
 ISSN 1354-3172

Overload

Journal of the ACCU C++ Special Interest Group

Issue 26

June 1998

 Overload – Issue 26 – June 1998

Contents
Software Development in C++ 3
Make a date with C++, A Touch of Class By Kevlin Henney 3
Dynamic Function Calling Using Operator Overloading By Richard Blundel 8
Patterns in C++ 13
Exploring Patterns: Part 1 by Francis Glassborow 13
Whiteboard 18
Structured Analysis: OOD’s older brother? By Alan Bellingham 19
Object Design and Implementation by The Harpist 22
Broadvision: A lesson in application frameworks By Sean Corfield 26
STL Implementations: Personal Experiences By Phil Bass 29
Reviews 34
Java 1.2 and JavaScript for C and C++ Programmers 34
Beyond ACCU... Patterns on the ‘net 37
Credits 38

 Overload – Issue 26 – June 1998

Editorial

Broadening

Over the past six months I've been
encouraging you authors to present material
which goes beyond C++ as a language. C++
is the language I use to codify my designs,
but what's the language I use to express my
design, and how do I translate that into code?

All mature development processes include
design and documentation phases, and being
able to communicate effectively is a key
engineering skill. Richard Blundell has been
producing an excellent tutorial series on the
UML, which embodies many techniques for
exploing, problem spaces and communicating
solutions.

Along side this exploration of a modelling
language we've had a number of articles
which document the development experience
of applying C++ in various application
domains. The notion of 'Software Patterns' is
a formalised way of recording some aspects
of this software experience. This issue
Francis begins a series of articles discussing
the patterns presented in the Gamma, et. al.
'Design Patterns' book. There is a great scope
of work that could be explored here. How
might each pattern be implemented, improved
upon, or combined? Are patterns even a
worthwhile thing?

Overload is starting to cover various aspects
of object oriented technology, but from C++'s
own vantage point. There are complementary
or competing technologies that we should
consider. For example, issues that have
occupied much of my time over the past few
years are componentisation and distributed
object technology.

The software development environment
appears to be becoming more hetrogenious
then homogenious. Enterprise software
systems are constructed with a variety of
software tools, languages, and even operating
systems. Components attempt to define the
common binary gulf between packages built

in different languages. An article exploring
COM/DCOM, CORBA, and perhaps even
Java/RMI would be of great interest to
myself, and perhaps others.

John Merrells

merrells@netscape.com

 Page 1

 Overload – Issue 26 – June 1998

 Page 2

Sean's Show

I seem to have been out of touch with

I'm still "Book Review Coordinator" and

So, please, potential reviewers: contact me

Overload for a long time. What's been
happening in Sean's world? Enough to fill a
book. Maybe enough to fill a few Overload
articles...

despite several attempts during my time as
editor, I never had much success in rounding
up ACCU members who were keen to
undertake in-depth reviews of C++ and OO-
related books. However, the publishers are
still sending them to me so I'm appealing for
reviewers - I have about half a dozen reviews
in progress but I can't review everything.

and I'll send a list of books available for
review. In particular, I have several Windows
95 & NT specific books that I do not have the
expertise to review so I would like such
experts to volunteer. Remember that I need
in-depth reviews since many of these books
have already been reviewed in brief in CVu.

Finally, after all my esoteric articles on the
obscure corners of C++, I'm starting a series
of articles on real-world stuff: the last year
has seen me wrestle with a C++ application
framework for building e-commerce web
sites. I intend to write about my traumas and
triumphs. I've also had cause to use
ObjectSpace's standard library in anger, as
well as their web toolkit. I intend to write
about that. And recently, my client has begun
to use Java for some aspects of their web-
related work. If Overload readers are
interested, I will write about that too.

Sean A Corfield

sean.corfield@issolutions.co.uk

Copy Deadline

All articles intended for publication in
Overload 27 should be submitted to the editor
by July 1st, and for Overload 28 by
September 1st.

 Overload – Issue 26 – June 1998

 Page 3

Software Development in C++

Make a date with C++,
A Touch of Class
By Kevlin Henney

The purpose of abstraction in programming is
to separate behaviour from implementation.

Barbara Liskov

In this connection it might be worthwhile to
point out that the purpose of abstraction is

not to be vague, but to create a new semantic
level in which one can be absolutely precise.

Edsger W Dijkstra

Previous articles have concentrated on the
“better and safer C” aspects of C++. It is
perhaps time to take it to the next level and
start focusing on what the language does to
support better program construction as a
whole. As the quotes suggest, abstraction is
the essence of good programming, and the
more a tool does to support that, the cleaner
the concepts in our program become. As it
turns out, the date type we have been looking
at offers an excellent opportunity for
abstraction.

Open to abuse

The current representation for dates we have
chosen is
struct date
{
 int day, month, year;
};

On the face of it this seems OK as it
corresponds directly to the way that most
people think about dates (give or take a little
field ordering). However, there are some
fundamental problems with this: the first is
that as far as the compiler is concerned this
defines an aggregate type that is composed of
three ints. And that's it. Your understanding
of the concept represented and the
relationship between the fields remains

undocumented in your head, and the compiler
will treat this as an arbitrary structure of
ints. OK, so perhaps you add some
comments, but this has surprisingly little
effect on the compiler; the type is still open to
malicious and accidental misuse:
// completely invalid values
date nonsense;
nonsense.day = 32;
nonsense.month = -42;

// 2 digit instead of 4 digit year
date y2k;
y2k.year = 98;

// 1900 not a leap year
date obiwan;
obiwan.day = 29;
obiwan.month = 2;
obiwan.year = 1900;

Presentation versus representation

Another aspect that we have to consider is
that DD/MM/CCYY is perhaps not the best all
round representation for dates. An alternative
approach is to use the number of days since a
fixed point, typically referred to as an epoch.
The two most popular epoch based
representations are days since 1st January
1900 and the Julian day (number of days
since 1st January 4713 BC, also known as the
star date 1), e.g.
struct date
{
 long day_no;
};

Consider how you might go about comparing
two dates. For the DD/MM/CCYY version you
might first try some fairly involved logic:
bool less_than(date lhs, date rhs)
{
 return
 lhs.year < rhs.year ||
 (lhs.year == rhs.year &&
 (lhs.month < rhs.month ||
 (lhs.month == rhs.month &&
 lhs.day < rhs.day)));

1 From its use in astronomy rather than any-
thing to do with Star Trek.

 Overload – Issue 26 – June 1998

}

An alternative approach is to consider the
date as a simple magnitude in a discontinuous
range, e.g. 21st February 1998 can be easily
translated to the value 19980221, which is
numerically greater than 19970214, or 14th
February 1997:
bool less_than(date lhs, date rhs)
{
 return lhs.year * 10000L +
 lhs.month * 100 + lhs.day <
 rhs.year * 10000L +
 rhs.month * 100 + rhs.day;
}

However, even this does not compare with
the simplicity and efficiency of the day
number approach:

bool less_than(date lhs, date rhs)
{
 return lhs.day_no < rhs.day_no;
}

The same issue applies to date arithmetic, e.g.
adding 30 days to a given date or subtracting
two dates to find the day difference. In each
of these cases the day number is the simpler
and more efficient representation, although
DD/MM/CCYY is more familiar in its
presentation. On the other hand, if you wish
to print out a day number based
representation in a more familiar format, e.g.
DD/MM/CCYY, there is a lot more work
involved than printing out the field based
structure!

In truth we have two views of the calendar
system that we use: one is the cycle of days
within months within years, and the other is
the repeating short cycle of days within
weeks. The interesting – and problematic –
thing is that they are in no way in synch with
each other. For the day number approach
there is no problem in converting to the day
in week presentation: given the day in the
week that the system started counting from
(e.g. 1st January 1900 was a Monday) a
simple piece of modulo 7 arithmetic results in
the day of the week. For a field based
representation you need the slightly more

involved formula known as Zeller's
Congruence:
day day_in_week(date when)
{
 int d = when.day,
 m = when.month, y = when.year;

 if(m == 1 || m == 2)
 {
 d -= is_leap_year(y) ? 2 : 1;
 m += 12;
 }

 int z = (1 + d + (m * 2) +
 (3 * (m + 1) / 5) + y + y / 4
 - y / 100 + y / 400) % 7;
 return day(z);
}

Where is_leap_year is a function and
day is an enum type defined in previous
articles (Overload 19 and 20).

Clearly, each approach has pros and cons
depending on the type of application.
However, the open struct does not provide
adequate protection from any changes of
design decision: all uses of a struct are
coupled to its internal representation rather
than the concept it represents – i.e. there is a
global dependency on how it is implemented
rather than on what it is implementing. The
current design does not help us separate the
issues of presentation (the concern of the
programmer as the user of a type) from
representation (the concern of the
programmer as the provider of a type).

Firewalls

One approach to solving this issue is to
provide a type that accommodates both
representations. Such a type was defined in a
previous article (Overload 20) to illustrate the
C++ anonymous union. However, in practical
terms this is wholly unsatisfactory: all
functions that use the type must now
implement switch code to handle both
representations, increasing the type's
complexity significantly. It is also unlikely
that the user of the type wishes to be
presented with such complexity, or indeed
need both representations; so long as the
basic operations available perform their
expected function that will satisfy most
needs.

 Page 4

 Overload – Issue 26 – June 1998

Given that we know what we want from a
type in terms of its behaviour, i.e. the
operations on it that we consider primitive
and common, we would like our program to
deal with the type in terms of functions and
have some protection from representation
issues. In other words, define a type by the
operations on it rather than by its
representation: an abstract data type (ADT) is
the name traditionally given to such a type.
This drives the development from the type
user's perspective (i.e. the client) rather than
the supplier's (i.e. the type provider).
Primitive and common operations for a date
type might include some of the following:
initialisation, comparison, arithmetic,
conversion to and from a stringified form, etc.
Therefore, structure the program by placing
the type definition in a header along with
these operations.

