
 ISSN 1354-3172

Overload

Journal of the ACCU C++ Special Interest Group

Issue 24

February 1998

 Overload – Issue 24 – February 1998

Contents
Editorial 1
Software Development in C++ 3
UML – State-Transition Diagrams by Richard Blundell 3
The Draft International C++ Standard 9
Embed with C++ By Kevlin Henney 9
C++ Techniques 13
pointer<type> By Jon Jagger 13
STL Algorithms: Finding By Francis Glassborow 18
Whiteboard 22
Rational Value Comments By Graham Jones 22
Rational Values Part 3 By The Harpist 23
Protecting Member Data's Right to Privacy By Mark Radford 28
‘There may be trouble ahead’ By Seb Rose 31
editor << letters; 34
News 37
Beyond ACCU... C++ on the ‘net 37
Credits 38

 Overload – Issue 24 – February 1998

Editorial

Managing Complexity

As Ada is to Pascal, as C++ is to C; these
large scale languages are for managing the
complexity of building large scale projects.
You can implement anything in C that you
can implement with C++, but C++ gives you
a hand in many ways. It imposes conventions
for naming, defining state, execution context,
scope management, object lifetime,
encapsulation, and interface definition. All
features that lead to software which can be
easily maintained, documented, and extended.

When faced with an aging mass (or is that a
mess) of C, which must be maintained and
enhanced, there’s little choice but to step back
and invest some time in reorganisation. A
software system with poor structure breeds
poor structure. Engineers tend to follow the
style of the code they’re working with. When
there are few functions that can be reused, all
new code will be a cut, paste and
modification of something else. I’ve
witnessed one project that pushed hard for a
year without any restructuring of the previous
version. The product shipped, late, and the
next year was spent maintaining the bugs of
the shipped binaries.

So, in order to repair the ‘badness’ I see I’m
adopting an iterative rewriting approach, to
apply the aspects of ‘goodness’ that I listed
above.

Naming Conventions: Often, with many
engineers on a project, a common naming
scheme will be defined, and slowly diverged
from. Something of the form
<module>_<action> is common. I’m trying
to move towards <structure>_<method>.
Similar to <class>::<method>, huh? The
simple benefit this provides is to help
engineers find the code they need quickly.
The secondary benefit is a change in state of
mind. The function is a method on an object
of well defined type.

Well Defined State: For each structure I
create a <structure>_new and
<structure>_delete function, and replace the
splattering of calls to malloc and free. This
single point of construction ensures that every
instantiation will be initialised correctly and
consistently. I assess how often each
structure member is referenced, and if
manageable, impose accessor functions.
Often these can be upgraded to include code
to maintain the well defined state of the
object, and to provide some higher order of
functionality. This benefits, and simplifies its
callers.

Execution Context: Renaming each function
within this new scheme forces each function
to be identified with some structure. The first
parameter then becomes a pointer to an
instance of that structure (this).

Encapsulation: When a function can’t be
readily assigned to some structure it’s usually
because it embodies a number of intertwined
concepts. It may have private knowledge of a
number of structures, and have access to
static level data. These kitchen sink functions
can rarely be reused so must be carefully
teased into composite parts. Moving the
functional details of each structure into
accessor functions simplifies the function and
clarifies where its functionality belongs.

Well Defined Interfaces: I’ve been ensuring
that internal functions are declared static
(private), and that global ones are published
in header files (public). I recently found a
module which imported some functions from
another with a cunning cut and paste of the
function prototypes (friend). Definitely bad
practice.

Motivation

I’m not imposing an object oriented design
onto this software just because that’s the way
I like things. That’s the way I see things, so
that’s the way I like them. The motivation is
to reduce maintenance costs, the lead time of

 Page 1

 Overload – Issue 24 – February 1998

new engineers, and to ease the
implementation of new features. With poorly
encapsulated design an engineer must
understand the entirety of the system before
any useful work can be achieved. These few
aspects of an object oriented approach to
software development that I’ve described
above should help move us towards this goal.
Ultimately I hope that new features will be
designed as components, making use of the

newly repackaged and finally reusable
existing code.

Copy Deadline

All articles intended for publication in
Overload 25 should be submitted to the
editor, by March 11th.

John Merrells
merrells@netscape.com

 Page 2

 Overload – Issue 24 – February 1998

 Page 3

Software Development in C++

UML – State-Transition Diagrams
by Richard Blundell

Introduction

In Overload 22 and 23 we looked at some
ways to document and communicate the static
behaviour of a system using static structure
diagrams – class diagrams and object
diagrams. These types of diagram are
extremely useful for many areas of system
design and documentation. Sometimes,
however, some of the dynamic behaviour of
the system needs to be considered. State
diagrams show how a system or single object
of a given class behaves in response to
various events and messages, and are one of
the types of diagrams that the UML supports
for showing dynamic behaviour. The format
of these diagrams in the UML is very similar
to that used in the OMT and Booch methods,
and so some of what follows may be familiar
to a number of you.

States, Events and Transitions

You probably all understand what is meant by
a state. The idea is that an object, or system,
or whatever we are modelling, will stay in its
current state for some finite amount of time
unless something happens – an event. In
figure 1 we have a state called State. The
rounded corners of the rectangle distinguish a
state from the class symbols we saw in
previous articles.

State

Figure 1 – A state called “State” in UML
notation.

A transition can occur (or fire) from one state
(the source state) to another (the target state
– called OtherState in figure 2) as a result of
an event. The solid arrow symbol used to
denote a transition is the same symbol as that

used for an association line with a
navigability arrow on one end in a static
structure diagram.1

State OtherStateevent

Figure 2 – Two states and a transition.

Events can come in a number of different
flavours, depending upon what causes them
(the syntax for these types of events in the
UML is given later). A Change Event occurs,
not surprisingly, when something changes,
and is usually based on a Boolean expression
becoming true (e.g. “when temperature > 0”).
A Time Event occurs after a specified amount
of time has elapsed (e.g. “after 1 minute”).
Call Events and Signal Events are quite
similar, and occur when another object
initiates the transition. The difference is that
the former events occur because of a direct
call for an operation (method) from another
object, whereas the latter occur from an
explicit signal such as user input or an
interrupt timer. In addition, hierarchies of
signal events can be defined using
generalisation, allowing transitions to occur if
either the parent or child signal arrives.

A state machine has to start somewhere. A
small filled circle is used to indicate the
initial state in which the machine finds itself.
When the machine terminates, an outlined
circle can be used to show the final state of

1 I didn’t mention navigation and the naviga-
bility of an association in previous articles.
An arrow head on the end of an association
line in a class diagram shows which way you
can navigate, or find information about, the
association. You can often not easily dis-
cover the participant of an association if you
go against the flow of an association arrow.
If no arrow heads are shown, it is assumed
that navigation is either bi-directional or un-
specified.

 Overload – Issue 24 – February 1998

the machine. These two symbols are shown
in figure 3. If a top-level state diagram
models the lifetime of an object, then the
initial and final states represent object
creation and destruction respectively. They
are actually pseudo-states in the sense that the
system does not, and cannot, actually sit in
these states.

State

Destroy

OtherState

Create

exit

iterate

go

abort

done

Figure 3 – A complete state-transition
diagram, showing initial and final states, and

self-transitions.

Self-transitions can be shown by drawing a
transition line looping back to the state from
which it began, as in the case of the iterate
event in figure 3.

State-Transition Diagrams - An
Example

I was trying to think of a good example to use
to demonstrate state charts. I wanted
something that most of you would understand
or be familiar with. I always find it off-
putting when a discussion presents an
example that confuses me even more because
of my unfamiliarity with the problem domain
used! In the end I settled on a compromise.
The subject matter may be foreign to a lot of
you, but all of you who read Einar’s article in
the last issue of Overload should have heard
of his Finite State Machine (FSM) model of a
digital subscriber loop card. FSMs are ideal
candidates for a state-transition diagram
because they are described in terms of their
different states and the possible transitions
they can make between these states!

To refresh your memory, I have reproduced
the table from Einar’s article in table 1. Note
that the table itself serves to document the
FSM’s behaviour. The format of this
documentation, however, makes it hard to see
quite what is going on. It also does not
highlight errors in the design. For example,
the only way to check that the system cannot
get stuck in, or can never visit, a particular
state, is to work through all possible states
and stimuli in your head or on paper, and
check they all make sense.
Stimu-
lus Current state(s) Next state

decomm <any> Decommissio
n

comm Decommission Normal

warn Normal Warning

minor Normal,
Warning

Minor

major Normal,
Warning, Minor

Major

crit Normal,
Warning, Minor,
Major

Critical

startdload Normal Download

enddload Download Normal

clear Warning, Minor,
Major, Critical

Normal

Table 1 – Stimuli and Transitions for the FSM

In order to generate a state-transition diagram
for this FSM, all we need to do is draw a box
for each state, and then draw arrows to show
possible transitions. We can also include
documentation for the initial state of the
device (Decommission), which is not present
in the tabular format above. The result is
shown in figure 4.

 Page 4

 Overload – Issue 24 – February 1998

Normal

Decommission

Download

enddload

Warning

Minor

Major

Critical
clear

crit

clear

crit

major

clear

crit major

minor

clear

comm

startdload

decomm

crit

major

minor

warn

Figure 4 – UML state-transition diagram for the FS

Nested States

The diagram shown in figure 4 appears quite
complex. This is because there are a number
of similar error states that can all inter-
convert as a result of a number of similar
stimuli. This is where the use of nested states
is useful. Nested states can be used to group
areas of functionality where all the states are
similar. They can also be used to show sub-
algorithms that are present within a larger
algorithm – in other words to show more
detail of the inner workings of a state.

Figure 5 – Nested states in a state-transition
diagram, with transitions into and out of the

nested states.

Transitions can occur from outer states into
the nested state, and transitions can occur
from within a nested state to another outer
state, as shown in figure 5. If the nested
states form an independent and self-contained
algorithm or state machine, initial and final
states can be drawn within it, and entry and
exit can be via transitions to the enclosing

state, as shown in figure 6. Transitions to the
enclosing state are equivalent to a transition
to the initial state of the nested machine. An
“action completed” transition from the
enclosing state is equivalent to a transition (to
and) from the inner final state. Other
transitions can occur from the enclosing state,
and these are equivalent to a transition from
every enclosed state (although this transition
can be masked [or overloaded] by an explicit
transition in the nested machine for the same
event). This consequently allows a potential
economy in transition lines (see the “cancel”
transition in figure 6).

action completed

cancel

Figure 6 – A nested state machine, with
transitions shown to and from the enclosing

state.

In our example, there are a number of error
states that can occur – Warning, Minor,
Major and Critical. One possibility is to add
an error state to our diagram as shown in
figure 5, and nest the different types of errors
within it. This simplifies the case where we

 Page 5

 Overload – Issue 24 – February 1998

clear an error condition, because a path can
be shown from the Error superstate back to
the Normal state, rather than from each of the
inner states. This is, in fact, a slightly untidy

use of nesting since there are so many
transitions into and out of the Error state.

Normal

Decommission

Download

enddload

comm

Error

Critical

Major

Minor

Warning

Critical

Major

Minor

Warning

clear

startdload

decomm

crit

major

minor

warn

crit

majorcrit

minor

major
crit

Figure 7 – UML state-transition diagram for the FSM using the Error state and nested substates.

