executable space:
static const bool alphabet_in_order =
 (in_order<’a’, ‘b’>(),
 in_order<’b’, ‘c’>(),
 ..., true);

 Overload – Issue 15 – August/September 1996

 Page 35

Type based properties may also be asserted on,
e.g.,
template<typename first, typename
second>
 struct equal_size : compile_assert
 <sizeof(first) == sizeof(second)>
{};

Use class if your compiler doesn’t yet support
typename. Here we document a common as-
sumption in checkable form:
static equal_size<void*, int>

pointer_int_representation;

Be warned, however, that in the case of deriva-
tion from a failed compile time assert the diag-
nostic support you get from some compilers is —
to put it generously — useless.

In bits
Value constraints can be taken a long way. Here
is a slightly frivolous example that indicates how
far:
template<int digit> struct bit;
template<> struct bit<0>
 { static const int value = 0; };

template<> struct bit<1>
 { static const int value = 1; };
template<int digits> struct bin;
template<> struct bin<0>
 { static const int value = 0; };
template<int digits> struct bin
{
 static const int value =
 bin<digits / 10>::value * 2 +
 bit<digits % 10>::value;
};

So what does it do? It allows you to specify con-
stants in binary easily:
bin<100101>::value == 37
bin<11001100>::value == 204

It has its limitations, and it can be fooled, but it
illustrates the possibilities of value constraint
techniques.

Summary
Error detection of static value based constraints
is too important to be left until run-time; tem-
plates provide a construct through which some of
these may be expressed — and violations caught.

Kevlin Henney
kevlin@two-sdg.demon.co.uk

editor << letters;
Sean,

Francis advised me to contact you as you may be
able to help by publishing a plea for help in
Overload.

I need a real “Noddies Guide” to writing pro-
grams to use OLE etc from BC5. The BC docu-
mentation does assume that the writer knows
much, much more about the concept than I do. If
anyone can direct me at the “Idiots Guide to
OLE and associated matters” it would be a help.

Regards

Allan Newton
amnewton@iee.org

If anyone can help Allan, please contact
him directly.

Dear Sean

Is Francis’s code (Overload 13, page 7) for set-
name() safe yet? Suppose the names were of
form “Forename Surname” and I wanted to re-
move the forenames. It would be tempting to use
code like

char *q = strrchr(record.getname(), '
');
record.setname(q+1);

strrchr() also handily removes the const-ness, so
that things like
*q = tolower(*q); are possible.

Is this what is meant by encapsulation?

Regards

Graham Jones

The C++ Standard Library provides two
overloadings for strrchr that preserve
const correctness – given a const char*,
that’s what you get back.

However, if you subvert const somehow
and feed setname part of the same stor-
age that it was already using, yes, it will
fail!

I thought you might like another bug report for
Visual C++ (V4.1)...
//
=======================================
// Suspected bug in Visual C++ V4.1

 Overload – Issue 15 – August/September 1996

 Page 36

// -------------------------------------
--
// I wanted a vector of pointers to a
// nested, polymorphic class. Simple,
// just use the standard vector
template:
//
// vector<Outer::Inner*> my_vector;
//
// But VC4.1 says:
//
// ... error C2440: 'initializing' :
// cannot convert from 'struct
// Outer::Inner' to 'struct Outer::Inner
**
// ' (new behavior; please see help)
// ... error C2439: 'current' : member
// could not be initialized
//
// At first I thought this might have
// something to do with the ObjectSpace
// STL<ToolKit>'s implementation of
// vector<T>, but I have simplified the
// code to the point where there are no
// templates.
//
// There is a workaround (of sorts):
don't
// use a nested class. The problem
// also goes away if the 'current'
member
// is initialised to 0 or from a
// static const data member, but this
means
// changing the STL<ToolKit> code,
// which I am loath to do. Using
typedefs
// doesn't help.
//
// The Visual C++ Knowledge Base
contains 6
// references to C2440; none of
// them documenting this problem (as far
as
// I can see).
// -------------------------------------
--

#ifndef BUG_FIX
 struct Outer {
 struct Inner {};
 };

 typedef Outer::Inner **T;
#else
 struct Inner {};
 struct Outer {};

 typedef Inner **T;
#endif

struct Junk
{
 T current;
 Junk () : current(T()) {}

 // errors C2440 and
C2439
};

Junk test;

Phil Bass
pbass@rank-taylor-hobson.co.uk

Looks like a bug to me – keep ‘em com-
ing Phil!