However, the semantics of an object defined
by an ADT are not guaranteed if its concrete
representation is in anyway tampered with, so
how can we ensure the integrity of the
representation is not compromised? Well,
here's one approach:
// please do not access data members
directly struct date
{
 int day, month, year;
};

Whilst certainly polite, I will let you judge for
yourself how successful a strategy a simple
comment is! What is needed is a more
effective way of throwing a firewall around
the concept's representation within the
language, remembering that a firewall is a
secure mechanism for limiting both
accidental and malicious damage. The
concept of an opaque type (a term borrowed
originally from Modula-2) is a forward
declared struct in a header whose full
definition is only given in the same source
file as the definition of all its associated
functions:
// header file
struct date;

bool set(date *,int dd,int mm, int ccyy);
bool in_leap_year(const date *);
int day_in_month(const date *);
int month(const date *);

int year(const date *);
...

// source file
struct date
{
 int day, month, year;
};
...

It is now impossible for the client to mess
with a date object or depend on its
representation. There are a couple of stylistic
and pragmatic issues to note in the code
above:

All of the operations operate on an object of
the type of interest.

Some of the queries may correspond to
simply returning a value. Although trivial,
they are important and primitive operations
that ensure the type is both usable and that its
representation is inaccessible. For example:
int day_in_month(const date *when)
{
 return when->day;
}

Operations that correspond to queries operate
on a const date * rather than a date *.
The importance of const correctness was
covered in the previous article (Overload 22).

As the struct is not fully defined, it is not
possible to define variables of that type. This
means that all of the operations must operate
on pointers – the sizeof a pointer to a
struct is always known, even if the
sizeof the type is not.

Another consequence of the type opaqueness
is that objects must be allocated dynamically.
As their size is not known outside the source
file defining date, this means that part of the
primitive set of operations must include a
function that allocates and initialises a date
object, and one that deallocates it. A
refinement to this is the ability to make
duplicate copies of an object.

Increased use of dynamic memory can have
an impact on the efficiency of a program.

 Page 5

 Overload – Issue 26 – June 1998

The complete hiding of the struct
definition also means that inline functions – if
needed – requiring access to the data
members cannot be defined in the header, and
therefore cannot be used.

The use of dynamic memory makes the type
slightly harder to use. It is no longer simply a
matter of declaring an auto variable, an
object must be allocated at initialisation and
cleaned up explicitly once finished with.

Some of these constraints mean that we
cannot use the opaque type approach in all
circumstances, although it does an excellent
job of support information hiding and is not
used nearly enough in C programs.

Firewalls with class

It is likely that for a type as fundamental as a
date we would not want some of the
awkwardness associated with opaque types,
but we still wish to erect a firewall. C++
provides use with the class construct. This
time I will restrict myself to presenting the
class from the class user’s point of view; in
future articles we will concentrate on the
implementor’s side:
class date
{
public:
 bool set(int dd, int mm, int ccyy);
 bool in_leap_year() const;
 int day_in_month() const;
 int month() const;
 int year() const;
 ...
private:
 int dd, mm, ccyy;
};

Here the operations that define the behaviour
of the type are placed within the type
definition. Placing functions within a type
looks a bit weird at first if you’ve come from
a straight C background, but using them is no
different to using any other member, i.e. .
and -> notation still applies. You just have to
think that the operation is operating on the
object it is qualified from:
date when;
when.set(21, 2, 1998);

cout << when.day_in_month() << '/'
 << when.month() << '/'

 << when.year();

if(!when.in_leap_year())

{

 cout << "It's not a leap year!" << endl;
}

From a linguistic point of view we can say
that the class defines the vocabulary for the
type. The object that is being acted on is the
receiver of a request for an operation, and
sometimes you may see the term
distinguished receiver being used to refer to
this concept. The idea that object-orientation
introduces is that operations are applied to a
significant object, rather than the functional
view where functions are the primary
building block and objects are passed into
them. This sort of inversion is something that
you will see often when comparing object-
orientation to structured approaches.

D'you know what I mean

Again, from the linguistic point of view we
might regard each whole invocation as a
statement, the object being acted on as the
subject of that sentence, the operation as the
verb, and any arguments as the rest of the
predicate (other objects, adverbs, etc.). A key
benefit of a strong type system is the ability
to express what you mean in precise enough
terms that the compiler can verify at least
some of the basic usage. For instance,
attempting to call an operation on an object
that is not defined by its class will result in a
compile time error.

If we return to the class definition for date
there are a couple of unanswered questions:
public and private; the use of const
after a function declaration. Both of these
issues enforce concepts that we introduced
earlier:

public and private are access specifiers,
and the compiler will check your use of
members against them. The public section
forms the interface to the class and is
accessible and usable by all. The private
section is where you place your
representation; any attempt to access this

 Page 6

 Overload – Issue 26 – June 1998

from outside the class will result in a compile
time error, e.g. when.dd.

The const qualifier is placed after every
member function that represents a pure query;
i.e. does not modify the state of the object it is
called on. This indicates to both the human
reader and the compiler that the object
remains unchanged and is a query – a
compilable comment, if you will. Looking
back at the opaque type introduced earlier
you will see that these correspond to the
members that were operating on pointers to
const objects. As stressed in the previous
article, appropriate use of const is an
essential part of C++ programming; it is a
specification tool that should not be ignored:
say what you mean.

Come together

So finally, to encapsulation. It’s an essential
buzzword and structuring principle behind
class design. The separation of interface from
implementation, and the hiding of that
implementation, is traditionally known as
information hiding: this we can emulate with
opaque types as well as more directly using
public and private. The placing
together of function and data in the same unit
is the other aspect of encapsulation. Literally,
encapsulate means “to put in a capsule”, and
you can see that this is effectively what we
have done. The capsule in this case is a type
that may now be treated as a sealed
component. We are free to change the
representation at will, with only a
recompilation required. There will be no
impact on the user’s written code as they have
no way of expressing a dependency on the
representation of the class.

Given many of the apparent similarities to
struct, how do struct and class
differ? In truth, we could have written the
date class above as a struct: everything
you can do with class you can do with
struct, and vice-versa; there is only one
minor difference between them. So why use
one rather than the other? By convention
struct is used for traditional data structures
(plain ol' data types, or PODs) whereas

class is used for encapsulated data types,
better known in OO circles simply as classes.

The minor language difference between
struct and class is in default access: by
default everything in a struct is public
(hopefully, after a moment’s reflection, this
should not surprise you); in a class
everything defaults to private. When using
class it is normal to use need to know
ordering, i.e. in the order of most interest to
the reader (public first and then
private), and therefore the default access
is not relied upon. As a point, access
specifiers can be used in any order and
repeated; some conventions for using this will
be presented in a future article. Note that
there is nothing but the scorn of your peers to
prevent you declaring data members as
public in a class! C++ is a language that
fully supports object-oriented principles, but
it does not require you to use them.

Summary

Design is an essential element of software
engineering. A higher level of abstraction
tends to be the driving force behind most
considered design decisions.

Separation of interface and implementation is
a fundamental software engineering principle.
Abstract data types offer a simple way of
reasoning about a program in this way. The
simplest way of constructing ADTs in C is
through the use of opaque types.

C++ offers extensions to C that support
encapsulation more directly. Encapsulation is
a cornerstone of object-oriented techniques,
and is a specific application of information
hiding techniques.

The essential difference between class and
struct at the language level is their default
access. Their most significant difference is in
their convention for use. class is used for
defining encapsulated data types with
public member functions – const where
necessary – and private data.

Kevlin Henney
kevlin@two-sdg.demon.co.uk

 Page 7

 Overload – Issue 26 – June 1998

Dynamic Function Calling Using
Operator Overloading
By Richard Blundel

Introduction

Have you ever wanted to write a function that
can take different parameters at different
times, depending on the circumstances? Or
maybe a function that can operate on
parameters generally, and so can accept any
number of parameters in any combination?
Or even a function that can produce a range
of different return types depending upon how
or when it is called? (C++ won’t let you
overload functions on their return types.)
Some of these suggestions are certainly not
standard C++ style, but sometimes you need
to achieve such effects, and the extensibility
of C++ can help you to do so. I’ll start by
mentioning a few examples of circumstances
where you might want to use such facilities,
and then describe a possible framework that
allows you to do any of the above in a fairly
neat and familiar syntax using constructor-
and operator- overloading.

Printf and Dump functions

I dare say that almost all of you will have at
some point used functions that take a variable
number of parameters. The C library
functions printf, sscanf, etc., are common
examples, but others include many in-house
and third-party debugging functions (Dump,
assert, etc.). These functions typically accept
a variable number of parameters of unknown
(at compile-time) type by using the
<varargs.h> part of the C library. These
library functions allow you to pull values of
known type off the parameter list one at a
time.

Unfortunately, it is not possible for the callee
to query the type of each parameter using
these functions. This has led to two popular
methods of operation. The simplest case is to
assume all the parameters are of the same
type, and the last value holds some form of
sentinel value. The callee then simply reads
parameters of the known type until it reads

the sentinel, and then knows it has got them
all. The more common, if slightly more
complicated and powerful, method is to pass
in, often as the first parameter, a value of
known type, such as a string, which encodes
the number and type of all the following
parameters. The callee then parses this string
to determine what parameter types to request.
The printf and sscanf functions operate in this
way.

It can often be a bit of a pain that these
functions require you to specify this string. It
is an extra burden on the client to set this
information up, and can also be a source of
many dangerous errors, because these calls
are not type safe. If a user passes in a set of
parameters that does not exactly match the
specification string, the behaviour of the
program is undefined (and it usually crashes
by corrupting the stack!).

Alternative methods exist, such as using the
C++-style insertion and extraction operators
with a stream or some other object that needs
to receive the parameters. These operators
allow type-safe parameter passing, but do not
always meet other requirements. An Assert
function may require a Boolean parameter
first to say whether or not to assert and
display the subsequent parameters. Similarly,
insertion and extraction operators are usually
stateless, making it hard for the callee to
operate on a number of its parameters at the
same time.

Before moving on to a proposed solution to
this problem, let’s look at a couple of other
cases that throw up similar problems of
variable parameter lists.

Thunking

Thunking is a technique used to communicate
between processes in different address spaces.
On Windows platforms it is used to allow
16-bit and 32-bit processes to work together,
usually for the support of legacy modules that
cannot be recompiled in 32-bits, such as
third-party libraries.