Note how figure 7 makes it easier to check
the transitions to and from the Normal state,
as well as those between the error states,
despite the fact that nearly every state can
make a transition to every other one!
Nesting states can help to remove clutter in
two ways: by allowing functionality to be
organised hierarchically with the possible
suppression of finer detail; and allowing
functionality to be partitioned into related
activities.

Activity within States

So far we have just considered a state to be
something that a system sits in statically
until it receives an event. In general,
however, a system will be doing something
quite definite while it is apparently lying
dormant in a state. It may be just waiting
for something to happen, but it may also be
processing keyboard input, updating a
display, buffering data, or any number of
things. Furthermore, there may well be
some operations that need to be
accomplished as soon as an object enters the
state, such as setting flags or signalling its
new state, and there may be things that it

must ensure happen before it makes a
transition to a different state. These
operations could be modelled as another
nested state machine, but you have to stop
somewhere! This behaviour can be
documented within the body of the state,
although much of the detail will often be
suppressed. The simple format of these so-
called internal transitions is as follows:

event-name / action-or-activity

There are some special cases for the event-
name. entry and exit specify the actions to
be performed on entering and leaving the
state. Note that these actions will be
performed if a self-transition occurs (see
figure 3), with first the exit action being
performed, and then the entry one as the
system re-enters the original state. If the
operation of the state is itself modelled by
another state diagram, the event-name do
can be used with the name of the nested
state diagram as the activity, implying that
this state operates by running the nested
machine. High-level state charts often use
do a lot to allow the activity of a state to be
described in simple terms or natural

 Page 6

 Overload – Issue 24 – February 1998

language, even if a state diagram has not
even been prepared for the algorithm, for
example:

“do / check order”.

Some examples of these transitions are
shown in figure 8.

eating

entry: salivate
exit: wipe mouth

do: chew
on findBone: spit

sleeping
entry: snuffle

exit: grunt and snuffle
do: snore

on dream: twitch nose

tire / find nest

Figure 8 – Events and actions for internal
and external transitions.

Actions during Transitions

The same format of “event-name / action”
can be used to label transitions that have an
associated action that occurs when the event
fires (see figure 8). For example the
transition:

“insufficient-funds / cancel order”

might link the states “Request Payment”
and “Order Cancelled”. The latter state
signifies that there is no longer an active
order, but the order was cancelled by the
action of the transition itself. Note that if an
action on a transition takes a significant
amount of time, then it may instead really
represent an activity that occurs within an
additional state (so in figure 8 we might
have a walking home state rather than the
find nest action on the transition, with
transitions tire and when(found home)
linking the three states).

A couple of the common event types
mentioned earlier have the following
syntax. For a Change Event based on a
condition becoming true, the when keyword
is used:

 when (controlRods == stuck) /
explode,

and a Time Event uses the after keyword:

 after (3 seconds) / hang-up.

The other types of event are denoted simply
with the operation or signal name.

Concurrency

These days it is often important to consider
how a concurrent system will behave.
State-transition diagrams support
concurrency by using dashed lines to
separate the body of a state into parallel
compartments. Each compartment
represents one thread, and contains an
individual state machine with its own initial
and final states. Control passes to all the
initial states concurrently, and each state
machine continues until it reaches its final
state. When all concurrent threads have
reached their final states an “action
completed” transition takes control away
from the outer nesting state to the next
(possibly also concurrent) state.

Conclusion

It should be pointed out that during the
implementation of our Finite State Machine,
the information contained within table 1
would be of enormous benefit. FSMs are
often implemented with a single “Event()”
method that works out the new state by
using a lookup table. The data in Table 1
effectively flesh out this lookup table
entirely. Why then the need for a State
Chart?

I can think of two good reasons why State
Diagrams are useful. Not all classes or
systems act or are implemented as FSMs (in
practice, only a tiny minority are). In this
case, having tabular state/transition data for
the class may be of little value for the
implementers. The second reason is that
these diagrams demonstrate clearly and
concisely the behaviour of a system, and
allow conceptual or functional errors or
omissions to be spotted rapidly. The UML
was designed for describing and modelling
systems in general. Many of the modelling
techniques of the UML are present for the
conceptual and operational design and
specification of a system. State-transition
diagrams are useful for this phase of system

 Page 7

 Overload – Issue 24 – February 1998

 Page 8

development as well as at implementation
time.

 Overload – Issue 24 – February 1998

The Draft International C++ Standard

Embed with C++
By Kevlin Henney

Something interesting has happened to C++:
it's got smaller. No, the ISO committee has
not taken a set of shears to the core
language and library, pruning it with a
minimalist mandate. But someone has: a
consortium of companies, mostly Japanese
hardware and commodity electronics
manufacturers, has taken the existing C++
standard and simplified it in line with the
need of smaller embedded systems. In the
West, P J Plauger is a key and keen
advocate of the Embedded C++ spec
(EC++).

You can download the spec, rationale,
programming guidelines and other details
from
http://www.caravan.net/ec2plu
s.

Complexity

The needs of a small embedded system are
few; it is more a case of knowing what is
not required than what is. Embedded
systems are lightweight pieces of software
that run in a process control environment,
typically controlling or responding to I/O
from physical devices. Embedded systems
can be found in your VCR, microwave
oven, car, etc. Arguably they constitute the
most widely used systems software in the
world.

They must be standalone, frugal in their use
of resources (this means code space,
memory and execution time), and
responsive to external events such as time or
other device interrupts (hence the close
association between the concepts of real-
time and embedded).

Such software is not well served by full
blown operating systems, large runtime, and
much of the supporting paraphernalia we
have in languages and libraries for large

systems, GUI front ends,
internationalisation, etc. From such a
perspective we can see that assembler seems
ideal for the job, and is indeed traditional.
However, where there is assembler
increasingly over the last decade or so C is
likely to be found. And where there is C,
why should there not be C++? In many
respects C++ is a better C, providing a
cleaner procedural language (better type
system, inline, etc.), and there is also the
addition of support for abstract data type
programming and powerful user defined
types. However, C++ now comes with a
great deal more than this, and the extras are
a potential stumbling block for some
developers and platforms.

There are three kinds of complexity that we
can identify:

Complexity of the language for the
programmer who, in this case, is likely to
come from a C and assembler background;

Complexity of the generated code and its
memory consumption;

Complexity of the runtime support required,
which overlaps to some degree with the
previous point.

Turning back the clock

Given the tight memory constraints (we
complain of the greedy software that seems
to hog the many megabytes we have on our
desktop, but reconsider this in terms of a
handful of kilobytes) and performance
requirements, features such as multiple
inheritance, RTTI and exception handling
demand a relatively high price for their use.
You won't find them in EC++: no cunning
vtable lookup mechanisms or layouts; no
extra type meta-data hiding in your data
segment; and no heavyweight stack frames
to support exception handling.

Part of the philosophy that such features
embrace is that we are programming in the

 Page 9

 Overload – Issue 24 – February 1998

 Page 10

large – indeed, C++ is often presented as a
language specifically for programming in
the large. In small programs this philosophy
does not apply and therefore the features are
not essential; in a non-embedded application
these small overheads are typically non-
issues, and are often the red herrings
optimisation junkies slip on.

Multiple inheritance serves to express
multiple classification schema, partial sets
of properties and a method for mixing
libraries and frameworks. In a small
application whose classification scheme
should be simple, whose properties are well
known, and which is unlikely to use a
multitude (if any) third party class libraries,
the subtle issues thrown up by MI (code and
language complexity) can be easily
sidestepped by not supporting it.

One of the uses for runtime type
information is to allow safe down and cross
casting within a hierarchy, including casts
through virtual base classes. Whilst
safety is still an issue, there is little that
dynamic_cast, typeid and
type_info can offer to embedded
systems. In this case with the baby goes the
bath water: static_cast, const_cast
and reinterpret_cast are all gone as
well.

Hand in hand with safety comes the issue of
reliability and exception handling. At first
sight the C++ exception handling
mechanism would seem to offer all the right
features, however it imposes significant
complexity at runtime for which there is a
price to pay, e.g. the code support for
dealing with destructing partially
constructed objects. EH also requires much
of the meta-data framework used for RTTI.
It seems wise to remove this feature and
resort to traditional error returns, relying on
the simplified path coverage that is possible
with a smaller self contained program to
ensure a complete and well defined
behaviour set. The memory consumption
and execution time is far easier to determine
without EH.

Thanks for the memory

And what of new? Once it returned null on
memory exhaustion, now it throws
bad_alloc... but EC++ has no
exceptions. It may initially seem tempting to
revert to null returning behaviour. However,
an embedded system does not have the
kinds of heap resources that larger
applications get to play with – if, indeed, it
has any. Dynamic memory must be
carefully managed and usage limits must be
known and planned for. Customised
allocation becomes even more important in
embedded systems than in larger
applications, where often the off-the-shelf
new and delete will do the job. Given
this and the ability to install a handler with
set_new_handler, it appears that
programmers have all the control they need.
This leads to the following simplification:
new returns a pointer or the behaviour is
undefined.

For a dedicated EC++ compiler – as
opposed to someone working with the
EC++ subset on an ordinary C++ compiler –
a small optimisation is possible as there is
no longer any need to check for a null return
before executing a constructor on the newly
returned pointer 2.

Where have all the keywords gone?

Some of the surprising things left out of the
language include namespaces, templates and
mutable. On closer inspection we can find
some rationale for the first two. The use of
namespaces is primarily motivated by
programming in the large; mixing third
party class libraries without conflict. This is
clearly less of a requirement in embedded
systems. In truth this was also probably
motivated by the remoteness of such a
feature from C and the aims of EC++: why
trouble programmers who are essentially
non-C++ programmers with the intricacies
of using namespace std – let them
eat prefixes!

2 A change to the ISO C++ draft now makes this possible for
some versions of new.

 Overload – Issue 24 – February 1998

Unfortunately, this does create an area of
incompatibility between EC++ and the
forthcoming C++ standard. To write
common code there is the issue of accessing
library features that are in namespace std
in one system and in the global namespace
in the other. This can be resolved with
judicious use of the
__embeddedcplusplus macro defined
for EC++ compilations:
#include <string>
#ifndef __embeddedcplusplus
using namespace std;
#endif

Perhaps another motivation for not
including namespaces is the subtle name
lookup rules, a minor complexity which is
likely to trip up compiler implementers and
users alike – this has certainly been the case
with their introduction into the parent
language.

An interesting area of potential conflict is
that without namespaces one cannot have
anonymous namespaces, which are intended
to supersede the use of file scope static.
Such is the intent that this use of static
has been deprecated in the forthcoming C++
standard. Similarly, old style access
declarations must be retained in EC++
because using has been omitted.

Following on from the issue of complex
name lookup in namespaces is that of
templates. They represent a useful feature
for type safe, generic programming.
However, in their current form it would be
fair to say that there are a number of
subtleties for implementers and users. The
scale of an embedded application does not
require such a useful uniform mechanism
for reuse and safety, although the loss of the
STL part of the standard library may be a
bitter pill to swallow for current C++
programmers. Safety is no less of an issue,
but the designers of this subset have
definitely taken the view that we are talking
about C programmers who have a void *,
casts and preprocessor mindset.

There is no doubt that removing templates
produces a simpler language, and one less

prone to code bloat, but many will feel a
slight twinge at the loss of such generic and
type safe mechanism (interestingly, this is
one feature that is often called for in Java
even by some of the "hands off, don't touch
that language" voices).