The following letter appeared on
ACCU.general:

OK, I just found a bug in Visual C++ v4.2 so to
stop everyone else tracking down the same prob-
lem....

The CopyElements function in MFC 4.2 has been
broken (it was OK in previous versions). It is
supposed to copy n elements from src to dest.
The current implementation ends up making n
copies of the first element of src.
// \msdev\mfc\include\AFXTEMPL.H Line 76
template<class TYPE>
inline void AFXAPI CopyElements(TYPE*
pDest, const TYPE* pSrc, int nCount)
{
 ASSERT(nCount == 0 ||
 AfxIsValidAddress(pDest,
 nCount *
sizeof(TYPE)));
 ASSERT(nCount == 0 ||
 AfxIsValidAddress(pSrc,
 nCount *
sizeof(TYPE)));

 // default is element-copy using
 // assignment
 while (nCount--)
 *pDest++ = *pSrc;
}

This last line should in fact be
*pDest++ = *pSrc++;

Later,

Steven Youngs
steve@ncgraphics.co.uk

How on Earth did that get past Micro-
soft’s supposedly wonderful QA system?

See the inside back page for more infor-
mation on ACCU.general.

Reviews
Whilst this is not strictly a standalone review – it refers back to a review in CVu 8.4 – I think it gives
enough depth to warrant being treated as a review.

 Overload – Issue 15 – August/September 1996

 Page 37

Java in a Nutshell
reviewed by Chris Southern

David Flanagan

O’Reilly Associates

ISBN: 1-56592-183-6

Price: £10.95

Soft cover, 438 pages.

My curiosity is currently piqued by this here
Java beast. I suspect that this is not an uncom-
mon complaint among the readership of Over-
load. I had been leafing through the available
books and refusing to part with cash for thick
CD-ROM wrappers on the basis that I run a
Macintosh rather than a Sun or a Windows ma-
chine. Then I saw a review in CVu for the
O’Reilly book, Java in a Nutshell by David
Flanagan. The price was good, the review fa-
vourable, and I have bought Nutshell series
books before and been very satisfied.

First I have a minor point of order. Java does
have a sort of multiple inheritance. Not, it has to
be admitted, of actual behaviour, but of the ‘con-
tract to behave’ that is made by the class defini-
tion in C++. This is done by the interface type
which is similar to a pure virtual base class.

Secondly and of much more importance is the
quality of code in some parts of the Flanagan
book. I know the book’s subtitle is ‘A Desktop
Quick Reference for Java Programmers’ and that
some may feel that this excuses it from this sort
of criticism.

However, the book does not live up to its subti-
tle. The API Quick Reference that forms part 4
of the book is too brief in its description of
methods to survive without part 2, the code ex-
amples. These are introduced with ‘You can
study and learn from the examples, and you can
adapt them for use in your own programs.’

The book seems to me to fall between two stools.
It is not detailed enough on the API to be a desk-
top reference book, and has too many pages de-
voted to cross references, API inheritance
diagrams and ‘man’ pages for the Sun tools to be
a first tutorial book. I do think that the inheri-
tance and cross indexing will be useful. I just
wish that the book had not tried to serve too
many masters.

In the class AllComponents (example 5-4 in the
book) there is a method ‘constrain’. This is es-
sentially coded as one would a global function in
C++, all its data are passed as parameters. Java
does not have the concept of non-member func-
tions so this method basically has ‘random’ co-
hesion with its class.

What is worse is that it is basically a constructor
having non-default member values for another
class. As such I think that it should have been
implemented as a constructor for a class derived
from GridBagConstraints.

In the example on exception handling (2-3) the
‘finally’ clause for the function ‘b’ just prints a
newline, however, from the description of ‘fi-
nally’ clauses given in the text the local catch
block will be executed first. Therefore when the
exception is caught rather than propagated the
newline in the output text will be in the wrong
place. Not a major disaster but it gives the wrong
lesson about finally and catch block handling.