The most common way to perform this is to
funnel all calls from the 32-bit side through a

 Page 8

 Overload – Issue 26 – June 1998

 Page 9

single thunking function. Suppose we have a
32-bit application that needs to call a number
of functions in a 16-bit DLL. Typically, you
would write 32-bit proxy functions for each
DLL function that you want to call. These
functions first package up the required
function parameters. They then pass this
package to a single thunking function, along
with an ordinal number to denote which of
the DLL functions is to be called. The
thunking function marshals the parameters to
the 16-bit side of the thunk using operating
system calls or messages. It also converts the
parameters if necessary, narrowing integers
and allocating memory for strings, buffers,
etc. The 16-bit side of the thunking function
then unpacks the parameters, and typically
has a huge switch statement to direct the
parameters to the correct 16-bit function.
Return values need to be packaged up in a
similar way for the return journey, although
this is made easier if the functions only return
simple integer types.

Often such thunking mechanisms include an
awful lot of code for proxy functions that all
do much the same thing, and code to package
parameters up and unpack them, etc. All this
code is often hard-coded, hard to check, and
difficult to maintain if DLL interfaces
change, or if additional DLL functions are
later required.

OLE/COM and IDispatch

A related overhead is sometimes involved in
calling COM dispatch interfaces from C++.
A dispatch interface, often referred to as
IDispatch, is a COM interface containing
helper methods that allow other methods
within the interface to be dynamically called
at run time (using the ‘Invoke’ method).
There are many advantages of determining
and resolving method calls at run time, and
languages like Visual Basic use this form of
calling (almost) exclusively, but it has its
disadvantages. C++ is a strongly-typed
language, and it does not allow functions to
be called with parameter lists that are not
known at compile time (with the exception of
the C-style varargs method discussed earlier).
As a result, all the parameters need to be
packaged up into an array by the user before

being passed to the Invoke method, along
with a similar array of type information
values – again, an error-prone procedure.

Encapsulating type information

Some of the problems above can be
circumvented if only the parameters of a
function could have dynamic types. Why
does a function parameter need to be an int
when it could be a user-defined type (UDT)
that contains an int, and that knows it
contains an int, but that can hold other types
as well? If we had such a class we could
truly have our parameters behaving like
dynamically-typed objects. The outline of
just such a class is shown in listing 1. In the
example it can cope only with parameters of
type int, double, char * and const char * (so it
can be const-safe as well), but other simple
types2 can be added easily.

Using this class, we can define functions that
take a parameter of this type, or a reference to
one, and then any of the types VarArg knows
about can be passed to the function. The
called function can query the type of the
parameter using the type() method, and can
extract the contained value using one of the
getX() accessor methods. If you are into
exceptions, you could put checks into these
accessor methods and throw an exception if a
query method is used on an object of a
different type. Other enhancements would
include some limited conversion methods so
that, for example, getDouble() could return
the double-value equivalent for a VarArg
object containing an int.

Note that the non-explicit constructors
provide free conversion from the contained
types. Conversion operators (ctors with
single parameters) are usually frowned upon,
but in this case they are helpful – a VarArg
object is supposed to be able to represent each

2 Unfortunately, UDTs with ctors or dtors
cannot be held in a union – a property as-
sumed by this implementation – so additional
steps are required to hold types such as
strings and other classes (see the section on
Safety Issues for more details).

 Overload – Issue 26 – June 1998

of its contained types, and so implicit
conversions are what we want here.

Handling variable numbers of
parameters

So, this is a start. We now need to be able to
pass an unknown (at compile-time) number of
parameters to a function. To achieve this, I
turned to the standard library. What I wanted
was a self-describing parameter array with as
natural a syntax as possible. The result is
shown in listing 2. The ParmArray class acts
as an array of VarArg objects.
class VarArg
{
public:
 class invalidParameterAccessException;
 enum ArgType
 {INVALID=0,INT,DOUBLE,PCHAR,CPCHAR};

 VarArg()
 {memset(this, 0, sizeof(VarArg));}
 VarArg(int val)
 : m_type(INT), m_int(val) {}
 VarArg(double val)
 : m_type(DOUBLE), m_double(val) {}
 VarArg(char *val)
 : m_type(PCHAR), m_pchar(val) {}
 VarArg(const char *val)
 : m_type(CPCHAR), m_cpchar(val) {}

 ArgType type() const
 {return m_type;}

 int getInt() const
 {return m_int;}
 double getDouble() const
 {return m_double;}
 char *getPChar() const
 {return m_pchar;}
 const char *getCPChar() const
 {return m_cpchar;}

private:
 ArgType m_type;
 Union
 {
 int m_int;
 double m_double;
 char *m_pchar;
 const char *m_cpchar;
 };
};

Listing 1 – The VarArg class that encapsu-
lates type information

#include <vector>
class ParmArray
{
public:
 class badParameterArrayIndexException;
 // set up method -

 // used by sender of object
 ParmArray &operator,(const VarArg &parm)

 {m_array.push_back(parm);
 return *this;}

 // query methods
 // (used by receiver of object)
 int size() const
 {return m_array.size();}
 void clear()
 {m_array.clear();}

 const VarArg &operator[](int index)
const
 {return
 (index >=0 && index <= m_array.size())
 ? m_array[index]
 : s_error;}

private:
 std::vector<VarArg> m_array;
 static const VarArg s_error;
};

// in implementation file...
// static initialisation
const VarArg ParmArray::s_error;

Listing 2 – The ParmArray class that en-
capsulates a list of parameters of a range of
types (methods inlined for brevity)

This class contains a vector of VarArgs, and
has methods to build and query this vector.
Note that I used composition rather than
public inheritance here because I wanted to
limit clients’ access to the underlying array (I
could have used private inheritance instead).
The array can be emptied for reuse, its size
can be queried, and parameters and their
types can be retrieved from it by index. Note
here that I have used a static error parameter
if the index is out of range. Some may prefer
to throw an exception if you are using them
elsewhere in your project.

Parameters can be added to the array using
the overloaded comma operator. The reason
that I used the comma operator to append
parameters to the array will become clear in
the examples that follow. I wanted to try to
make the parameter array behave as closely to
a normal parameter list as possible. I was
thwarted somewhat by the standard operator
precedence, but apart from an extra set of

 Page 10

 Overload – Issue 26 – June 1998

 Page 11

parentheses that are sometimes required, I
pretty much got there.3

Examples – Dump-type functions

OK, on to some example of how this can be
used. Let’s start with the Dump method,
mentioned at the beginning, to output
debugging information to the screen, a log,
etc. With the example Dump function shown
in listing 3, we can now write calls as shown
below:
Dump((ParmArray(), "Answer = ", 42, "\n\n"));

Note that unfortunately we need the
additional set of parentheses. I believe this is
because if they are missing, the parentheses
for the Dump function bind more strongly to
the ParmArray object than do the commas,
and the compiler complains that instead of
one ParmArray parameter the function has
been called with additional parameters tacked
on the end.

The general syntax, therefore, is to use an
additional set of parentheses, and prepend
your parameter list with an temporary object
of type ParmArray(), which I have done here
using a temporary object. If you want, you
can declare an object of type ParmArray, and
reuse it for several function calls, calling the
clear() method in between calls. Note that
there are no messy type arrays or encoded
string of types, and so no type mismatches to
avoid and little typing overhead!4

Examples – Thunking

An example thunking function is shown in
listing 4. Using a similar technique to the
above, our otherwise-complicated Thunk
function can now be simplified to one with
just two parameters – a function number and
a ParmArray containing the required

3 . (If only Bjarne’s overloaded whitespace
proposals had been adopted, it would have
offered the possibility of a syntax familiar to
LISP programmers…
4 If the ParmArray bit bothers you, you can
always call it something shorter if you use it a
lot!

parameters. The listing shows how the first
of the calls below will have its parameters
checked against those that the first function,
fn1, requires, and if they all match, the
function will be called. The parameter types
are packaged up automatically and sent along
with the values.
Thunk(1,
 (ParmArray(), "First Parameter", 2, 5));

Thunk(2,
 (ParmArray(), 1, 3.14, "Calls Fn 2", 1));

Examples – IDispatch

The MFC helper class for IDispatch
interfaces is called COleDispatchDriver. Its
InvokeHelper() method is usually called with
code such as:
BYTE parms[] = {VT_I4, VT_BOOL, ...};
x.InvokeHelper(id, type, retType,
 &ret, parms, a, b, c, etc);

In this case, id is the ordinal number of the
method you wish to call, and type is the
type of the call (e.g. get/put/method).
retType is the return type, ret is a type-
unsafe void * buffer for the return value,
parms is an array of types, and the actual
parmameters themselves are added at the end.
Using the ParmArray class, a wrapper
function could be created that deals with the
parameter and return value types
automatically in a type-safe fashion, allowing
you to write something like:
x.SafeInvoke(id, type, ret,
 (ParmArray(), a, b, c, etc));

Here we have no array of types to build, no
casts on the return values, and no possible
mismatches of variables and their types. The
SafeInvoke() method could then parse the
ParmArray parameter and call InvokeHelper()
itself.

Flexible (and even Multiple) Return
Values

Using VarArg for the return type of a
function allows it to return any of the types a
VarArg can hold depending upon how the
function is called, or even upon the time of
day. Furthermore, a ParmArray return type
allows a function to return any number of

 Overload – Issue 26 – June 1998

return types to the caller, which can then
process them at its leisure. A very simple
example is shown in listing 5, which can be
used as follows:
ParmArray ret = MultiReturn(7);
// This prints: 7 49 2.64575
cout
 << endl
 << ret[0].getInt() << " "
 << ret[1].getInt() << " "
 << ret[2].getDouble();

// A function that dumps as unknown
// set of parameters to the stdout
bool Dump(const ParmArray &parms)
{
 bool ret = true;
 for (int i = 0; i < parms.size(); ++i)
 {
 const VarArg& currentParameter = parms[i];
 switch (currentParameter.type())
 {
 case VarArg::INT:
 cout << currentParameter.getInt();
 break;
 case VarArg::DOUBLE:
 cout << currentParameter.getDouble();
 break;
 case VarArg::PCHAR:
 case VarArg::CPCHAR:
 cout << currentParameter.getPChar();
 break;
 default:
 ret = false;
 cout << "(invalid parameter to Dump)";
 break;
 }
 }
 return ret;
}

Listing 3 – A simple implementation of a
Dump function. To demonstrate the prin-
ciple, it simply loops over the ParmArray
object and dumps each entry, but in gen-
eral could be opening files, making OS
calls, etc.