However, I can find no train of logic for
dropping mutable. This supports the
expression of logically const objects that
may undergo physical state change, e.g.
updating a cache on a query. The use of
const, for whatever reason, is something
that confuses many programmers. It is a
design tool that can be carried through to
implementation. If you do not understand
const, you will not understand mutable.

The logic that led to the removal of this
feature is subtly flawed. I suspect that the
designers of the subset felt uncomfortable
with the idea that one could have an
immutable object with mutable parts,
especially in an environment where some
const objects are candidates for being
placed in ROM. However, any object with a
constructor is not really ROM-mable and so
we are talking about traditional C type
structures rather than class objects and so
the argument does not apply. What will
likely happen is that casts will be used to
remove const-ness on "mutable"
members, with slightly more drastic
consequences: the behaviour is officially
undefined.

To answer the question posed in this
section's title, all the C++ keywords not
used in EC++ remain keywords – in fact,
they acquire the official status of "useless
keywords".

Library visit

Whilst the impact on the language has been
fairly comprehensive, it doesn't hold a
candle to what has happened to the library.
Clearly some of the language support has
been affected by the changes, but most
noticeable is the impact that the removal of
templates has had: most of the library has
gone!

 Page 11

 Overload – Issue 24 – February 1998

 Page 12

Among the survivors we have...

• A string class based on char;

• float_complex and
double_complex, rather than a
templated complex class (and
therefore a minor name incompatibility);

• Only ios, istream and ostream
classes for char based I/O, with cin
and cout as the only standard
instances; and

• Most of the C library – although
assert junkies should note that it has
been dropped.

Gone is STL, the numerics library and
internationalisation. However, some
rationalisation can be found in terms of the
purpose of embedded systems: a basic
maths library that includes complex is an
important requirement for signal and image
processing; the rest of the numerics library
would be "nice to have" but is not essential.
And internationalisation? Not exactly a
pressing issue on genuinely embedded
systems! For many, the loss of perhaps one
of the most comprehensive sets of general
utilities in the form of the library's STL
component is perhaps the hardest to
stomach.

Discussion

In some respects Embedded C++ represents
a return to its systems programming roots
for C++. It is a mostly compatible subset
that represents not only an interesting
exercise in language subset design, but also
a practical and revitalising influence on the
language and its fortunes.

C++ is a general purpose language with low
level roots that are easily exposed by
simplifying it in line with a set of
requirements. An interesting contrast to this
is the interest in applying Java to high
integrity and embedded systems: where
features are removed from C++ to get to this
simpler and more deterministic core, Java

must be added to as this is not its core
domain3.

The Embedded C++ standard is a de facto
one. It is defined by reference to the
emerging C++ standard (i.e. omission or
rewording of sections); by definition it
cannot become officially stable before its
larger parent does. Because of its
relationship with C++, EC++ can be
implemented either as a switch on full C++
compilers (as in the case of EDG front end),
or as a language in its own right.

In an ideal world we would not need to
define a subset, but we know that this world
is not ideal. Compilers do not always take
advantage of all the optimisations they
might do. Vendors do not always provide
compilers, or even full implementations, on
the more restricted platforms. For small
embedded platforms this can severely
restrict the choice of a developer to either
one poor C++ compiler or no C++ compiler
at all.

The elimination of some features can be
justified on the grounds of optimisation: no
matter how well optimised exceptions and
RTTI become, there is no code that has less
overhead than no code, i.e. removing these
language features will always result in an
optimisation. For other features the case is
perhaps less compelling: the overhead of MI
is not present if it is not used, and templates
have zero runtime overhead (although
careless use could lead to code bloat). In
response to this Dinkumware
(http://www.dinkumware.com)
provides both a core EC++ library and an
STL for EC++, i.e. templates are included,
but there are no heavy overhead features
such as locales and exception safety related
code. A superset of the subset, if you like.
For many embedded systems – those of a
higher spec – the scale of the software and

3 Historically Java (then Oak) was to be used for the development
of embedded systems, but it has moved away from this centre,
whereas C++ has merely added to its heritage. This explains the
phenomenon of addition vs removal described here – as well as
going a long way to explaining the difference in the size of each
language!

 Overload – Issue 24 – February 1998

 Page 13

the available resources do not fully justify
the use of EC++.

There is another perspective that may help
you understand the motivation for defining
the subset. This is not just about optimising
for a given set of platforms; programming is
a human activity, and we must consider the
human aspect. For existing C++
programmers, EC++ offers a little but not a
great deal. For C programmers who might
otherwise have had no intention, or
opportunity, to move to full C++ EC++
offers them an opportunity. In other words,
EC++ is optimised for a particular set of
developers. A simple subset therefore has
appeal to both vendors and developers, and
therefore has the potential to increase the
use of C++ and many of the techniques it
supports. I welcome this, even though I do
not necessarily agree with the rational
behind all of the features (or lack thereof).
Given a simple choice between
programming without templates, exceptions
and the like, versus programming an
equivalent system in C, I know which I
prefer.

But EC++ is not an excuse for programmers
to indulge in wilful ignorance of the C++
language. It is a language subset for a subset
of systems: given the high spec of many
embedded systems these days, you would
also not expect it on the majority of these. It
really is a subset for tightly constrained
systems, and goes further down than the
Ada 95 subsets for similar systems can
manage.

Some might be concerned that EC++ will
affect the idiomatic use of C++; I can
confidently say that although pure EC++
cannot embrace the most recent usage
idioms, it is closer to the spirit of modern
C++ than the majority of existing C++ code.

Without trotting out too many cliches, a
field of languages provides you with "horses
for courses": Embedded C++ runs a
different race to the others. As yet, to quote
Plauger, it is not a "strongly hyped"
language.

Kevlin Henney

kevlin@acm.org

C++ Techniques

pointer<type>
By Jon Jagger

The built-in pointer is very powerful. And
very dangerous. It's powerful because it can
be used for many purposes. It's dangerous
for the same reason. For example
class dodgy {};
void very(dodgy *ptr) { ptr++; }

Incrementing (or decrementing) a built-in
pointer that doesn't point into an [array]
makes no sense. The built-in pointer type is
too powerful [1]. In C++ we can rectify this
by creating different pointer classes for
different pointer uses. I hope to cover
specific pointer classes in coming articles
but for now I'm just going to get the ball
rolling with a general look at a pointer class.

A good place to start is a minimal pointer
class. What is the minimal interface for a

pointer class? To answer that let's look at a
minimal interface for a built-in pointer.
class base {};
base object;

base *ptr = &object;// initialisation
ptr = &object; // assignment
*ptr; // dereference: *
ptr->method(); // dereference: ->
if (ptr != ptr); // comparison: !=
if (ptr == ptr); // comparison: ==

if (ptr); // comparison: !=
 // null ptr, implicit

if (!ptr); // comparison: ==
 // null ptr, implicit

Based on this, a first cut might be...

// accu/pointer.hpp
...
namespace accu
{
 template<typename type>
 class pointer

 Overload – Issue 24 – February 1998

 {
 public: // construct/copy/destroy
 pointer(type *p = 0);
 // default copy constructor
 // default copy assignment operator
 // default destructor
 public: // dereference
 type &operator*() const;
 type *operator->() const;
 public: // conversions
 operator bool () const;
 bool operator!() const;
 private: // state
 type *ptr;
 };
}

namespace accu // relational operators
{
 template<typename type>
 bool operator ==
 (const pointer<type> &lhs,
 const pointer<type> &rhs);

 template<typename type>
 bool operator !=
 (const pointer<type> &lhs,
 const pointer<type> &rhs);
}

This is almost the minimal interface I have
in mind, but not quite. What about public
inheritance?
class deriving : public base {};
deriving lesson;
base *raw = &lesson;// initialisation
raw = &lesson; // assignment

We need to ensure the pointer<base> object
can be initialised/assigned from a
pointer<derived> object.
pointer<base> ptr = &lesson;
ptr = &lesson;

This can be done. It requires two template
member functions: a template copy
constructor and a template copy assignment
operator.
// accu/pointer.hpp
...
namespace accu
{
 template<typename type>
 class pointer
 {
 public:
 ...
 template<class derived>
 pointer
 (const pointer<derived>& rhs);
 ...
 template<class derived>
 pointer &operator=

 (const pointer<derived> &rhs);
 ...
 };
}

There are a couple of minor points of
interest. Firstly, I have used <class derived>
and not <typename derived>. Secondly,
pointer<type> and pointer<derived> are
separate types. pointer<type> has no access
to the private data of pointer<derived>. For
example, the following will not compile as a
definition of the template copy constructor.
// accu/pointer_template.hpp
...
namespace accu
{
 ...
 template<typename type>
 template<class derived>
 pointer<type>::pointer
 (const pointer<derived> &rhs)
 : ptr(rhs.ptr)
 {
 // empty
 }
}

I will return to this problem. Before I do, I’d
like to cover a subtlety involving the
template copy constructor. The C++
standard clearly states that a template
constructor is never a copy constructor [2].
In other words, the presence of a template
constructor does not suppress the implicit
declaration of the copy constructor. A
similar rule applies for a template copy
assignment operator. Let’s take a moment to
think about those implicit declarations.
There’s the copy constructor, the copy
assignment operator and the destructor. Be
clear what these invisible compiler
generated methods are...
// accu/pointer_template.hpp
...
namespace accu
{
 ...
 template<typename type>
 pointer<type>::pointer
 (const pointer &rhs)
 : ptr(rhs.ptr)
 {
 // empty
 }
 ...
 template<typename type>
 pointer<type>
 &pointer<type>::operator=
 (const pointer &rhs)

 Page 14

 Overload – Issue 24 – February 1998

 Page 15

 {
 ptr = rhs.ptr;
 return *this;
 }
 ...
 template<typename type>
 pointer<type>::~pointer()
 {
 // empty
 }
 ...
}

There are two things about these compiler
generated implicit methods you might
question. Firstly, because they are implicit

they're not, well, explicit. There is
something to be said for having them in
hard, visible ink in the interface. Especially
in a teaching environment. Or if you want to
single step while debugging. Secondly,
they may not be quite what you want. It is
impossible for any of these three to generate
an exception (just as it is impossible in the
corresponding raw pointer expressions) yet
they do not have a throw() specification. For
me these two factors tip the balance. Here’s
the revised class definition.

// accu/pointer.hpp
...
namespace accu
{
 template<typename type> class pointer
 {
 public: // construct/copy/destroy
 pointer(type *p = 0) throw();
 pointer(const pointer &rhs) throw();
 template<class derived> pointer(const pointer<derived> &rhs) throw();
 pointer &operator=(const pointer &rhs) throw();
 template<class derived> pointer &operator=(const pointer<derived> &rhs) throw();
 ~pointer() throw();
 public: // dereference
 type &operator*() const;
 type *operator->() const;
 public: // conversions
 operator bool () const throw();
 bool operator!() const throw();
 private: // state
 type *ptr;
 };
...
}

namespace accu // relational operators
{
 template<typename type>
 bool operator == (const pointer<type> &lhs, const pointer<type> &rhs) throw();

 template<typename type>
 bool operator != (const pointer<type> &lhs, const pointer<type> &rhs) throw();
}

I have left the operator*() and operator->()
declarations without a throw() specification.
The bodies of these operators are ideal
places to check for a null pointer and throw
an appropriate exception. However, what is
an appropriate exception? The C++ standard
basically gives a choice of two. logic_error
and runtime_error. A logic_error is an error
that the user could (at least in theory) avoid.
Dereferencing a null pointer<type> is
avoidable since the user can make the check

themselves. For example via the bool
conversion operator. A reasonable exception
is therefore a logic_error. One way to
implement this would be create a private
method called check_not_null() which
operator* and operator-> could then call.
However, check_not_null() would then
appear in the interface. Private but still
visible. Really it is part of the
implementation. I prefer my interface files
to be as clean as possible. Also, there is still
the problem of how to implement the

 Overload – Issue 24 – February 1998

template copy constructor, the template
assignment operator and the global
comparison operators. One solution is to
provide a simple auto_ptr-like accessor
called get(). It might be important to allow

easy access to the underlying raw pointer (to
use dynamic_cast for example).