Since Chris is, like myself, a Mac developer, I
asked him why he picked the Nutshell book
instead of one of the Mac-specific books. He
responded:

I bought the O’Reilly book at the recent Mac
Shopper/Internet show where I actually saw
‘Teach Yourself Java For Macintosh In 21 Days’
first. But reading the description of the limited
version Roaster got the impression that it was
good only for project files on the CD.

While I can’t think of a good way of limiting a
compiler for this purpose I felt that the learning
by doing method needs something more than
typing in code.

Luckily the last isssue of my Metrowerks devel-
opment environment arrived shortly thereafter
containing not just one but two Java development
kits!

The 1.0.2 JDK from Sun was provided only for
completeness sake the release notes said. How-
ever, the integrated version of the interpreter
does not support java.lang.System and so can’t
run the Hello World example – no streams.

The reference CD also included a copy of
Metrowerks book ‘Learn Java on the Macintosh’
in Acrobat format, with the exhortation to buy a
real copy if found useful. The authors of the
seven books included do not get royalties for this

 Overload – Issue 15 – August/September 1996

 Page 38

distribution, and will no doubt be greatly heart-
ened by this plea.

Is there no smiley for heavy irony?

Chris Southern
csouthern@brasspaw.compulink.co.uk

 Overload – Issue 15 – August/September 1996

 Page 39

News & Product Releases
This section contains information about new products and is mainly contributed by the vendors them-
selves. If you have an announcement that you feel would be of interest to the readership, please submit it
to the Editor for inclusion here.

OMT User Group Seminar

The OMT User Group is hosting a seminar day
on 1st October aboard the HMS Belfast, which is
docked on the Thames in London, to discuss Re-
use with OMT. There are many myths—and
much hype—surrounding the relationship be-
tween OO methods and reuse. This seminar day
focuses on the practical ideas and technology
that can be used to enable different levels of re-
use: software tools, project management, devel-
opment methodology, patterns, frameworks and
class libraries.

The day will be extremely useful for any current
or potential OMT practitioners and will provide
an excellent opportunity for discussion on any
aspect of OMT and the forthcoming Unified
Modeling Language (UML). The seminar is open
to both user group members and non-members.

A separate area has been set aside for demonstra-
tions of some of the main CASE tools supporting
the OMT method and UML notation. Represen-
tatives from the CASE tools vendors will be
available to provide information and answer
questions on the products. Leading publishers
will be displaying recent and classic OO books.

The price of attendance per individual will be
$69 for members and $99 for non-members. In-
dividual membership of the group is $39 pa.
Corporate membership is $129 with 5 named
individuals, or $199 with 10 named individuals.
All members receive a quarterly newsletter and
book reductions on selected books from leading
publishers. All prices are exclusive of VAT.

For further information on either user group
membership or seminar attendance, please con-
tact either:

Jan Bevans
jbevans@qatrain.mhs.compuserve.com

Kevlin Henney
khenney@qatrain.mhs.compuserve.com

on 01285 655 888 at QA Training, Cecily Hill
Castle, Cirencester, Gloucestershire, GL7 2EF.

Contact details are also available under
http://www.qatraining.com.

 Overload – Issue 15 – August/September 1996

 Page 40

ACCU and the ‘net
ACCU.general
This is an open mailing list for the discussion of C and C++ related issues. It features an unusually high
standard of discussion and several of our regular columnists contribute. The highlights are serialised in
CVu. To subscribe, send any message to:
accu.general-sub@monosys.com

You will receive a welcome message with instructions on how to use the list. The list address is:
accu.general@monosys.com

Demon FTP site
The contents of CVu disks, and hence the code from Overload articles, eventually ends up on Demon’s
main FTP site:
ftp://ftp.demon.co.uk/accu

Files are organised by CVu issue.

ACCU web page
At the moment there are still some problems with the generic URL but you should be able to access the
current pages at:
http://bach.cis.temple.edu/accu

Please note that a UK-based web site will be operational in the near future and this will become the “offi-
cial” ACCU web site. Alex Yuriev has done a great job supporting the ACCU web site from the US –
thanks Alex!