// The first of a set of functions
void fn1(char *msg, int start, int finish)
{
 for (int i = start; i < finish; ++i)
 cout
 << "Loop " << i << " - " << msg << endl;
}

// Thunk function calls a number of functions,
// each with a (different, but) well-defined
// signature
bool Thunk(int fn, const ParmArray &parms)
{
 bool ret = true;
 switch (fn)
 {
 case 1:
 if (parms.size() == 3 &&
 parms[0].type() == VarArg::PCHAR &&
 parms[1].type() == VarArg::INT &&
 parms[2].type() == VarArg::INT)
 fn1(
 parms[0].getPChar(),
 parms[1].getInt(),
 parms[2].getInt());

 else
 ret = false;

 break;
 case 2:
 // etc...
 default:
 ret = false;
 }
 return ret;
}

Listing 4 – An example of a thunking
wrapper function. The function simply
passes control, and the parameters from
the intelligent parameter list, to one of a set
of functions (only one shown), depending
upon the function number specified.

Safety issues

The example VarArg class contains some
pointer types. Care should obviously be
taken concerning the ownership of the
underlying data of such pointers. This is
especially true for return types were it might
be easy to return a pointer to a local variable
or a buffer that is deleted before the function
returns. I have taken the decision that these
VarArg objects never own these underlying
objects. Similarly, if a pointer to an allocated
buffer is returned, care must be taken to
ensure the caller knows of its responsibility to
delete the pointer once it has finished with it.
Of course, many of these issues are no
different from the case with a regular function
returning a pointer type. A final warning
should be given about the current lack of
copy ctor and assignment operator. If other
value types are added, you should make sure
that the correct copy semantics and ownership
rules are preserved.

Unions are not able to contain UDTs with
ctors or dtors, because, of course, the
compiler would not be able to decide when to
add calls to these functions in the code. It is
not even possible to work around this by, for
example, checking the type in the VarArg
dtor and calling the appropriate dtor on the
union member explicitly. What you can do,
of course, is to add pointers to UDTs in the
union. As long as we decide that VarArg
objects will never own the contained data, we
can just use a pointer to the original UDT in
the union, even if we hide this pointer

 Page 12

 Overload – Issue 26 – June 1998

 Page 13

implementation from clients. Alternatively, if
we change our stance on ownership, the
overloaded conversion ctor of VarArg could
allocate a new object copy of the UDT, with
the dtor deleting the allocated resource at the
end. I have used C pointer types for
simplicity and speed, but reference counted
strings could be safer and almost as efficient.
// A function that returns more than one value
// Note - Ownership details need to be worked
// out for pointer return values...
ParmArray MultiReturn(int i)
{
 // return the number, its square and
 //its square root
 return
 ParmArray(), i, i * i, sqrt(double(i));
}

Listing 5 – A simple example of a function
that returns more than one value,
packaged in a ParmArray.

Summary

The VarArg and ParmArray classes provide a
convenient and type-safe way to wrap up and
communicate a variable array of variably-
typed parameters, either for a function call or
return value. The syntax is not unfamiliar,
and it can be useful in a number of fairly
common cases where a single function needs
to offer a number of different function
signatures to its clients. There are a few
issues such as ownership and the availability
of types that should be considered when
implementing and using this class, but it
offers a number of safety improvements over
the traditional <varargs.h> alternative.
Finally, if anyone can help to improve the
usage syntax, then please let me know.

Richard Blundell

RichardBlundell@dial.pipex.com

Patterns in C++

Exploring Patterns: Part 1
by Francis Glassborow

One can roughly divide the programmers of
the World into three main groups; those that
think patterns are about wallpaper, those that
know they are about software design but
haven’t the vaguest idea about what that
means, and those that litter their
communications with patterns jargon. There
is a small additional group of people who
actually know what patterns are and how they
can help with their work.

I do not belong to any of these. In this series
I am going to attempt to join the latter group
by writing about the subject. Hopefully, as I
expose my ignorance the more expert readers
will seize on the opportunity to correct me in
the following issue of Overload.

Before I start, I should make clear that I
deeply regret the way that the terminology for
software patterns was cut and pasted from
that used by Alexander in his books on
architecture. The result has been pure jargon
that makes the subject much harder for the

newcomer. For example the idea of forces is
entirely natural in the context of building
architecture but, in my opinion, artificial
when applied to software. Software experts
too often fail to make the effort to get exactly
the right word for a context (we see it all the
time in the identifiers that programmers use).
Naming things is hard but knowing
something’s ‘true name’ gives you a power
over it that an artificial name fails to provide.
For example the use of the term pointer
constant or pointer value (frequently
abbreviated to ‘pointer’) in C/C++ makes it
much harder to talk about addresses.
Compare:

An int *
stores a pointer
to an int
variable.

An int * provides
storage for the address of
storage for an int value.

A long
contains a
long value.

A long provides storage
for a long integer value.

 Overload – Issue 26 – June 1998

The expert is probably happy with the entries
on the left, yet the novice is often completely
confused by these.

I am going to attempt to write about patterns
without the jargon. You will not read words
like ‘forces’ and ‘collaborators’ (a word with
dark undertones for those of older generations
in much of Europe) in my contributions. Nor
should they turn up in anything you write for
those outside the ‘inner circle’.

Patterns & Anti-Patterns

The concept of patterns and anti-patterns is
the encapsulation of experience so that
newcomers can benefit without having to re-
invent the wheel. They can be found at all
levels of software design and implementation.
There are small, low-level patterns that are
probably more familiar as idioms. These are
often language specific. For example there is
an idiom in C (originally identified by Andy
Koenig in ‘C Traps and Pitfalls’) concerned
with iterating over a known number of items:
for (i=0; i<n; i++)

If you want to do something exactly n times,
that is the way to do it in C. Sure, there are
other ways you could write it but experience
shows that all the alternatives cost more
either at implementation time in getting the
count correct or later when you have to find
the bug that getting it wrong introduced.

There is another similar idiom used
extensively by the STL in C++:
for(iterator i = start; i != finish; i++)

Note the different test used in the second
clause of the for statement. It is not a
mistake but essential to the way that we wish
to generalise the concept of a container in
C++. Successive values of an iterator need
not be sequential. There is a difference
between iterating and counting.

Now it is sometimes possible to invert the
earlier idiom with:
for(i = n; i > 0; i--)

However you must be careful about even
such a small change to the idiom. For
example, what if the body of the for-loop
contains array[i] = 0; ? Not only will
the second version do something different, it
will also exhibit undefined behaviour if
array contains only n elements (the
notorious ‘one beyond the end’ problem
(almost an anti-idiom.) With understanding
you can write the exact reverse with:
for (i = n-1; i >= 0; i--)

and sometimes you may need to (or else
reorganise your work to make it unnecessary)

However you cannot, in most circumstances,
rewrite the C++ idiom as:
for(iterator i = finish –1; i != start;
i--)

In general you will need a different kind of
iterator and different values for the range if
you want to work through the items in reverse
order.

To give you some idea about anti-patterns
let’s have a quick look at an ‘anti-idiom’.
switch (i)
{
 case 1: /* do something */
 break;
 case 2: /* something else */
 break;
 case 3 /* another something */
 // etc
}

The use of 1,2,3… is unwise (i.e. experience
shows that it leads to errors). We need to use
named values.

Distilled Wisdom

There are two important things to extract
from the above. First is that (anti-) patterns
are based on experience. They are not things
that are invented. If someone tells you they
have found a new pattern ask them where
they have seen it in use. Unless they can
specify at least two disparate examples of its
use then they do not have a right to claim it as
a pattern. The clue to pattern discovery is
when you look at a design solution,
implementation or whatever and get a feeling

 Page 14

 Overload – Issue 26 – June 1998

of déjâ vu. To complete the claim you have
to find at least two previous places that the
solution was used and then summarise both
the problem and the general solution.

The second important element is that of
understanding. Thoughtless or ignorant use
of a pattern gets you nowhere but trouble.
Indeed much legacy C++ code is littered with
conventional solutions that do not deserve to
be elevated to idioms because they are rarely
the best solution. As a simple example, take
the self-assignment problem (writing an
operator=() overload) that is familiar to
all experienced C++ programmers (as Herbert
Schildt appears to be unfamiliar with it you
can reach your own conclusion as to the value
of his writings.)

The traditional C++ ‘idiom’ is to start the
body of the implementation function with:
if (this == &rhs) return * this;
// process assignment
return *this;

or with
if(this != &rhs)
{
 // process assignment
}
return *this;

Certainly if you need to write an
operator=() for a user defined type you
need to protect against self-assignment (but
you might also need to protect against
overlapping assignment). However the above
solutions do not work well in the context of
exceptions. We usually want to provide
‘commit or roll-back’ semantics. In other
words if an exception is thrown during the
process of assignment we want to restore the
lhs to its state prior to the attempted
assignment. For this we need a different
idiom whose pseudo-code looks like:
create temporary holders for the new lhs
elements
attach copies of the rhs elements
catch exceptions
discard lhs elements
attach new elements from their temporary
holders
return the object

It happens that this new idiom usually works
better than the old one even if there is no
possibility of an exception being thrown.
Inexperienced programmers are much better
off with the new idiom. Experts will want
both because they will realise that there are
(rare) occasions where the former has
advantages (lower usage of memory) that are
vital to the specific requirements of a
problem.

Distilled wisdom must be based on something
to distil as well as understanding of what it
teaches. Learning patterns by rote will do
almost nothing for your progress as a
programmer/software developer.

The Singleton Pattern

I was motivated to write this series by a
question posed by a correspondent in C Vu.
This caused me to pull my copy of ‘Design
Patterns’ (Gamma et al.) from my bookshelf
and do a little study. What I found disturbed
me. Read on and see if you agree.

The Singleton Pattern is about handling the
problem of something that is unique in a
context. I first came across this problem in
about 1991 when I was presented with the
requirement to write a Screen class that
would only allow a single screen object
within an application. The problem
proposer’s solution deeply disturbed me. It
was to track the number of instances of screen
objects and abort the program if it ever
exceeded one. I hope you all agree that that
was not an acceptable solution.