// accu/pointer_template.hpp
#if !defined(ACCU_POINTER_INCLUDED) || defined(ACCU_POINTER_TEMPLATE_INCLUDED)
#error include "accu/pointer.hpp" : pointer_template.hpp must not be included directly
#endif
...
#define ACCU_POINTER_TEMPLATE_INCLUDED
...
#include <exception>
...
namespace // unnamed
{
 template<typename type> void check_not_null(type *ptr)
 {
 if (ptr == 0) throw std::logic_error(“pointer: null”);
 }
}

namespace accu // construct/copy/destroy
{
 ...
 template<typename type> template<class derived>
 pointer<type>::pointer(const pointer<derived> &rhs) throw()
 : ptr(rhs.get())
 { // empty }
 ...
 template<typename type> template<class derived>
 pointer<type> &pointer<type>::operator= (const pointer<derived> &rhs) throw()
 {
 ptr = rhs.get();
 return *this;
 }
 ...
}

namespace accu // dereference
{
 template<typename type>
 type &pointer<type>::operator*() const
 {
 ::check_not_null(ptr);
 return *ptr;
 }

 template<typename type>
 type *pointer<type>::operator->() const
 {
 ::check_not_null(ptr);
 return ptr;
 }

 template<typename type>
 type *pointer<type>::get() const
 { return ptr; }
}

namespace accu // comparison
{
 template<typename type>
 bool operator == (const pointer<type> &lhs, const pointer<type> &rhs) throw()
 { return lhs.get() == rhs.get(); }

 template<typename type>
 bool operator != (const pointer<type> &lhs, const pointer<type> &rhs) throw()
 { return !(lhs == rhs); }

 Page 16

 Overload – Issue 24 – February 1998

}

One issue that still remains unmentioned is
whether the constructor should be explicit
or not. Consider the consequences if the
constructor was made explicit...
void oops(const pointer<base> &lhs,
const type *rhs)
{
 pointer<base> local = lhs;
 // FAILS, have to use 1
 if (0 == lhs)...
 // FAILS, have to use 2
 if (lhs == 0)...
 // FAILS, have to use 2
 if (0 !== lhs)...
 // FAILS, have to use 3
 if (lhs != 0)...
 // FAILS, have to use 3

 pointer<base> local(lhs);
 // WORKS, 1
 if (!lhs)...
 // WORKS, 2
 if (lhs)...
 // WORKS, 3
}

Is this better? It’s perhaps a matter of
personal preference. But there is a
difference. Which is more explicit?
if (lhs)... or
if (lhs != 0)...

I think the answer largely depends on the
level you’re viewing from. You might argue
that the latter is more explicit because it’s
explicitly comparing lhs to the null pointer.
But is it? Zero is not the null pointer. It’s
zero! By the same token you might argue
that the former is more explicit because it’s
not explicitly comparing lhs to zero. At a
higher level you can read if (lhs) as “if lhs is
true” or “if lhs is valid”. Whatever you feel,
ultimately even if the constructor is explicit,
you can make all versions of the
comparisons work. You just have to provide
global operators. For example...

 Page 17

 Overload – Issue 24 – February 1998

namespace accu
{
 template<typename type>
 bool operator==(const pointer<type> &lhs, const type *rhs) throw()
 { return ::raw(lhs) == rhs; }

 template<typename type>
 bool operator==(const type *lhs, const pointer<type> &rhs) throw()
 { return rhs == lhs; }

 template<typename type>
 bool operator!=(const pointer<type> &lhs, const type *rhs) throw()
 { return !(lhs == rhs); }

 template<typename type>
 bool operator!=(const type *lhs, const pointer<type> &rhs) throw()
 { return !(rhs == lhs); }
}

That's almost it for now. I'll just leave you
with one final thought.

What you don't implement (eg ++ in pointer)
can be as important as what you do.

1. [1] Scientific and Engineering C++, John
J.Barton & Lee R.Nackman, Addison
Wesley, ISBN 0-201-5393-6, Chapter 14
Pointer Classes, page 419

2. [2] C++ Draft Standard, CD2, 12.8
Copying class objects, Footnotes 104 107

Jon Jagger

jjagger@qatraining.com

STL Algorithms: Finding
By Francis Glassborow

The issue before last I wrote a brief survey of
the resources the STL provides to support
your need to sort a container of objects.
Other things got in my way so I missed an
article for the last issue. But I had not
forgotten. I think that mastery of the STL as
such and the underlying philosophy is
important. Though a relative late comer in
the process of standardising C++ I think that
it is one of the most significant developments
in the language. I would go so far as to state
that anyone who has not mastered the STL
has no right to either present courses on C++
nor to write books about it. I know that I
have been highly critical of C++ in the past
and probably will be again but the STL
together with exception handling and
namespaces are three vital elements that make
modern C++ something special. The class
concept did much to move us on from the
procedural style of programming that

characterises good C. The concept of
component genericity, good encapsulation
and proper management of problems take us
from the classic C++ of the 1980’s to what
should be the C++ of the late 90’s.
Unfortunately it will be well into the next
millennium before the majority understand
this.

The much sought after silver bullet actually
has nothing to do with a new programming
language and little to do with a change in
methodology. What is needed is for
programmers to understand their tools and
use them properly. With the level of
instruction currently on offer that is a
hopeless case.

OK, end of rant and on with the topic that
logically follows sorting: searching.

C offered just one library mechanism for
searching: bsearch(). You might guess that
bsearch applies a binary search. There is
nowhere in the ISO C Standard that places
any such burden on the implementor. The

 Page 18

 Overload – Issue 24 – February 1998

only limitation is that the elements of the
array that match the required criterion shall
come after all those that compare less than
and before all those that compare greater
than. In other words the array shall have been
so sorted that a binary search would work. Of
course most implementors will use a binary
search because that would seem the obvious
solution to the problem but their choice is a
pure quality of implementation issue.

The STL algorithms place a far greater
requirement on their implementors. In
addition there are more options open to you.

Sequences & Containers

You need to recognise that among containers
there is a sub-group of sequences. A
sequence is a special form of container
wherein it makes sense to speak of one
element coming before another. Arrays,
vectors, queues, lists are all examples of
sequences. There are also containers like
bags and sets where there is no ordering. In
between we have things like maps where
there may be an ordering but there does not
have to be. Make sure that you understand
that. The idea is not the same as the idea of
being sorted. A non-sequence container
cannot be sorted because the concept of order
is alien to the concept (of course the
underlying data-structure used to implement a
bag will have some linear ordering in storage
but that is a low-level implementation detail
that has nothing to do with the concept of a
bag.) It is implicit in a sequence container
that it can be sorted, but it does not have to
be. When we look at the algorithms we will
need to ask ourselves if they require that the
container is a) a sequence and b) sorted (by a
criterion related to the search criterion).
There is no point in looking for the first of
something if it is not in a sequence, but it is
perfectly reasonable to ask if an element is in
a container even if it is a non-sequence
container type.

So much for the general concept. However
trying to handle the general concept of a non-
sequence container would be rather daunting
so the STL generally assumes that whether
they are sorted or not, containers will be

sequences. Even our sets and bags will allow
us to iterate over all elements, addressing
each once. So the important distinction will
not be whether an STL container is a
sequence but whether it has been ordered.

Unordered Sequences

Note that an unordered sequence does not
mean that its order is meaningless. On the
contrary, the order may be extremely
important and not to be disturbed. If you
doubt this consider what would happen if I re-
ordered the sequence of symbols that make
up this paragraph.

Of course these include inappropriately
ordered ones. Basically you want to ask one
of the following questions about such a
sequence. Remember that writing code to
answer a specific question for a specified
container type can be trivial but the purpose
of placing these operations into the STL is to
ensure that we can change the container type
and still have our code work.

[In the following vec is an instance of
vector<int>. and that ip is a
vector<int>::iterator. Unless stated
otherwise the first two parameters of the STL
find family of functions are iterators
delineating the range of element to be
checked. I have also omitted the std:: prefix.
In practice you would be well advised to
retain this prefix because the names of many
functions in the STL algorithms are obvious
and so likely to have been used elsewhere in
code.]

Where is the next instance of something?

To do this you use find(). The first two
parameters are iterators that identify the
sequence to be searched. (Remember that the
STL always uses the rule of giving the
iterator of the first element and the iterator for
one after the last one.) The next parameter
gives the value to be found. Note that this is
a value (though it is a reference parameter)
and so relies on there being a definition of
operator==() available for the type of the
elements of the sequence.

 Page 19

 Overload – Issue 24 – February 1998

Example:
 ip=find(vec.begin(), vec.end(), 7);

ip will be set to the first instance of 7 in the
vector. If there isn’t a 7 in vec then the
iterator of the end boundary (vec.end() in the
example is returned – there isn’t a general
null-iterator so we have to make do and trust
the programmer to check)

Where is the first instance of something that
matches a specific rule that is provided as a
predicate?

To do this you use find_if(). The first two
parameters give the sequence to be searched.
The third parameter is a predicate, that is
either a function or a function object (instance
of a class that includes an overload for
operator().) The predicate must take a single
parameter of a type appropriate for the
sequence and return a bool.

Example:
 ip = find_if(
 vec.begin(),
 vec.end(),
 bind2nd(less<int>, 12));

I will deal with the tools for creating
predicates in another column. The above
example uses two items from the STL to
create a predicate that returns true if the
element is less than 12. The result is that *ip
will be the first element of vec that is less
than 12.

How many instances of a value occur in the
container?

Simple; use count() and give it the required
value as its third parameter.

Example:
int i = count(vec.begin(),vec.end(), 7);

will count the instances of 7 in vec and store
the answer in instances.

How many elements satisfying a specific rule
occur in the container?

It is the purpose of count_if() to answer this
question. Its third parameter will be a
predicate that provides the rule.

Example:
 int instances = count(
 vec.begin(),
 vec.end(),
 bind2nd(not_equal_to<int>, 41));

Will give you the number of elements of vec
that are not equal to 41.

Where is the first instance of an element of
one sequence in another?

The answer is provided by find_first_of()
which takes four parameters. The first two
are consistent with our convention in that
they provide the sequence to be checked for a
value. The remaining parameters are iterators
that delineate the list of acceptable values.
This is a very useful algorithm because it
allows me to provide a ‘list’ of things any one
of which will satisfy my requirement.

Where is the first instance of a consecutive
pair of values in the container?

This question is answered by adjacent_find().
The third parameter is a predicate that takes
two arguments of the type in the sequence.

Example:
 ip = adjacent_find(
 vec.begin(),
 vec.end(),
 greater<int>());

will result in ip iterating the first element of
vec that is greater than the next one.