C++ – The UK information site
This site is maintained by Steve Rumsby, long-serving member of the UK delegation to WG21 and nearly
always head of delegation.
http://www.maths.warwick.ac.uk/c++

C++ – Beyond the ARM
My pages haven’t been updated for a while. Now this issue is finally out of the way, I intend to spend time
rewriting and substantially updating the information on them.
http://www.ocsltd.com/c++

Any comments on these pages are welcome!

Contacting the ACCU committee
Individual committee members can be contacted at the addresses given above. In addition, the following
generic email addresses exist:
caugers@accu.org
chair@accu.org
cvu@accu.org
info@accu.org
info.deutschland@accu.org
membership@accu.org
overload@accu.org
publicity@accu.org
secretary@accu.org
standards@accu.org
treasurer@accu.org
webmaster@accu.org

There are actually a few others but I think you’ll find the list above fairly exhaustive!

 Overload – Issue 15 – August/September 1996

 Page 41

Credits
Founding Editor

Mike Toms
miketoms@calladin.demon.co.uk

Managing Editor

Sean A. Corfield
13 Derwent Close, Cove

Farnborough, Hants, GU14 0JT
overload@corf.demon.co.uk

Production Editor

Alan Lenton
alenton@aol.com

Advertising

John Washington
Cartchers Farm, Carthouse Lane

Woking, Surrey, GU21 4XS
accuads@wash.demon.co.uk

Subscriptions

Barry Dorrans
2, Gladstone Avenue

Chester, Cheshire, CH1 4JU
barryd@phonelink.com

Distribution

Mark Radford
mark@twonine.demon.co.uk

Copyrights and Trademarks
Some articles and other contributions use terms which are either registered trademarks or claimed as such.
The use of such terms is intended neither to support nor disparage any trademark claim. On request, we
will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of ACCU. An author
of an article or column (not a letter or review of software or book) may explicitly offer single (first serial)
publication rights and thereby retain all other rights. Except for licences granted to (1) Corporate Members
to copy solely for internal distribution (2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy deadline
All articles intended for inclusion in Overload 16 (November/December) should be submitted to the editor
by October 21st.

 Overload – Issue 15 – August/September 1996

 Page 42

	Editorial
	Designed for abuse
	An appeal!

	Software Development in C++
	Some questions about OOD
	OOD for OCR?
	Data Conversions
	What is OOD?
	What is OOD good for?

	Explorations arounda linked list
	Go with the flow
	Preface
	Analysis and initial prototypes
	Introduction
	Requirements
	Endowment policy quotation
	Stock volatility
	Profit testing

	A solution
	The Cashflow class interface
	The client class interface
	Implementation of the Cashflow class
	Implementation of the client class
	Performing the calculations

	So you want to be a cOOmpiler writer? – part VI
	Introduction
	Parsing considerations
	Other parsing techniques
	What to do with statements
	Separation for reuse
	A parser template
	A parser factory
	More genericity, please waiter!
	Static vs. dynamic
	Next time

	The Draft International C++ Standard
	The Casting Vote
	Poised on the brink...
	Lists of lists
	Where should I put my templates? Revisited
	Stringing us along
	Out! Out! Damned name injection!
	Inching closer

	Making string literalsconstant – a cautionary tale
	Interlude Ð how the standards committees work
	Back to string literals
	A cautionary tale?

	C++ Techniques
	Circles and ellipses revisited
	The shapes of things to come
	Reverting to type
	Life-cycle examples
	More general patterns
	Getting hysterical
	Distinguishable states
	Changing type: mechanisms
	Thanks
	References

	The Standard TemplateLibrary – sorted associative containers part 1set & multiset
	set<> and multiset<>
	Warning

	The return type ofmember functions
	Chris Southern’s view
	What is wrong with bool
	My view (member function return type)
	Klitos’ view
	Conclusion (Francis)
	Another thing for you to consider

	/tmp/late/*Constraining templateparameter values
	Don’t tell the user,tell the compiler
	The specialist
	In range
	In bits
	Summary

	editor << letters;
	Reviews
	Java in a Nutshell

	News & Product Releases
	OMT User Group Seminar

	ACCU and the ‘net
	ACCU.general
	Demon FTP site
	ACCU web page
	C++ – The UK information site
	C++ – Beyond the ARM
	Contacting the ACCU committee