The solution that I came up with at that time
was ‘the class is the object’. My
implementation went something like:
class Screen
{
 // inhibit object creation
 Screen();
 // do not forget the copy constructor
 Screen(Screen &);
 // provide class based data
 // static Screen data structures
public:
 static void changeColour(Colour);
 // etc.
}

 Page 15

 Overload – Issue 26 – June 1998

I would guess that this is not too bad from a
relative novice. I think that today I might use
a nested class for the data and write
something along the lines of:
class Screen
{
 // inhibit object creation
 Screen();
 // do not forget the copy constructor
 Screen(Screen &);
 struct ScreenData
 {
 //Screen data structures
 //functionality
 };
 static ScreenData * sd=0;
public:
 static void changeColour(Colour);
 // etc.
}

Arranging that each of the public static
member functions checked sd and called for
a default initialisation if it was still a null
pointer.

This is definitely a viable implementation of
the Singleton Pattern. You may be curious as
to my declaration of a copy constructor, but
without it there is a very nasty trap waiting to
bite. Revolting though it may be the
following is entirely valid unless the copy
constructor has been inhibited:
Screen trap = trap;

It creates trap as a copy of itself. This is
entirely an artefact of the C++ grammar
(required for compatibility with C) and results
in an object being created ab initio as a copy
of itself. If you are interested the following is
safe and generates a compile time error unless
an earlier object with the same name already
exists (which it cannot in this case):
Screen trap(trap);

Which is one reason that I recommend that
programmers use the latter form of
declaration.

If you look at the sample code in Design
Patterns you will see that the authors forgot
about the need to inhibit the copy constructor
so those that blindly copy their model without
a good understanding will write defective
code. The book is about design patterns, not

about C++ so the error is excusable but it
does highlight the need for language specific
skills when using such references.

I have another bone to pick with the authors.
I really do not like the use of pointers for this
kind of code. For those that do not have the
book to hand, they provide the following
example:
class Singleton
{
public:
 static Singleton * Instance();
protected:
 Singleton();
private:
 static Singleton* _instance;
};

Of course the reader must do an awful lot of
reading between the lines (for example the
skeleton is stateless – has no data – and
functionless – there are no member functions)
but my objection is that Instance()
returns a Singleton*. Surely this should
be Singleton&. Of course the coding
technique being used requires that the
static data member be a pointer because
you cannot have null references. But
Instance() can terminate with return
*_instance. Which reminds me, the
authors have just invaded the implementor’s
namespace by using a leading underscore in
an identifier.

Now with all the above caveats, the idea as
exemplified in Design Patterns is fine for an
object of a unique type. That is an object that
will only ever exist once in any form
throughout a program. However we need to
tackle variants on this theme. A class that is
tracking the number of objects of its type
currently in existence has a counter but this is
not a pure singleton. While each class only
contains a single counter the concept of
counting will be implemented many times.
We need something more sophisticated to
deal with this problem. Let me digress once
again to another related problem.

Screen was an example of the type of real
world object that needs unique representation
within an application. Wherever you have a
screen object in your program it must be the

 Page 16

 Overload – Issue 26 – June 1998

same screen (which is one motive for making
such objects global). What about other
resources that need unique handlers? For
example, how should I manage a serial port?
Now a program may have access to several
serial ports, but each port needs a single
handler otherwise you have the potential for
some nasty collisions.

Try the following:

Write a class (as object) for a generic serial
port. Now you can use templates to
specialise that class for specific serial ports.
Something like:
template<int address, int interrupt>
class SerialPort : GenericSerialPort
{
public:
 static void write(byte)
 {
 GenericSerialPort::
 write(byte, address, interrupt);
 }
 static byte read()
 {
 return GenericSerialPort::
 read(address, interrupt);
 }
};

The functionality is provided by forwarding
to the generic base class member functions
that would normally be protected so that
the base class cannot be abused (the reason
for using a base class is to provide the
implementation code only once, without it
each template instance would generate its
own code). Now this is far from being a fully
worked out solution but the approach is
important. We have a base class without any
public functionality, and we have derived
template classes that implement the object as
a singleton. The advantage is that each serial
port is uniquely identified (by its address and
interrupt) and the C++ implementation will
resolve multiple uses down to the same
object.

Now let me backtrack to the problem of the
counted class requirement for a counter. Do
you see any similarity with serial ports? Well
each counter is specific to a class. We could
implement the concept of a counter once as a
base class (with all its functionality kept
protected because it is not intended for

general use). Then we can derive templates
with the template parameter being the class
for which it is to be a counter.

Now I am not advocating this as the most
appropriate mechanism for providing
counting within a class (indeed I tend to think
that providing a counter is so basic that
encapsulating the mechanism in a class is
overkill) but what I am trying to show is that
template classes derived from base classes
(this mechanism minimises code bloat) can
do much to support the Singleton pattern.

If you think about what I have written you
will see that the Singleton Pattern has a
tendency to turn up in places where the
objects lifetime will naturally be co-extensive
with the program. Now this results in another
problem, one that it shares with other global
objects. Singleton objects must be initialised.
It is not always possible to ensure that such
initialisation is independent of other objects.
That is the reason that the Design Patterns
book provides them via a pointer. Null
pointers can be detected by code and
appropriate action taken (initialise or throw
an exception). The concept of lazy, or just in
time initialisation is one that is desirable for
Singletons and other global objects. This is
particularly the case in C++ where we have a
problem of the order of initialisation of global
objects that are declared in different files.

Fundamentally there are two available
idioms. One is the mechanism of pointer and
initialisation at point of first use suggested in
Design Patterns. This is clearly a good
solution for genuine Singletons (program
objects that are essentially unique (Screen) or
uniquely bound to a real world object (serial
port) or program concept (counter for a
counted class) because it makes sense to
encapsulate all the data and functionality in a
class. To summarise this solution:

First design a class that provides the data
structures and functionality of the object.
Now ‘hide’ the constructors from the outside
world by making them protected
(experience shows that this is better than
making them private).

 Page 17

 Overload – Issue 26 – June 1998

 Page 18

Now if the object is genuinely unique add a
static pointer to an object of class type
and provide a static access function that
returns a pointer (or better a reference) to the
object. This access function can check that
the object has been created and create it if
necessary. If you want to provide
initialisation data you will probably need
MakeSingleton() static member
function and arrange that the access function
either calls this with default data or throws an
exception if the program tries to access a yet
to be created object.

If the Singleton is not genuinely unique but
just an instance bound to an object that must
have only one representation within the
program then deriving a template from your
base class may be more effective.

However all this is not the end of the subject
because there are other objects that may need
initialisation just in time. For example it
seems to me to be pretty heavy to take an
item that is naturally an int and create an
entire Singleton style framework purely to
ensure that you do not run into difficulties
because of the C++ order of initialisation
problem. This leads to an alternative
mechanism for lazy initialisation by using a
function and static local data item. For
example, the idiom replaces
double x = sin(y);

with:
double & x(
{
 static double value = sin(y);
 return value;
}

and in the program you substitute x() for x.
Whether you choose to inline this function
depends on the degree to which you trust
modern compilers to handle static data
within inline functions.

Notice that this solution doesn’t eliminate the
problem of circular definitions, though a good
compiler might issue a warning (which it
could anyway even without the use of this
idiom). For example nothing apart from re-
coding will resolve:
double & y(
{
 static double value = sin(x());
 return value;
}

double & x(
{
 static double value = sin(y());
 return value;
}

though writing sin(x()) might just jog
your thinking into checking for circularity.

If you are using a global (or class static)
object of a type that will be used elsewhere in
your program I think it is worth considering
this idiom as a solution to the order of
initialisation problem.

Now let me sit back and wait for the
avalanche of objections, corrections and
doubt. Perhaps at the end we all understand
this area that much better.

Next time I’ll tackle another pattern.

Francis Glassborow
francis@robinton.demon.co.uk

Whiteboard

 Overload – Issue 26 – June 1998

Structured Analysis:
OOD’s older brother?
By Alan Bellingham

Caveat

My description of the Structured Analysis
process is somewhat simplified, and possibly
terminologically suspect as a result. This
methodology, which was promulgated by Ed
Yourdon’s company Yourdon Inc., is
described in Structured Analysis and System
Specification by Tom DeMarco [1], and I will
refer to it as Yourdon-DeMarco. However, I
trust that the concepts are still
understandable.

Let me tell you a story.

Once upon a time, when King COBOL ruled
the land and the Millennium was something
that programmers were putting aside as a
retirement bonus, it was realised that program
design was a Good Idea. So the King called
his trusty advisors together, and they
pondered the problem, and they came up with
a simple set of ideas, which they told the
King would solve all problems with
programming from henceforth. Chief among
the advisors were Yourdon and De Marco,
who said “All programs consist of data and
processes, and all we need to do is consider
what the data is, and what the processes are,
and all will be clear.”

And Knuth concurred, saying “Data +
Algorithms = Programs”.

And the flowchart was worshipped, and the
Data Flow Diagram deified, and all was well
with the kingdom henceforth.

And they all lived happily ever after

That’s enough fairy tale for now. What were
the issues that lead to the Yordon-DeMarco
design methodology, and what was that
methodology?

Firstly, in the business environment, there is
one important thing to remember about
COBOL - the data files did not necessarily

describe the data. For those of you used to
using SQL or xBase, this is a strange idea, but
effectively the data in the databases was raw
and unstructured, and it was the purpose of
the program to describe what the real
structure was.

Because the data itself was effectively type-
less, it became the responsibility of the File
Section of a COBOL program to describe the
data. Inevitably, this ubiquitous component
became a design consideration.

(Another way to say this is that the data was
in the files, but the meta-data was in the
program. These days, this attitude seems
rather primitive for database handling, but it
still applies to many other data structures. For
instance, to decode a Tagged Image File
Format (TIFF) file, I need to write code that
implicitly understands where to find the
Image Header, what sub-fields this contains,
etcetera, etcetera. This structure is described
in a specification I obtained from Hewlett
Packard many years ago.)

So, the concept of the Data Dictionary was
formed, though it went far further than just a
table description.

Secondly, a process should do one thing, and
do it well. This meant that the process took as
input one or more data items, and produced
one or more data item as output. All of these
data items were precisely specified in the
Data Dictionary.

Thirdly, data only existed either in transit
between processes, or residing in dumb
storage (e.g. in a database of some sort).

Fourthly, state was unimportant. This is a
corollary of the above.

Fifthly, control was unimportant. Yes,
something started the processes off, but the
idea that this methodology was based on was
that of the steady state data flow, even if that
flow comprised a single transaction.