Sub-sequences

As well as being able to search for and count
elements that either match a given value or
conform to a given rule, we can also consider
the relationships between pairs of sequences.
Sensibly we can check if two sequences
match (contain the same values in the same
order) with equal() (four parameters
delineating the two sequences.)

If two sequences are not equal it makes sense
to ask where is the first element that does not
match. The answer to this is provided by
mismatch().

We could also want to check a sequence to
see if it contains a specified sub-sequence.

 Page 20

 Overload – Issue 24 – February 1998

The STL provides us with two functions for
this purpose. search() (with four iterator type
parameters) returns the iterator of the first
element of the first instance of the second
sequence as a sub-sequence of the first one.
find_end() returns an iterator to the last
matching sub-sequence. The choice of
function name for these algorithms leaves
much to be desired. When the experts have
spent hours thrashing out the details they
have little time or energy left to work on
name consistency. Sad, but we should be
thankful for all they did rather than moaning
about the way they fell short of perfection.

There is a third function concerning sub-
sequences and that is search_n(). It is far
from obvious what this function does and I
had to spend quite a time studying it before I
understood it (I hope). What this function
does is to search for consecutive repetitions
within a sequence. The required number is
given in the third argument of the function
call. So:
ip= search_n(vec.begin(),vec.end(),5,3);

would set ip to the first element of vec that is
the first of five consecutive threes.

The basic versions of each of the sub-
sequence functions assumes that the
comparison will be done strictly in terms of
equality. However if you want to provide
some other rule to determine what you mean
by matching elements then you can provide it
as a final extra argument. So if vec1 is
another vector of int then:
 equal(
 vec.begin(),
 vec.end(),
 vec1.begin(),
 vec1.end(),
 less<int>())

returns true is every element of vec is less
than the corresponding element of vec1 and
the two vectors are the same length, otherwise
it returns false. It might have been wiser to
have called this function match but that is
history.

Curiously there is no function that counts the
number of instances of a sub-sequence within
a sequence. You must also be careful when
searching for a sub-sequence that is

composed of consecutive identical sub-
sequences (within the terms of what
constitutes a match). It may be clear that
searching for an exact match with the
sequence 1,2,1,2 leaves the question of what
to do with it finding 1,2,1,2,1,2,1,2 (two
instances or three?) but when you start
providing a rule via the extra parameter the
potential for the unexpected increases.

Sorted Sequences

Searches on unsorted sequences (or
sequences sorted by an inappropriate
criterion) are inefficient because little can be
done to improve on a straight linear search
(there are a few improvements which have
been developed for text searches but they are
basically linear improvements). If you want
to check that there are no instances of 64 in
vector of a million ints then that will take a
thousand times as long as making the same
check on a vector of a thousand ints. Of
course if what you are looking for is near the
start of a container you will get a quick
answer, but if not you will have to wait (or
invest in a large array processor).

When you have an appropriately sorted
sequence you have an opportunity to apply a
binary search. That is a vast improvement as
it works in a time proportional to the number
of bits needed to represent the number of
elements being searched. This means
searching through a million items at worst
takes about twice as long as searching a
thousand.

The STL function you need is
binary_search(). It takes either three or four
arguments (the usual first two, followed by
the value required and an optional predicate
to define match).

When you have a sorted sequence you might
be interested in a sub-sequence that meets
certain boundary conditions. There are three
functions that support this requirement.

lower_bound() returns an iterator to the first
element that meets the requirement specified
by its final argument(s). This function is an
optimised version of find() (or find_if()) that

 Page 21

 Overload – Issue 24 – February 1998

 Page 22

takes into account that the sequence is
ordered.

upper_bound() returns an iterator to the first
element that fails to meet the requirement
after one that has.

equal_range() returns a pair of iterators (pair
is an STL component) that delineate the sub-
sequence that meets the requirement specified
by the final argument(s).

Conclusion

The above is a rather skimpy survey of the
features of STL that support the requirement
to find or count elements that meet specific

constraints. Rather than spend your time
writing your own functions for such purposes
you would be better to study those that are
relevant to your needs as and when those
occur. That way you will produce more
maintainable code that will gain from the
expertise that has been applied in producing
implementations of STL. Of course you will
need a good STL implementation to get the
best advantage but even a poor one is likely
to be better than the handcrafted code of all
but the most expert.

Francis Glassborow

Francis@robinton.demon.co.uk

Whiteboard

Rational Value Comments
By Graham Jones

I have some comments on the Harpist's
'Rational Values' articles. He asked for an
algorithm to convert floating point numbers
to fractional form. There is a good algorithm
based on continued fractions which does this:

Given a real number z>0, define p[0]=0,
q[0]=1, p[1]=1, q[1]=0, and x[1]=z.

Then for n>=2, recursively define
a[n]=(int)x[n-1], p[n]=a[n]*p[n-1]+p[n-2],
q[n]=a[n]*q[n-1]+q[n-2] and x[n]=1/(x[n-1]-
a[n]). The sequence p[2]/q[2], p[3]/q[3], ...
gives the best rational approximations to z. If
z is rational, a[n] will equal x[n-1] for some n
and z=p[n]/q[n].

However, I am very dubious about the
usefulness of this. In fact it is clear that the
Harpist and I have very different ideas about
what a Rational class should look like. My
idea of a Rational class is based on something
that might actually be useful, and the question
I asked myself was: why should anyone use it
in preference to floating point numbers? The
only possible advantage I can see is that
calculations with rationals are exact. If you
convert floating point numbers to rationals,

this advantage is lost. I can see no point in
providing such a conversion, and providing it
as a constructor seems positively harmful,
more or less guaranteeing that users will
misuse the class, accidentally or otherwise.

I should also point out that while the
continued fractions method provides a good
approximation to π and many other values,
the best approximation to 0.000007 is 0 using
16-bit numerator and denominator. If the
numerator and denominator have limited
ranges, rationals are not good for general
purpose arithmetic.

For this and other reasons it seems to me that
multi-length integer arithmetic would be
essential for a useful Rational class. Once this
is done, the conversion from floating point
can be done exactly, by a completely different
method - frexp() and modf() from math.h
point the way. (Even then, I think that
providing the conversion as a constructor is a
bad idea.) The Harpist talks about multi-
length integers as something that could be
added later, but much of the code would have
to be rewritten and it would seem better to me
to start off by writing a BigInteger class.

Graham Jones

mailto:Francis@robinton.demon.co.uk

 Overload – Issue 24 – February 1998

Rational Values Part 3
By The Harpist

First let me thank Graham for taking the
trouble to write this letter drawing my
attention to one of the obscure corners of
mathematics that is easily forgotten, even by
those who know of its existence. Continued
fractions is a powerful tool and one that
deserves to be better known. Perhaps it
deserves some coverage in Overload so that
programmers can add them to their toolkits.

Now, let me address the rest of his comments.

Purpose

My aim in writing about a rational class was
to cover various aspects of the design of a
pure value based class. I was not trying to
provide an industrial strength
implementation. I am a great believer in
providing knowledge in a relevant context. I
think too many writers introduce things like
‘mutable’, ‘explicit’ etc. and then thrash
around for an example. I prefer to start with
something that seems reasonable as an
objective and then see how various facilities
become possible answers to problems.

Things like the use of mutable to provide
what is, in essence, a caching facility. That is
a general idea that can be used in many
different circumstances.

One of the major problems of class design has
been that different designers have very
different views as to what is required. Often
several views are equally valid and only the
application domain can make one preferred to
another. This problem lies at the root of the
difficulties that WG21/X3J16 experienced in
designing a string class. Everyone has their
own needs when it comes to strings. You
cannot even achieve a compromise by
providing a slim base class from which
individuals can derive their own application
specific version because some of the
differences lie deep within the low-level
design.

Think about how C managed arrays. It
provided a very primitive facility that actually
fails to meet the needs of all but very low
level programmers. When the language
designers were asked why they had not
provided something that was more robust and
relied less on responsible programming they
claimed that every application domain makes
its own demands on the array concept and
that those working in these domains should
craft their own array abstraction. Sadly very
few programmers seem to understand this.
Instead they blame C for providing
minimalist facility.

Curiously the C++ string class (or to be
precise, the basic_string template class)
is what happens when you try to take the
union of everyone’s wishes. The interface is
very fat and I suspect that implementations
will be less than efficient. In many cases this
will be fine. The majority of programmers
will find that an instantiation of the standard
template class will meet their needs
adequately. Memory demands and fat
interfaces are relatively less important these
days. However where more performance is
needed programmers will need to write their
own string abstraction.

We should get into the habit of encapsulating
our components into suitable namespaces.
Even were I certain that a particular class was
the perfect abstraction I should still respect
the views of others by wrapping my work in a
namespace.

Using a namespace

When we look at the implementation of the
rational abstraction we realise that some parts
of that implementation necessarily leak out of
the class. Things like the implementation of
operator<< and operator>> for
streams have to be outside the Rational class.
However they are inherently part of the
abstraction. Now that we have namespace
all this baggage should be encapsulated into a
namespace. So we should write:
namespace RationalSpace
{
 class Rational
 {

 Page 23

 Overload – Issue 24 – February 1998

 // all the normal class
 // based material
 };
 // all the conventional
 // out of class support
}

One advantage of a namespaces for
encapsulating an abstraction is that they can
be re-opened. By this I mean that extra
material can be added elsewhere at a later
stage. Obviously it would be bad
programming practice to invade some other
programmer’s namespaces but the
extensibility of namespaces serves a similar
purpose to public inheritance used to add
features to a class. One thing you cannot do
in a namespace is to override functionality
provided elsewhere in the namespace.

Many things that we have previously
provided within a class scope might now be
exported into an encapsulating namespace
scope. When programmers get used to using
declarations rather than just lazily writing
using directives we will be able to place
such things as enums and typedefs into the
namespace. This will simplify the correct
use of namespaces. Applying this to my
Rational abstraction and we might get:
namespace RationalSpace
{
 typedef unsigned int integer_type;
 class RationalException {};
 class RangeError:
 public RationalException{};
 // more exception classes
 class Rational
 {
 // private interface
 public:
 // public interface
 };
 // out of class functionality
}

Note the empty classes that provide types for
exception handling. Of course exception
objects do not have to be vacuous but very
often all we need is a mechanism to identify
what kind of exception occurred. Building
them into hierarchies is desirable because it
allows users to catch distinct exception types
or bundles of them.

I still haven’t introduced you to the full power
of namespace. I should do something to
identify that this material is part of a tutorial.
The obvious thing is to wrap all my tutorial
material into a namespace. So we get:
namespace Tutorial
{
 namespace RationalSpace
 {
 // as before
 }
}

and I can re-open namespace Tutorial
to add other tutorial material. Unfortunately
that name is a little too obvious and once the
idea gets around we will have problems from
using components from different people’s
namespace Tutorial. I need to be a bit
more verbose and write something like:
namespace TheHarpistsTutorial
 {
 namespace RationalSpace
 {
 // as before
 }
}

By now you are beginning to think that all
this is fine in theory but it is all becoming
very verbose. If you have understood what
namespaces are intended to provide you will
realise that:

using namespace
TheHarpistsTutorial::RationalSpace

removes the verbosity at the cost of polluting
the global namespace and opening the door to
all those name conflicts we are trying to
avoid. There is no point in providing a
facility that is so clumsy that people are going
to go back to the bad old ways. What we
need is a nice short alias and C++ provides
just what we need. We can write:

namespace Rational =
TheHarpistsTutorial::RationalSpace;

This mechanism doesn’t just reduce verbosity
but it also allows us provide our choice of
components with locality. Suppose that I
wish to switch from using the component
choice to an industrial weight one provided
by someone else. I can write:

 Page 24

 Overload – Issue 24 – February 1998

namespace Rational =
JohnSmithsIndustrial::RationalNumber;

As long as the substitute provides equivalent
functionality the rest of my code will work.
You might think that this is pushing my luck,
but what about being able to switch between
versions of the same library? If the library
implementor understands the use of
namespace they will ship new releases in
versioned namespace so we might have:
namespace MyLibrary_v1_0
{
 // version 1.0
}

Later we would have:
namespace MyLibrary_v1_1 {
 // new release
}

and so on.

The user who is uninterested in what version
they are using can be insulated from the
feature by having header files that start with:

namespace MyLibrary = MyLibrary_v1_0;

in the first release, and equivalent statements
for later releases. Those who care would be
able to use more primitive headers that used
the ‘true’ namespace rather than the alias.
They could then use the alias mechanism to
select the version they wish to use if they
wanted to be able to control change. That
way you can keep multiple versions on your
system and not have to worry that a work
around for an earlier version will blow up on
a newer one.

Of course all this only works if we can
persuade library vendors to use the facilities
of the language.

To Convert Or Not

Graham raises an excellent point with regard
to my decision to have a constructor that has
a long double parameter. In some
application domains it would certainly be a
mistake. It is also true that providing it
encourages abuse. But where we would part
company is in where that abuse would arise.
Programmers often know various

mathematical constants as decimals and it
becomes tedious to have to convert these to
good rational approximations. I think most
would expect to be able to create a rational
from a floating-point type. Anyway even if
you disagree, this is a tutorial exercise.
However just because a responsible
programmer can make a considered decision
is no reason for allowing an irresponsible
compiler to play fast and loose. It was for
this reason that the keyword explicit was
introduced into the language.

Just as good programmers qualify global
functions with static until they know that
they want to use them outside the current
translation unit they also qualify constructors
that can be called with a single argument with
explicit. That way the compiler cannot
use such constructors as conversion operators.
If we make such a qualification so that the
constructor in question is declared in Rational
as:

explicit Rational(long double);

then the following code will fail to compile:
int main()
{
 Rational rat;
 rat = 1.2;
 return 0;
}

In order to get it to compile we would need to
write:

rat = Rational(1.2);

Incidentally this is one of the few cases where
I would not use a new style cast. The so-
called function-style cast, which is really an
explicit call to a constructor, seems more
descriptive to me.

Now if you elect to go along with Graham
and avoid a constructor taking a long
double then I think that you should provide
a function that takes a long double and
returns a Rational so that programmers
can call that function if they wish to. The
question that may still arise is whether that
should be in-class or merely in the
encapsulating namespace. I can think of

 Page 25

 Overload – Issue 24 – February 1998

arguments both ways. Note that, to be fully
useful, in-class it would need to be a static
class function (otherwise you would need to
have a Rational object to use the
function). Of course you would need to place
it in-class if it needed access to any private
member functions of Rational, but they in
their turn would need to be static members.
On balance, now that we have namespace
to encapsulate utilities I would tend towards
providing it as a utility function in the
encapsulating namespace.

Before I move on, there is another thing that
you should always do when providing a
public interface, you should always provide
an exception specification for any user
provided destructor. I do not believe that
there is any choice here. The exception
specification for a destructor should always
be that it does not throw. If I provide a
destructor for my Rational class its prototype
should be:

~Rational() throw();

If you wonder why a destructor should never
throw an exception (so it must handle any
possible exceptions internally) think about
what happens when an exception is being
processed – destructors get called. Nested
exceptions are one thing but overlapping ones
must be bad news.

Interfaces & Implementations

I cannot help but think that Graham has
confused interface design with
implementation. Let me examine the
problem a little further and see if what useful
insights might come from our disagreement.

Graham claims that as we are likely to want
to use a Rational type only where exact
computation is desirable we should first
choose an implementation that supports this.
To me this seems like saying that
implementation drives design.

My perspective is very different. Design is
largely concerned with getting your interface
correct. Application drives design. Part of
the early phase is to create a public interface

together with a test suite whose job will be to
ensure that we maintain the semantics of our
objects as we refine the implementation.

Actually many class designers expose details
of their implementation when they select the
return types of member functions. That is a
serious flaw that needs to be addressed by
better training. If for no other reason I would
have set about designing my Rational class in
such a way as to hide the implementation
details. In essence there are three ways of
doing this, by using typedefs (as I did in
my first cut), by using an opaque type and by
using a template.

Each of these methods has both advantages
and disadvantages. When we gain skill we
will be able to mix them.

The principle advantage of using a typedef
is that when the underlying type is a built-in it
results in efficient code which can lean
heavily on built-in operators. Its biggest
disadvantage is that it does not create a true
type. So let us look at the other options:

Opaque Types

We can achieve opaque type in several ways.
The simplest is via a class wrapper:
class Integer
{
 long int value;
public:
 Integer(long int v):value(v){}
 operator long int (){return value;}
};

That is about as simple as you can get. An
Integer will behave exactly like a long
int except that it will have a different type
that can be used for overloading. You may
worry that something like this will cause a
problem:
class Another
{
 long int value;
public:
 Another(long int v):value(v){}
 operator long int (){return value;}
};

You might fear that an Integer could be
used where an Another was required. You

 Page 26

 Overload – Issue 24 – February 1998

would be mistaken. The conversion from
Integer to Another via long int
requires two user-defined conversions. While
you can perform that with a cast the compiler
cannot do the conversion on its own initiative.
It is a pity that Microsoft did not use this
mechanism instead of typedef for many of
its MFC types.

If you want more control, remove the
conversion operator. More still? Then make
the constructor explicit. Once you
remove the conversion from Integer you
will need to start providing functionality. For
example if you want an integer type that can
only be modified by addition and subtraction
you will need something like this:
class LimitedInt
{
 int value;
public:
 LimitedInt(int v) : value(v) {};

 LimitedInt add(LimitedInt const & rhs)
const { return (value + rhs.value);}

 LimitedInt negate()const
 {return LimitedInt(-value);}
}

LimitedInt operator +
 (LimitedInt const & lhs,
 LimitedInt const & rhs)
{return lhs.add(rhs);}

LimitedInt operator –
 (LimitedInt const & lhs,
 LimitedInt const & rhs)
{return lhs.add(rhs.negate());}

Of course you now know that this sort of
thing should be wrapped in a namespace.
You can probably think of a number of other
points that should be considered such as
possibly providing operator +=() and
operator -=() as member functions.
You might also consider calling negate
operator-(). All I want to illustrate is
how easy it is to produce your own variations
on the built-in types.

Another feature of these user-defined
versions is that they are classes and so can be
used as base classes if you wish.

You also have control of the conversion rules
but supplying your own promotions to replace

those inherited from C is rather harder though
not impossible.

A rather simpler opaque integer type is using
an enum. However this time you have to
remember that there are no constructors so
you have to use a cast when doing arithmetic.
For example:
enum Integer {low=-1000, high=1000};
Integer x=Integer(12);
Integer y=Integer(14);
Integer z= x + y;// ERROR, no conversion
z = Integer(x+y); //OK

The purpose of the two enumerated values is
to ensure that the type is valid for at least that
range. C++ does not guarantee that all
integers will be valid values for an enum.
The rule is a little complicated but certainly
everything between the low and high
values will be OK. Note that a weakness of
using an enum type is that you do not have
the ability to control the arithmetic operations
to the same extent that you do with class
types.

Let me return to using classes to provide
opaque types. Once you have a class type as
a base you might consider deriving from it to
save having to write more than necessary.
This is an excellent principle and any time
you are tempted to write:
typedef Sometype Mytype;

You should consider derivation instead.
However I would council you to think
carefully about the degree to which you want
to expose the base class. For example:
class Mytype: public Sometype {};

Is usually better than a typedef because
Mytype becomes a true type. On the other
hand there is an automatic conversion from
derived to base so that Mytype will behave
exactly like Sometype. If that is what you
intended (which would have met many of
Microsoft’s needs for handle types) then fine.
However you may want to prevent the
conversion from Mytype to Sometype. It
is largely a matter of style whether you write:
class Mytype : Sometype
{ };

 Page 27

 Overload – Issue 24 – February 1998

or
class Mytype
{ Sometype value; };

I say largely because one recent extension in
C++ makes the first more favourable. You
can pull in the functionality that you want
from the private base class with using
declarations. That option isn’t available if
you use the layering version. A small point
but one worth consideration.

I could write a lot more on the subject of
opaque types but I will leave it for now else
this article will never get finished. I already
have the editor moaning that my writing style
lacks polish (well I wish I had time to both
learn what to write about and to polish my
writing.)

One final thought about my Rational class,
should it be a template class? Perhaps I will
explore the answer to that next time round. In
the meantime please let me have your
thoughts on that and the rest of this article.

The Harpist

Protecting Member Data's Right
to Privacy

By Mark Radford

Introduction

About two years ago, when I was working on
the development of a two dimensional CAD
program, I had a long running debate with a
colleague: I maintained that when
implementing and object-oriented design
(OOD) in C++ the data members of a class
must be private. He argued that they should
be protected (or even public!), as making
them private was too restrictive. After all, if
you make them private, you need to write
functions which will both set and return their
values, so you might as well make the data
members public (or protected, if access is
needed only by derived class member
functions). My cause was not helped by the
use of public and protected data in the

Microsoft Foundation Class (MFC) library,
which we were using in order to develop for
Microsoft Windows.

The objective here, is to show why keeping
data private is not only a good idea, but is an
essential C++ practice. First, I will show the
benefits of private data. Then, present two
examples of how failure to adhere to this rule
will cost in the long run.

A Closer Look at Encapsulation

When expressing object-oriented designs in
C++ class member data must be made
private. The only possible exceptions to this
rule are enums and values which are declared
static const. This view is widely supported in
C++ literature (for example KH96, AH95 and
JL96), and for several good reasons:

1) One of the key elements of object oriented
design is encapsulation. Throughout the
literature, this is something on which there is
general agreement (for example see GB94,
JR91). Making the state of an object private,
and therefore hiding it from the object's
clients, is a natural way to implement
encapsulation.

2) The very nature of OOD suggests that if
you need to expose member data as public or
protected, then something has gone wrong at
the design level! In OOD, the idea is that
objects will communicate at an abstract level
by passing messages to each other; these
messages will either request a service from
the receiver, or notify the receiver of an
event.

3) Keeping member data private makes the
C++ code much more resilient to change, as
shown in the examples below.

4) It is easier to debug the code by placing
trace messages in access functions, or by
putting break-points in them when using a
source code debugger.

Returning to the second point above, it is
important to realise that (as Allen Holub
observes in AH95) functions which exist only
to set or return the value of a member

 Page 28

 Overload – Issue 24 – February 1998

variable are also out of order. However, this
does not make it wrong for a member
function to return information about the state
of an object. For example, a
CommsPortManager class might be
legitimately defined as follows (assuming the
CommsPort class is suitably defined):
class CommsPortManager
{
public:
 unsigned int GetCommsPortCount() const;
// Number of ports available
 CommsPort GetCommsPort(unsigned int
portNumber);
private:
 enum { MAX_PORTS = 4 };
 CommsPort ports[MAX_PORTS];
};

Whereas the following would definitely be
wrong:

class CommsPortManager
{
public:
 CommsPort* GetPortArray(); // etc
};

In the second case there is no way to
implement GetPointArray() if the
implementation is changed to use a linked
list.