Sixthly, whatever was produced had to be
understandable by the customer, because only
then could the customer agree to the analysis,

 Page 19

 Overload – Issue 26 – June 1998

and was therefore less likely to be surprised
by the functionality of the delivered product.

Putting it together - the Data Flow
Diagram

Yourdon-DeMarco is very much a top-down
methodology. The system as a whole has
certain inputs and certain outputs, and can be
expressed as a single bubble that does
something to the inputs to produce the
outputs:

1. Process Payroll

Employee Hours
Worked Amount Paid

Amount Taxed
Employee
Records

The initial step would be to draw out the
single bubble for the system, and to draw the
inputs and outputs in. Note that the arrows are
data items, and are named using nouns, while
the bubble itself is a process, and therefore is
named using a verb. This naming method will
be used throughout. This is the top level Data
Flow Diagram, or DFD for short.

Now that we have the initial idea of the data
flows, we need to define exactly what that
data comprises before we may proceed any
further. Therefore, it is time to look at the
Data Dictionary.

The Data Dictionary

Every single data flow in the system has to be
documented as to its exact structure. Now,
this structure might be simple:
EmployeeHoursWorked= EmployeeNumber +
 HourCount
EmployeeNumber = 1{digit}6
HourCount = 1{digit}3

EmployeeRecords: = 1{EmployeeRecord}n
EmployeeRecord: = EmployeeNumber +
 EmployeeName +
 HourlyRate

AmountTaxed: = EmployeeMonetary
AmountPaid: = EmployeeMonetary

NetEarnings: = EmployeeMonetary
EmployeeMonetary: = EmployeeNumber +
 MonetaryAmount
MonetaryAmount: = 1{digit}12

or it might be arbitrarily complicated. Note
that the notation used here is similar to the
Backus-Naur specification of a language - so
that 1{digit}3 means 1 to 3 sub-components
named ‘digit’. (Actually, there are a number
of possible notations - but this one is simple,
compact and relatively unambiguous.)
Ultimately, one should be able to start with a
high-level name and be able to use the Data
Dictionary alone to completely determine its
possible content.

Sub diagrams

The initial diagram isn’t terribly useful in its
own right. This is all right, though, because
the next stage is to decompose that initial
diagram into sub-diagrams:

1.1 Calculate Net
Earnings

Employee Hours
Worked

Amount Paid Amount Taxed

Employee
Records

1.2 Deduct Tax

Net
Earnings

You should notice that the flows in and out of
this diagram are exactly the same as those
into and out of the previous bubble, but that
there is now an extra flow within. Of course,
this extra flow needs documentation.

This process may be applied recursively to
bubbles 1.1 and 1.2, each yielding an extra
diagram of from two to seven bubbles (a rule
of thumb that, like the rule that a function
should fit on a page, may be broken if you
need to), until the process obviously cannot
be taken any further. At this stage, you should

 Page 20

 Overload – Issue 26 – June 1998

have reached the primitive processes
themselves.

Ultimately, you have a complete set of
diagrams, with each diagram having the same
index number as the bubble in the next
diagram up that it’s explaining. Oh, and in my
experience, the diagrams were usually drawn
in pencil, since you needed the ability to
easily amend them.

Structured English

Thus far, nothing has really specified what
these processes actually do. The names of the
processes and data flows are, we hope,
meaningful (and there is a general rule that
‘thing’, ‘data’ and suchlike tags are not
meaningful - ‘Process payroll’ isn’t that good
a term, either), but nothing has been said of
the how. The final stage of the design process
is to specify exactly what occurs within a
primitive, and this is the point where
iteration, decision and so forth may take
place.

This how is represented in a pseudo-code
known as Structured English. This is a form
of language that is precise enough to be
unambiguous, while still being sufficiently
free of jargon to be understood by the
customer for whom the design is being done.

In this case, I will assume that bubble 1.1 is a
primitive, and show a possible Structured
English result:
Take EmployeeNumber from EmployeeHoursWorked
For each EmployeeRecord in EmployeeRecords do
if EmployeeNumber matches EmployeeRecord then
 NetEarnings is HourCount times HourlyRate

This should be sufficiently clear to be agreed
or rejected by the customer (for instance, the
customer would probably realise at this stage
that nothing had been said about overtime
rates), and yet it’s also precise enough to be
translated into code with the minimum
possibility of confusion.

So?

So what does all this procedural design
process have with the brave new world of
Object Oriented Design, I hear you ask?

At first sight, relatively little. I last used this
methodology for an entire system some 8
years ago because, for a system where OOD
fits well, it is almost completely
inappropriate. Similarly, I hardly ever use
flow charts.

Well, students of the process of creativity will
tell you that there are several patterns to
creativity itself, and that one of them is to
take an existing idea, and try to invert it. I
won’t say that it’s what actually happened in
this case, but let’s see what exactly we can
do.

Watch the rabbit

Let us take another look at the DFD, and see
what happens if we do a transformation. What
can we try?

Calculate Net
Earnings Net Earnings Deduct Tax

Well, one characteristic of the DFD is that
processes are represented by bubbles, and
data by lines that connect them. Can we
invert this?

Yes, we can:

Let’s pretend that the NetEarnings is a data
structure. Well, actually, it is, isn’t it? Just
look at the Data Dictionary and we can see
that it’s composed from a very precise set of
members.

We also know that there are two processes
that know about this structure.

Hey presto, we have an object with data and
methods. This might be somewhat artificial in
this case - as what’s the point of such a
simple object. However, if we look a little
further, it should be obvious that AmountPaid
and AmountTaxed are very similar structures.
In fact, they’re really the same structure, just
used in a different place. If I’d used more
detail (perhaps with data flows for
transferring the amount to a bank account),
more and more processes would have been
apparent.

 Page 21

 Overload – Issue 26 – June 1998

Take this far enough, and we end up with a
mass of bubbles, all interacting by calling
each others’ methods (or messaging each
other according to some terminologies).

This result is an Object Interaction Diagram -
and it’s undeniably a different beast from the
DFD that we started with:

Monetary Amount

Deduct Tax

Pay to Bank

Calculate Net
Earnings

Compare this with the Message Connection
notation shown in Object-Oriented Design by
Coad and Yourdon[2] (and first formulated in
Object Oriented Analysis[3] by the same
authors).

So, what we’ve ended up with is OOD rather
than DFD. Instead of considering processes
first, and how they act on data, we start first
with the data, and then consider the processes
that act upon it. As a result, we can now
consider state - because the object necessarily
contains state, and that is because it persists
between messages. Interestingly though, we
lose the ability to easily consider data
creation - but then, any design process needs
to consider a number of different methods

Conclusion

There are few new things under the sun, and
this applies to programming, too. Sometimes
however, by conceptually inverting an
existing technique, a new one may be seen.
Contrariwise, the existence of newer
techniques doesn’t mean that older ones
should be completely rejected - just as a flow
chart may still be useful on occasion, so may
Structured Analysis.

Oh, and a warning: be careful of what you say
if you ever get into conversation with Francis
Glassborow, because he may want an article
on it.

Alan Bellingham

alanb@episys.com

References

[1] Structured Analysis and System
Specification by Tom DeMarco
(Prentice-Hall 1979 ISBN: 0-13-854380-1)

[2] Object-Oriented Design by Peter Coad
and Ed Yourdon (Prentice-Hall 1991 ISBN:
0-13-630070-7)

[3] Object-Oriented Analysis by Peter Coad
and Ed Yourdon (Prentice-Hall 1990 ISBN:
0-13-629981-4)

Object Design
and Implementation

by The Harpist

I was trying to think of a suitable topic to use
to explore some ideas for the design and
implementation of object types, as opposed to
attribute types (value based types), when
Francis forwarded an extract from an email
dialogue with Paul Collings with his
permission for me to do a code review and
publish the results.

Actually I am going to range rather wider
than an ordinary code review and I hope that
the various experts will chip in their bits.
One problem with being a local expert is that
you are expected to spend time in educating
colleagues rather than in attending further
training for oneself. This means that almost
all I know I have acquired by reading and
discussion over the odd pint. I am sure that
many readers are in a similar position so that
when I reveal a blind-spot I am sure it will be
shared with quite a few others.

Paul writes

I would also be grateful if you would look at
the following which works quite happily as a
single file, but when split into multiple units it
all starts to fall to pieces as I know very little
about the linker operation of a compiler.

I know that Francis has already suggested that
time would be better spent reworking the
code from scratch rather than trying to locate

 Page 22

 Overload – Issue 26 – June 1998

the subtle interactions that are causing
problems. I would reiterate this in the
strongest terms. I would go further and
suggest that any time you develop even a
small program as a single file you will be
laying up maintenance problems for the
future.

Paul set out to create a ‘Hotel’ type. His view
of a hotel was that it was an aggregate of
rooms for hire: bedrooms and function rooms.
That is fine, as far as it goes, but if we are
interested in reuse we should recognise that
time could be invested in providing a wider
range of components for our hotels such as
those reserved to staff (utility rooms,
kitchens, corridors etc.) and public rooms
(dining, bars, lounges etc.).

Paul added a second type of component to
cater for the concept that a hotel might have
movable presentation equipment for use in its
function rooms. Again this is only one
example of movable equipment and we might
usefully generalise the concept. Let me look
at Paul’s provision of a type for presentation
equipment and see what we can learn from
that.
#if !defined PREQUIP_HPP
#define PREQUIP_HPP
// although this has no definitions
objects can be instantiated
class PresentationEquipment
{};
#endif

As provided this is a stateless (no data)
functionless class that will have the four
standard compiler generated functions
(constructor, copy constructor, copy
assignment, destructor). It looks like a
placeholder for something more. In other
words it is the class equivalent of a stub
function so I guess we might call it a stub-
class. Let us ignore, for the time being, the
question as to whether it is the most primitive
type (highest abstraction?) and focus on the
fact that realistically it will be a base class for
a variety of different types of presentation
equipment.

Do you see any problem with
Presentation Equipment being a base

class? Where else have you come across
stateless, functionless classes?