Examples

I will now present two examples. These
attempt to demonstrate how the use of data
which is not private, can cause suffering in
the development process.

Example 1: Implementation Flexibility

Suppose you are developing components for a
large CAD product, including classes to
represent various shapes, and one of the
classes is Circle. One method of defining a
circle is to store it's centre point and radius
(other possibilities are storing the centre point
and a point through which the circumference
passes, three points through which the
circumference passes, or a bounding box). It
seems reasonable that clients of Circle may
wish to both query and update the radius.
Therefore, the radius is a public data member,
and the class looks like this:

class Circle : public Shape
{
public:
 double radius;
 Point centre; // assume a suitable
Point class exists

 // ... rest of Circle ...
};

There is however, a problem with this
approach. It is not clear at this stage, if the
radius or diameter will be required more often
by the client code. Also, it is thought likely,
that the wrong decision will lead to
performance problems. Therefore, instead of
the above, the designer of the Circle class
designs the following:
class Circle : public Shape
{
public:
 double GetRadius() const;
 double GetDiameter() const;

 void SetRadius(double r);

private:
 double radius;
 Point centre;

 // ... rest of Circle ...
};

Which has these function definitions in it's
implementation file:

double Circle::GetRadius() const
{
 return radius
}

double Circle::GetDiameter() const
{
 return (2.0 * radius);
}

void Circle::SetRadius(double r)
{
 radius = r;
}

This (and other classes) are developed, tested,
and passed on to other teams who are
developing components which require the
classes based on Shape. A subset of the client
code is developed and then profiled. This
exercise reveals that it looks like the diameter
of the circle is needed more often than the
radius and that is would have be better to

 Page 29

 Overload – Issue 24 – February 1998

implement the circle in terms of the diameter.
This is not a problem, because the functions
GetRadius() and GetDiameter() are still valid
(having been re- implemented). These
functions can also be made inline if necessary
for performance. No changes are required to
any of the client code!

Example 2: Putting Functionality
Where it Belongs

It isn't just public data which causes trouble:
protected data is bad too. This can be much
harder to convince people of. In fact it is one
(but not the only) measure of whether or not
they have made the switch to the object
oriented way of thinking.

Consider the case of classes designed to
provide basic text display capabilities,
possibly for use in the graphical front end of a
text editor. The TextWindow class provides
generic text display services, while
AppTextWindow is derived from it, for use in
a specific application. One thing it seems
reasonable for the TextWindow class to
manage, is information about the font in use.

Assuming the class ScrollingWindow is
suitably defined (probably by the graphical
environment's API library), definitions of
these classes might look as follows. The
TextWindow class like this:
class TextWindow : public ScrollingWindow
{
public:
 // ...
protected:
 unsigned int textHeight;
private:
 // ...
};

and the application specific class like this:

class AppTextWindow : public TextWindow
{
 // ...
};

The intention is that the TextWindow,
maintains the textHeight variable, which
stores the height of the current font's text.
This variable is protected so that, when the

mouse is clicked on a window containing
text, the object of class AppTextWindow class
can work out what line of text the mouse was
clicked on (I am assuming that the function
which processes the mouse click event will be
a member of the AppTextWindow).

Might there be problems with this? What
happens if we want to expand the font
information stored in TextWindow? Instead of
a single textHeight member, we might prefer
to use a structure, or even make the font a
class in it's own right. Further, so far the
assumption has been that each line of text will
be displayed in the same font, but in the
future there might be a requirement to
enhance the TextWindow class to use a
different font for each line. This would make
it useful to apply an implementation sharing
technique to the fonts.

Any of the above changes will impact on the
client code, but this can be avoided by paying
attention to the design of the TextWindow
interface. Given it's role, it should have a
member function called (something like)
GetLineFromY(), as shown below.
class TextWindow :
 public ScrollingWindow
{
public:
 unsigned int
 GetLineFromY(unsigned int y) const;
private:
 // ...
};

I have made the function public, because it
provides a service which clients can
reasonably expect of the class. There is no
good reason to restrict this service to derived
classes.

Finally

Modern C++ software is complex, and getting
more complex all the time. Developers should
use any available method to tame this
complexity, and OOD offers one such
method. The problem is, there is now a myth
that any software written in C++ uses OOD,
even if it breaks fundamental object oriented
principles. Encapsulation is the most
fundamental of these principles. This is why

 Page 30

 Overload – Issue 24 – February 1998

it is so important to ensure that the state of an
object is only modified by the methods of that
object. After all, how do you test any
component if it's state can be influenced by
other parties? In short, this illustrates how
OOD is used as a buzzword, rather than
properly understood. This is the reason why
development environments which move from
C to C++ often do not get the benefit they
should.

References

[GB94] "Object-Oriented Analysis and
Design with Applications" by Grady Booch
(second edition). Published by Benjamin
Cummings ISBN 0-8053-5340-2.

[JR91] "Object-Oriented Modelling and
Design" by James Rumbaugh, Michael Blaha,
William Premerlani, Frederick Eddy, William
Lorensen. ISBN 0-13-630054-5.

[KH96] "Some OOD Answers" by Kevlin
Henney in Overload 16.

[AH95] "Enough Rope to Shoot Yourself in
the Foot" by Allen I. Holub. Published by
McGraw-Hill. ISBN 0-07-029689-8.

[JL96] "Large-Scale C++ Software Design"
by John Lakos. Published by Addison-
Wesley. ISBN 0-201-63362-0.

By Mark Radford
 mark@twonine.demon.co.uk

‘There may be trouble ahead’
By Seb Rose

Motivation

In C++ a class is dependent not only on its
base classes, but also on any class that it uses.
This is not wholly unexpected! We might
hope, however that adding a private method
or member variable to one of these classes
might not affect the client classes. This is
unfortunately not the case. All translation
units that (directly or indirectly) #include the
file that defines the class that has changed
will generally be recompiled.

In the real world this can sometimes be a
burden too great to bear, and some way of
insulating derived classes from changes in the
utility classes that they use is required.

There are many techniques used to limit the
impact of these dependencies, but they re-
quire that the public interfaces provided re-
main constant. See Lakos 1996 for
discussions on many ways to limit dependen-
cies.

In some cases it may be desirable to simulate
the changing of a public interface without
causing the recompilation of all client code.

A Real World Problem

Your company produces many different
devices and a suite of software to control
them. The devices have much functionality in
common, but have important differences too.
Over time more devices will be produced and
it is not known what further differences
between the devices may emerge.

We specify an interface that all devices will
conform to and provide this as an Abstract
Base Class that each device can derive from.
This allows our software to control all our
installed devices through polymorphic
pointers.

class AbstractDevice
{
public:
 virtual void Start() = 0;
 virtual void Stop() = 0;
 // etc.
};

class RealDevice : public AbstractDevice
{
public:
 virtual void Start();
 virtual void Stop();

private:
 // Implementation details
};

We can also provide some common
functionality that many of the current devices
can use. If the device code accesses the
common functionality through an opaque

 Page 31

mailto:mark@twonine.demon.co.uk

 Overload – Issue 24 – February 1998

pointer, then unforeseen changes to the
implementation of the generic code will not
impact the (many) devices that will be
deployed.

The pure virtual functions of the interface
allow each device to specialise its behaviour
as much as it likes. The provision of code that
implements functionality that is common to
most devices eases development and
maintenance. The use of an opaque pointer
reduces further the maintenance burden.

It turns out that each device is remarkably
similar. Most of the code can be placed into
the GenericCode utility class. Everything
looks fine.

However, a couple of months later a new
device is produced in response to emerging
technology. It is very similar to the existing
devices, but the generic code is not quite right
for this device. An extra call is necessary in
the middle of a complex sequence of
operations:
void GenericCode::DoSomethingComplex()
{
 ComplexStuff();
 // Need to do something new here
 MoreComplexStuff();
}

One solution could be to cut and paste the
generic code into the new device
implementation and customise it. This is not
an attractive solution:
void OldDevice::DoSomethingComplex()
{
 pGeneric->DoSomethingComplex();
}

void NewDevice::DoSomethingComplex
{
 ComplexStuff();
 SpecialStuff();
 MoreComplexStuff();
}

Alternatively we could split the complex
sequence of operations into smaller
operations. This would allow us to insert the
new code in the implementation of the new
device, but at the cost of changing the
interface to the generic code’s opaque
pointer:
void GenericCode::ComplexStuff()

{
}

void GenericCode::MoreComplexStuff()
{
}

void
CompliantDevice::DoSomethingComplex()
{
 pGeneric->ComplexStuff();
 pGeneric->MoreComplexStuff();
}

void NewDevice::DoSomethingComplex
{
 pGeneric->ComplexStuff();
 SpecialStuff();
 PGeneric->MoreComplexStuff();
}

Also, any further changes required for other
devices in the future would require the same
difficult decisions and costly changes to be
made.

A Solution

What we really want to do is provide a facil-
ity that allows an optional specialisation to a
piece of generic code (that has already been
implemented, tested and released) to be added
without causing any existing code to be re-
released.

I achieve this using named callbacks. Each
callback maps to a specialisation that was not
envisaged at design time, and cannot easily be
inserted using traditional methods without an
unacceptably large maintenance burden.

Here I present the skeleton class definitions
for a pair of cooperating callback classes.
This develops ideas presented by Coplien
1992

I have left out error handling for clarity.

Please substitute STL containers and strings
at will.
class CallbackServer
{
public:
 CallbackServer();

 // Called by implementation to
 // register callbacks
 int AddCallback(char *pCallbackName);

 // Called by client to signal that

 Page 32

 Overload – Issue 24 – February 1998

 // this callback is processed
 int UsesCallback(char *pCallbackName);

 // Called by client to initialise
 // pointers used during callback
 void SetupCallback(
 CallbackClient* pTheClient);

 // Called by server to make a callback
 int MakeCallback(
 int callbackId, void* pData);

private:
 // this pointer of client
 CallbackClient* pTheClient;

 // ID of next callback to be added
 int nextCallbackId;

 // Names of callbacks
 char* callbackNames[maxCallbacks];

 // Flags that indicate whether the
 // client processes this callback
 bool callbackInUse[maxCallbacks];
};

class CallbackClient
{
public:
 CallbackClient();
 virtual ~CallbackClient();

 // Forwards the call to the
 // CallbackServer object
 int UsesCallback(char* pCallbackName);

 virtual int CallbackHandler(
 int callbackId, void* pData) = 0;

private:
 CallbackServer* pServer;
};

The generic code class must be derived
publicly from the CallbackServer class and
should register callbacks that it may make
during its constructor:
class GenericCode : public CallbackServer
{
 int someCallbackID;
 int someOtherCallbackID;

 static char const * const
 sc_someCallbackName;
 static char const * const
 sc_someOtherCallbackName;
 ...
};

GenericCode::GenericCode()
{
 someCallbackID =
 AddCallback(sc_someCallbackName);
 someOtherCallbackID =
 AddCallback(sc_someOtherCallbackName);
}

New callbacks can be added as they become
necessary, and no changes to the public
interface are necessary.

The client will own an opaque pointer to the
object that provides the generic code. The
client constructor should then call
SetupCallback, and signal what callbacks it
will process:
class Device : AbstractDevice,
 CallbackClient
{
 int someHandledCallbackID;

 static char const * const
 sc_someHandledCallbackName;

 GenericCodeHandle pImplementation;

 virtual int CallbackHandler(
 int callbackId, void* pData);

 ...
};

Device::Device()
{
 pImplementation->SetupCallback(this);

 someHandledCallbackID =
 pImplementation->UsesCallback(
 sc_someHandledCallbackName);
}

When the generic code object requires a
specialisation it calls MakeCallback, using
the ID of a callback that it has registered. The
CallbackServer checks to see whether the
client has signaled that it processes this
callback, and if it has calls the callback
handler that the client has provided:
int CallbackServer::MakeCallback(int
callbackId, void* pData)
{
 if (callbackInUse[callbackId])
 {
 return pTheClient(callbackId, pData);
 }
 return 0;
}

Finally, the client class (derived from
CallbackClient) must also implement a
callback handler function. This will be called
whenever the GenericCode object makes a
callback that the client has signaled that it
will process (by calling UsesCallback).

 Page 33

 Overload – Issue 24 – February 1998

 Page 34

// virtual
int Device::CallbackHandler(int
callbackId, void* pData)
{
 if(callbackID==someHandledCallbackID)
 {
 ...
 }
 else
 {
 // Some reserved value to indicate
 // an error
 return 0;
 }
}

We can now add specialisations at will to the
generic code class. This will not impact on
any existing client code, but can immediately
be made use of by new code.

There are some obvious problems:

1. The callbacks are resolved by name. The
usual problems of misspelling will not be
picked up till runtime.

2. The final argument in a MakeCallback
call (pData) is a void pointer. What this
points to is callback dependent. If a server
registers "Name" and a client uses
"Name", but the pData points to a
different type of data then all sorts of
errors will ensue. An ‘argument’ base
class and dynamic casting would improve
the situation.

3. The return value from a callback is
callback specific and is subject to the
same consistency problems as 2. It can be
improved in the same way.

Conclusion

It is always desirable to minimise
dependencies, especially within large projects
and designs need to reflect this. In some
application domains it may not be possible to
specify all future requirements and provision
of a mechanism that helps cope with them
will prove to be a good investment.

These callback classes allow the controlled,
but potentially unsafe, introduction of new
channels of communication between objects
without affecting objects for which the
existing interface is sufficient.

Seb Rose

seb@hoboco.scotborders.co.uk

Lakos 1996: Large Scale C++ Software De-
sign, Addison Wesley 0-201-63362-0

Coplien 1992: Advanced C++ Programming
Styles and Idioms, Addison Wesley 0-201-
54855-0

editor << letters;

Reference Counting in basic_string

When using the C++ Standard Library implementation supplied with Visual C++ 4.2, the following
code generates a memory leak.
int main()
{
 string s1("Hello"), s2("World");
 s1 = s2;
}

The problem seems to be in the string assignment operator, or rather in the string::assign
function used to implement it. The relevant code is this:
template<class _E, class _TYPE, class _A>
class basic_string {
public:
 typedef basic_string<_E, _TYPE, _A> _Myt;
//...
 _Myt& operator=(const _Myt& _X) {return (assign(_X)); }

 Overload – Issue 24 – February 1998

 _Myt& assign(const _Myt& _X) {return (assign(_X, 0, npos)); }

 _Myt& assign(const _Myt& _X, size_type _P, size_type _M)
 {if (_X.size() < _P)
 _Xran();
 size_type _N = _X.size() - _P;
 if (_M < _N)
 _N = _M;
 if (this == &_X)
 erase((size_type)(_P + _N)), erase(0, _P);
 else if (0 < _N && _N == _X.size() // Line A
 && _Refcnt(_X.c_str()) < _FROZEN - 1
 && allocator == _X.allocator)
 {_Ptr = (_E *)_X.c_str();
 _Len = _X.size();
 _Res = _X.capacity();
 ++_Refcnt(_Ptr); }
 else if (_Grow(_N, true))
 {_TYPE::copy(_Ptr, &_X.c_str()[_P], _N);
 _Eos(_N); }
 return (*this); }
//...
};

This implementation uses a reference counting technique to optimise string copy operations. The
basic_string class contains a pointer to a block of storage which contains a reference count, as
well as the characters of the string. E.g. s1: pointer p -----> count = 1, text = "Hello" and s2:
pointer p -----> count = 1, text = "World"

The assignment s1 = s2 can then be implemented like as: 1) Decrement s1's count. 2) If s1's count
is now zero, destroy s1's storage area. 3) Set s1's pointer to point to s2's storage. 4) Increment s2's
count.

[This implementation stores (count - 1) rather than count, but the principle is the same.]

The code provided by the library distinguishes two cases (at Line A). In the case where the two
character sequences are the same size the assign function fails to release the storage for the left
hand string. In all other cases, as far as I can see, new storage is allocated and the characters copied.
So the efficient case doesn't work and the cases that work aren't efficient!

Has PJP made a mistake, or have I missed something?
Phil Bass

phil_bass@bio-rad.com

VC++4.2 Templates

If you compile the following code with Visual C++ 4.2 what would you expect to happen?
struct Base {};

template <class T>
class Derived : virtual public Base {};

namespace Debug
{
 typedef Derived<char> DebugDerived;
}

Derived<char> trace;

 Page 35

 Overload – Issue 24 – February 1998

I bet you didn't predict this:
debug.cpp(15) : error C2039: 'Derived<char>' : is not a member of 'Debug'
debug.cpp(15) : error C2935: 'Derived<char>' : template-class-id redefined as a global
function
debug.cpp(15) : warning C4508: 'Derived<char>' : function should return a value; 'void'
return type assumed

Global function? But there are no parentheses in the code! The Borland compiler I had to hand
made no complaint. Interestingly, the errors go away if you Remove the 'virtual' keyword, or make
Derived an ordinary class instead of a template, or remove the namespace.

None of these options was acceptable to me, but I did find a work-around. Instead of
 typedef Derived<char> DebugDerived;

use
 struct DebugDerived : Derived<char> {};

Forwarded by Francis Glassborow
Original contributor unknown.
francis@robinton.demon.co.uk

 Page 36

 Overload – Issue 24 – February 1998

News

European DevWeek 98, 23-27 February, London. C++, Java, VB, & Delphi training
devweek@bearpark.co.uk

Beyond ACCU... C++ on the ‘net

ACCU contact details.

See Overload Issue 22.

New look web site!... www.accu.org

Still being worked on, its facility to search the
ACCU book reviews online has been very
helpful.

C++ directory

If you’ve got the time to kill, you’ll find some
new C++ information here.

www.yahoo.com/Computers/Programming_L
anguages/C_and_C__

To see the STL information, go to the above
link and choose C++ / Class Libraries /
Standard Template Library (STL).

Standard Template Library (STL).

Although STL isn’t new, it is new ground for
many people. Some of the STL’s background
is given in an interview of Alexander
Stepanov.

http://www.metabyte.com/~fbp/stl/Stepanov
USA.html

There are no “Learn STL in 21 days” books
(yet). Some STL books have been
recommended by people who use it.

As an introduction. “STL for C++
programmers” by Leen Ammeraal, published
by Wiley (£27.50). The author has an FTP

site, ftp://ftp.expa.fnt.hvu.nl/pub/ammeraal,
with the latest version of the book’s source
code in stlcpp.zip.

As a good (but rather technical) reference,
“STL Tutorial & Reference Guide” by David
Musser, published by Addison-Wesley (£31).
David Musser’s website has a very useful
STL page (www.cs.rpi.edu/~musser/stl.html).

 STL tutorials.

Although there are some STL tutorials on the
internet, I don’t know enough about STL to
comment on them (I ordered an STL book in
November from a book page and it still hasn’t
arrived yet - I’d recommend using the
dedicated book suppliers that give ACCU
members free post - the books actually
arrive). Whenever the book arrives, I suppose
I’ll still be making my way through “The
C++ Programming Language” (3e).

The Silicon Graphics web site has some good
STL documentation
(www.sgi.com/Technology/STL) as well as a
public domain implementation of (thread
safe) STL that can be downloaded.

Next issue... Software Engineering.

Next month I’ll cover Software Engineering
web sites.

Ian Bruntlett

ibruntlett@libris.co.uk

 Page 37

 Overload – Issue 24 – February 1998

 Page 38

Credits

Editor
John Merrells

merrells@netscape.com

4 Park Mount,
Harpenden, Herts, AL5 3AR,

U.K.

P.O. Box 2336,
Sunnyvale, CA 94087-0336,

U.S.A.

Readers
Ray Hall

Ray@ashworth.demon.co.uk

Ian Bruntlett
ibruntlett@libris.co.uk

Einar Nilsen-Nygaard

EinarNN@atl.co.uk
einar@rhuagh.demon.co.uk

Production Editor
Alan Lenton

alan@ibgames.com

Advertising
John Washington

accuads@wash.demon.co.uk
Cartchers Farm, Carthouse Lane

Woking, Surrey, GU21 4XS

Membership and Subscription Enquiries
David Hodge

davidhodge@compuserve.com
31 Egerton Road

Bexhill-on-Sea, East Sussex. TN39 3HJ

Copyrights and Trademarks

Some articles and other contributions use terms which are either registered trademarks or claimed
as such. The use of such terms is intended neither to support nor disparage any trademark claim. On
request, we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of ACCU. An
author of an article or column (not a letter or review of software or book) may explicitly offer
single (first serial) publication rights and thereby retain all other rights. Except for licences granted
to (1) Corporate Members to copy solely for internal distribution (2) members to copy source code
for use on their own computers, no material can be copied from Overload without written
permission of the copyright holder.

Copy deadline

All articles intended for inclusion in Overload 25 should be submitted to the editor, John Merrells <
merrells@netscape.com>, by March 11th.

	Contents
	Editorial
	Managing Complexity
	Motivation
	Copy Deadline

	Software Development in C++
	UML – State-Transition Diagramsby Richard Blundell
	Introduction
	States, Events and Transitions
	State-Transition Diagrams - An Example
	Stimulus
	Nested States
	Activity within States
	Actions during Transitions
	Concurrency
	Conclusion

	The Draft International C++ Standard
	Embed with C++By Kevlin Henney
	Complexity
	Turning back the clock
	Thanks for the memory
	Where have all the keywords gone?
	Library visit
	Discussion

	C++ Techniques
	pointer<type>By Jon Jagger
	STL Algorithms: FindingBy Francis Glassborow
	Sequences & Containers
	Unordered Sequences
	Sub-sequences
	Sorted Sequences
	Conclusion

	Whiteboard
	Rational Value CommentsBy Graham Jones
	Rational Values Part 3By The Harpist
	Purpose
	Using a namespace
	To Convert Or Not
	Interfaces & Implementations
	Opaque Types

	Protecting Member Data's Right to PrivacyBy Mark Radford
	Introduction
	A Closer Look at Encapsulation
	Examples
	Example 1: Implementation Flexibility
	Example 2: Putting Functionality Where it Belongs
	Finally
	References

	‘There may be trouble ahead’By Seb Rose
	Motivation
	A Real World Problem
	A Solution
	Conclusion

	editor << letters;
	Reference Counting in basic_string
	VC++4.2 Templates

	News
	Beyond ACCU... C++ on the ‘net
	ACCU contact details.
	New look web site!... www.accu.org
	C++ directory
	Standard Template Library (STL).
	 STL tutorials.
	Next issue... Software Engineering.
	Credits
	Copyrights and Trademarks
	Copy deadline