One big use for these is to provide exception
objects. We often want to distinguish
between different types of exceptions that can
be thrown in a specific context. Sometimes
we want to handle the whole family of
exceptions the same way, at other times we
want to be more specific. Often the only
relevant item is the name of the exception so
we get something like this:
namespace HarpistExamples {
class Mytype
{
 // private interface
public:
 // public interfacre
 class Exception {};
 class Problem1 : public Exception{};
 class Problem2 : public Exception{};
 class Variant1: public Problem1 {};
 class Variant2: public Problem1 {};
 // etc.
};
}

Now the user of the type can write:
using HarpistExamples::Mytype;
// whatever
try {
 // normal actions
}
catch (Mytype::Variant1) {
 // specific action
}
catch (Mytype::Variant2) {
 // specific action
}
catch (Mytype::Problem1) {
 // handle Problem1 generically
}
catch (Mytype::Problem2) {
 // handle
}
catch (Mytype::Exception& ex) {
 // handle all other Mytype exceptions
}

The user does not need to know if there are
other types of exception that can be
specifically generated by Mytype objects.
The owner of Mytype is free to add other
exception types confident that the
experienced user will be providing some form
of handler. However there is a very small
problem, none of the derived types can have
any dynamic resources. That is a very small
problem because writing exception objects
that use dynamic resources is asking for

 Page 23

 Overload – Issue 26 – June 1998

 Page 24

trouble (the potential for a double exception,
one thrown during the process of passing the
exception object). That, by the way, is a good
reason for not using the standard string
type in an exception type. Let me elucidate a
little further.

When an exception is thrown the exception
object is copied to the handler. Think about it
and you will realise that it must be this way.
By the time you get to the handler the stack
has been unwound and the original object is
gone. This places a constraint on the types
that can be thrown, they must have publicly
available copy constructors (and destructors).
You might ask what happens in the last catch
clause above where the exception is caught as
a reference. A temporary has to be created
for the copy so that it can be bound to the
reference. If you do not catch by reference
only the base class will be copied. When you
catch by reference the whole of the original is
copied and is available for processing and
possible rethrowing (throw; in the above1)
if you want to allow more complete handling
higher up your code.

The possibility of catching by reference
should alert you to the critical missing
element in the base class without which you
will not get the behaviour you expect (nor

1 There is an important syntactic element here
that many programmers miss. If I want to
rethrow the original object I must simply
write throw. If I want to throw the local
copy (whose static type is now
Mytype::Exception) I write throw
ex; This latter form strips off all the dy-
namic information because it is an absolute
rule of exceptions that the copy constructor
used is that for the static type of the object
thrown, not its dynamic type. Locally the
static type of ex is Mytype::Exception,
though its dynamic type is the static type of
the original thrown object. Until all this
nested type information makes sense to you,
you would be well advised to keep it simple.
For further information read Item 12 of ‘More
Effective C++’ by Scott Meyers (ISBN 0 201
63371 X)

will you be able to use a dynamic_cast to
access the dynamic type functionality).
Stateless base classes need virtual
destructors!

Oddly, providing this may be practically free.
All class objects must have a non-zero size
and in many cases memory alignment
considerations result in the minimum size
being that of a pointer which is all the
overhead that polymorphic types impose on
their instances. In other words you recycle
the unused memory of a stateless type by
storing a virtual function table pointer in it.

The benefit is that you have upgraded your
base type to one supporting Run Time Type
Information which can be used by
dynamic_cast and whose derived types
can have dynamic resources without leaking.

If you want exception types to encapsulate
data, I think a good case can be made for
providing that data as class data (static
members of the class) rather than as object
data. However this is not quite as clear-cut as
it might seem at first because a nested
exception of the same type might over-write
the data. I will leave thoughts about that for
another time (or perhaps one of the expert
readers might like to take it up).

Defining PresentationEquipment

In view of the above I think that the following
is a more robust definition and is less likely to
fall foul of future development of the
concept:
class PresentationEquipment
{
public:
 virtual ~PresentationEquipment()
 throw() {}
};

Apart from my reservations about this being
the fundamental base class I think that should
cover Paul’s original intent. Qualifying the
destructor as virtual ensures that RTTI is
available if and when you elect to use it.
Defining it in class means that it will be
inline, which seems an eminently sensible
thing to do for a destructor with an empty
body for a stateless class. The only other

 Overload – Issue 26 – June 1998

thing to note is the exception specification.
The throw() form declares that the
destructor will not leak exceptions. In other
words it can be safely called during the
process of stack unwinding as a result of
handling some other exception. At first sight
you may question placing such a constraint
on a function with an empty body. In general
you would be correct, but virtual destructors
are a special case because of their
polymorphic nature. The bodies of
destructors of more derived classes will not
always be empty.

Another advantage of adding the exception
specification is that the derived class
destructors will be required to meet the same
constraint. I believe this means that omitting
the specification (or providing a different
one) on an explicitly declared derived
constructor is a compile time error. If it isn’t,
it should be.

And Next

Paul’s next header file is:
#if ! defined CUSTOMER_HPP
#define CUSTOMER_HPP

class Customer
{
 static int customerCount;
 char* name;
 char* payee;
public:
 Customer();
 ~Customer();
 char* getName();
 char* getPayee();
 static int getCustomerCount();
};

#endif

The first problem is that static int
customerCount. When aiming to create a
hotel object it seems reasonable to want a
count of the number of customers. However
a little further consideration should show that
the data for that is part of the hotel object.
Think what would happen if your application
had two hotels. Each needs to track its own
customers.

The next defect is a combination of using
char * for the name and payee together

with the lack of explicit provision of a copy
constructor and copy assignment. There are
two ways to fix this problem. The traditional
mechanism is to declare
Customer(Customer const &) and
Customer & operator=(Customer
const &) as private members of
Customer until you decide that you want to
implement copying either publicly or as
protected members (for the benefit of
derived classes). That way any attempted
copying by a user with the consequential
problem of cross-linking objects (two objects
pointing to the same dynamic array) will be
detected at compile time.

The second solution now that we have a
reasonable string (template) class in
the Standard C++ Library is to avoid this
complication by replacing the char * by
string. Even so you should ask yourself if
copying customers is a valid concept in the
application domain (I suspect that it isn’t, but
read on).

The next defect is in the return types of
getName() and getPayee(). Where
read access is being provided to internal data
it is vital that the return type is const
qualified. Otherwise you have provided
access to critical features of the private
interface. For example, consider what would
happen if you had released the above class
definition and then realised that the internal
data was better implemented as strings.
You could not make the change because some
user might have utilised the fact that your
access functions allowed access to the raw
data.

Putting this all together we get:
class Customer
{
 string name;
 string payee;
 Customer(Customer const &);
 Customer & operator=(Customer const &);
public:
 Customer();
 ~Customer() throw();
 string const & getName()const throw();
 string const & getPayee()const throw();
};

 Page 25

 Overload – Issue 26 – June 1998

Note that as well as the change in the return
type of the read access functions I have added
const qualification (reading data should not
change it) and an empty exception
specification (reading data should not cause
an exception). The former is certainly
necessary; the latter might not always be the
case. If you do something in the definition of
either function that might result in an
exception leaking out of the function call
good compilers will generate an error (bad
ones will just ignore it as diagnostics are not
required here).

However, I still have not finished with this
class. The idea seems to be that you can have
a customer who is actually hiring facilities
and someone else who is paying for them.
That is perfectly reasonable (think of the
standard business type booking, the direct
customer is one of the employees while the
payee is a company). The question that
springs to my mind is what happens when the
same person books a function room and a
bedroom. Even more likely is that the same
person is paying for several rooms. We need
to encapsulate that data in such a way that the
same sub-object can exist in more than one
place. I think we need something like:
class UserName;
class PayeeName;
class Customer
{
 UserName & name;
 PayeeName & payee;
 Customer & operator=(Customer const &);
public:
 Customer
 (UserName & uid, PayeeName & pid);
 Customer(Customer const &);
 ~Customer() throw();
 UserName const& getName()const throw();
 PayeeName const& getPayee()const
throw();
};

Now it makes perfectly good sense to support
cloning (copy constructor) because the same
details might apply to more than one room.
On the other hand we cannot easily support
assignment because C++ does not allow you
to rebind a reference. This version also
provides a problem if we should ever want a
collection of Customer because there is no
default constructor. So it seems that using a
reference for name and payee doesn’t work

as well as we might want. If we need to
‘rebind’ data then we have to resort to
pointers and we get:
class CustomerRecord
{
 UserName * name;
 PayeeName * payee;
 static UserName un(missing);
 static PayeeName pn(missing);
public:
 explicit CustomerRecord(
 UserName * = 0, PayeeName * = 0);
 CustomerRecord(CustomerRecord const &);
 ~CustomerRecord() throw();
 CustomerRecord & operator=
 (CustomerRecord const &);
 UserName const & getUserID()const
 throw();
 PayeeName const & getPayeeID()const
 throw();
 CustomerRecord & changeUserID(
 UserName const &);
 CustomerRecord &
 changePayeeID(PayeeName const &);
};

Now we can have a default constructor that
sets both pointers to null. Unfortunately that
provides a mechanism for implicit creation of
Customer from UserName. Qualifying
the constructor with explicit turns off that
C++ feature. Note that the access functions
can still return const references.

UserName and PayeeName have just been
declared. In practice these type are likely to
be derived from a common base. They might
even be template classes so that the
different types (individual, corporate etc.) of
clients can be used. However I think I have
gone far enough for this time. (And we
haven’t even got to rooms yet!)

Now it is your turn to pull my code apart.

The Harpist

Broadvision: A lesson in
application frameworks

By Sean Corfield

This is intended to be the first in a short series
of articles describing my experiences with a
product called Broadvision - a C++
application framework for building electronic
commerce (e-commerce) web sites.

 Page 26

 Overload – Issue 26 – June 1998

First Impressions

I started my current contract with IS
Solutions (http://www.issolutions.co.uk) on
17 March, 1997. They used to be mainly a
Digital VAR but moved into facilities
management and enterprise management over
time, then in recent years acquired a web
design company and now most of their
business is web-based. I was employed as a
C++ guru along with Doug Clinton - a fellow
ex-BSI C++ panel member - to act as "Senior
Designer" on a major e-commerce web site.

The project would involve a lot of C++, a lot
of Oracle and SQL… and a product called
Broadvision One-to-One
(http://www.broadvision.com) which had
been 'recommended' by IS Solutions' client
and, after a brief evaluation, approved by IS
Solutions. Since this was the unknown
technology in the project, the first thing that
happened was a training course. Broadvision
were in the process of setting up their UK
offices so their UK support person - a French
girl, Marine - was also on the training course,
which was run by a chap from their Dutch
office, Niek.

Unfortunately (for us or for Niek), we were to
learn about version 2.5 of the product and
Niek was only familiar with the prior version
(2.1 if memory serves). We were all in for an
interesting and informative week!

So what is Broadvision? First, let me describe
its aims and then I'll explain what the product
actually is. Broadvision is intended to let you
sell 'product' over the web using targeted
marketing. In other words, it is intended to
provide personalised advertising, editorials
and product offers by recording how you
browse (within a Broadvision-powered web
site) and some personal details about you (a
user profile that you fill

in). The course was a bit of a marketing pitch
too, as is so often the case with product-based
training courses, and to be honest it sounded
just the ticket for our project. I made notes
during the course that suggested Doug and I
would probably only need to make minor
customisations here and there whilst the

majority of our work would be integration. If
this had proved to be the truth, I wouldn't be
writing these articles of course.

Anyway, so what is Broadvision? Hang on,
we still need some background on web
applications! When you visit a dynamic web
site, the first page you visit has to start a
'session' on the server side against which all
your actions and choices can be logged, the
session lasting until you explicitly log off the
site or else it times out when it hasn't heard
from you for a while (because you've gone
browsing elsewhere). One of the most
common dynamic web experiences that
follows this pattern is an ASP (Active Server
Page) site such as Microsoft's own. The ASP
pages are a mixture of HTML and either
VBScript or JScript. Some of the session
management is explicit in the script
programming and some is implicit in the ASP
engine on the server. As those who have
visited Microsoft's site will know, ASP relies
heavily on 'cookies' - small files stored on
your hard drive by the browser which contain
'lookup' information which can be passed
back to the web site on request. That's how
many dynamic web sites recognise you and
cookies, whilst considered by some surfers to
be an invasion of privacy, are generally a
good way of providing a more personalised
path through the mire that is the world wide
web. In addition, the scripts in the pages can
produce dynamically generated HTML based
on information from databases, typically
accessed via ODBC.

Not everyone likes cookies though and ISS's
client had serious objections to them.
Broadvision solves this problem by
maintaining all the persistent information on
the server and using complex URLs and
hidden data fields in forms to help the
Broadvision engine keep track of which web
user is doing what at any one time.
Broadvision has a number of Unix processes
that manage web user sessions and provide
access to databases and other resources. From
the programmer's point of view, Broadvision
is a set of classes that generate HTML and
process GET and POST data submission
operations, and also a fairly low-level API

 Page 27

 Overload – Issue 26 – June 1998

which gives access to the underlying Oracle
or Sybase databases.

The range of objects seemed broad and, at
first, well-suited to the client's requirements
for tracking customers, providing targeted
offers and selling foreign currency, travel
books, flights and holidays over the web.

Second Impressions

Once the course was over, we set about
preparing for the project proper. Our Sparc 5
workstations and Ultra server turned up,
running Solaris 2.5, and we installed Oracle
7.3.2 then Broadvision. After all, it runs on
Solaris 2.5... well, actually no, it specifically
requires 2.5.1 so we started all over again.
Great, now we are ready to run the demo
applications! No, 'fraid not. Can't quite
remember the exact sequence of events at this
point but we did eventually get things sorted
out and, having 'proved' the technology,
started to design the system.

This is when things began to get interesting.
Broadvision, in common with many
application frameworks, makes a lot of
assumptions about what you, the
programmer, are going to be doing with it. It
assumes, for example, that the 'product' you're
going to be selling has a fairly simple
structure, the sort that can be modelled by a
single product table in a database. It assumes
that when you pick product up off the 'shelf'
and put it in your 'shopping basket' that if you
pick up an identical product as well, it can
just remember the quantity '2' in the basket. It
also assumes that a user either visits the site
as a 'guest' and doesn't buy anything or that
they 'log in' right at the beginning. All these
assumptions were to cause us interesting
problems over the next six months.

The Learning Curve

Having established that we had to undertake
some non-trivial amount of customisation, we
had to start figuring out exactly how
Broadvision worked under the hood, how its
class structure worked, what the API
provided and in particular how it interacted
with the database. The latter was critical to

most of our customisation since we had to
ensure that we didn't break any of the
functionality that we found useful while still
overriding the functionality that didn't work
the way we required.

Architecturally Speaking

Moving on to the meat of this series, I'll now
look at the actual architecture of Broadvision
to give you a flavour of what I was up
against. In future articles I will look more
closely at exactly how I progressed towards
the current, live site.

Broadvision has a session manager process -
the CGI program - that handles all POSTs and
GETs from the user. Each operation sends a
series of hidden fields that tell Broadvision
what 'object' to invoke to handle the request
as well as the parameters to that object. For
example, a link which would look like:
Destination

in plain HTML becomes something like:
<BVBlockObject Dyn_SmartLink
receive_class=Dyn_SmartLinkReceive
destination=hol/hlb03f.t>Destination
</BVBlockObject>

in Broadvision tags. Broadvision interprets
the extended HTML file, loads the
'Dyn_SmartLink' object (from a shared
library), invokes various methods on it to
handle the attributes ('receive_class' and
'destination') and generate the actual HTML
sent back from the web browser. The
processed HTML looks something like:
<A HREF=/cgi-
bin/bv.cgi?BV_EngineID=0.766.1.2.3.4
BV_Operation=Dyn_SmartLinkReceive&
 BV_SessionID=AFDHFRGB&
 BV_ServiceName=Mall&

form%25destination=hol%2fhlb03f%2et>Desti
nation

In reality, the engine ID and session ID would
be much more complex. When the user clicks
on the link, Broadvision loads the
'Dyn_SmartLinkReceive' object and invokes
various methods on it to handle the attributes
(as before, except they are now prefixed with
'form%25') and the Broadvision session

 Page 28

 Overload – Issue 26 – June 1998

manager selects the next extended HTML file
(from the 'destination' attribute) and the
process begins again.

Each object ultimately extends a 'Dyn_Object'
base class and overrides its methods. The
sequence of methods called is very rigid: to
generate HTML, Broadvision calls 'prepare()'
which calls 'prepare_attribute_list()' which
calls 'prepare_attribute()' on each attribute
given. Then it calls 'handle_attribute()' on
each attribute and finally 'handle_body()'.
When handling an incoming request, it calls
'receive_attribute()' on each attribute and then
'receive_body()'. You override the methods
within your own objects to record and process
each attribute, generate the HTML and
process incoming attributes respectively.

Broadvision expects each object to process
attributes and store them in named private
data members. Think about it: each object
performs certain identical functions in terms
of dealing with name/value pairs, and yet you
have to duplicate the code in every single
derived object!

Needless to say, my first revision was to
create generic 'receive' and 'submit' objects
that inherited from 'Dyn_Object' and used a
'map<>' to store any attributes found. My
own objects then inherited from these,
resulting in much less duplication.

This was not a good sign! Broadvision's
approach to code reuse amounted to brute
force: cut'n'paste. A typical object written
using this approach amounted to some 200
lines of identical code to the base class... and
that was before you added your own
functionality. By abstracting the common
attribute handling into a base class and clearly
separating 'generators' from 'receivers' my
own objects amounted to about 40 lines of
framework into which I could drop my own
functionality.

My next problem was that I still had to
override 'handle_body()' and 'receive_body()'
in toto because those routines also perform
certain operations that are standard and must
be duplicated in every derived class. The
solution to this was to change the base class

function to call a private virtual which, in the
base class, did nothing but in your derived
class performed the necessary specialised
task.
// base class:
void My_Receive::receive_body()
{
 // standard stuff
 specialised_receive_body();
 // more standard stuff
}
// virtual
void
My_Receive::specialised_receive_body()
{
 // do nothing
}

// derived class:
void My_DerivedReceive::
specialised_recieve_body()
{
 // do derived stuff
}

I hope I've given some flavour of what
happens when you use a framework that isn't
ideally suited to your application. Next time,
I'll look at database access and flyweight
classes to encapsulate some of Broadvision's
raw API as well as looking deeper into
subjects such as session management.

Sean Corfield

sean.corfield@issolutions.co.uk

STL Implementations:
Personal Experiences

By Phil Bass

In the Beginning

The Standard Template Library first came to
my attention when I received a floppy disk
along with a copy of C Vu in November 1994
(or thereabouts). It was, of course, the set of
generic algorithms developed by Alexander
Stepanov and Meng Lee at Hewlett-Packard.
It was significant to C++ programmers
because it had been proposed for inclusion in
the C++ Standard Library. But for me it was
much more than that.

 Page 29

 Overload – Issue 26 – June 1998

Revelations

Since getting my first C++ compiler some
two years earlier I had been uneasy about
containers. I had read articles about container
classes, I had written some myself, but
something wasn’t quite right. Object-oriented
programming was supposed to mean never
having to write your own List. So, why were
there so many variants of List classes? And
why was it necessary to choose between
efficient, robust or easy-to-use versions?

Then, along came STL. Here was an
approach to containers that was general,
efficient, easy to use and elegant. I couldn’t
wait to start using it.

First Impressions

The first difficulty I had was understanding
the documentation. It had an unfamiliar
academic style and the code examples used
features of C++ I had not met before. But,
after some effort, I began to make sense of it.

Then there was the problem of finding a
suitable compiler. At work, we were using an
early version of Visual C++, which did not
support templates. At home, though, I was
able to experiment with my own Borland and
Symantec compilers.

The Evangelist

Some time around March 1995 (I think) the
STL was accepted as part of the C++
Standard Library. It was then that I started to
sing its praises at work. My colleagues were
interested at first, but this quickly turned to
puzzled scepticism, or worse.

A typical conversation went something like
this...

Me: I think we should use vector<T> from
the Standard Template Library.

Colleague: What’s that?

Me: (trying to keep it simple) It’s an array
that expands as necessary when you add
things to it.

Colleague: Is it part of MFC?

Me: No, it’s part of the Draft C++ Standard
Library.

Colleague: Is it provided with Visual C++?

Me: No, but it’s not specific to any particular
compiler vendor.

Colleague: What’s wrong with the MFC
containers?

Me: (resisting the temptation to explain
exactly what was wrong with MFC
containers) They only work for a limited set
of data types.

Colleague: Yes, but we can always use “void
*”.

Me: True, but that means all sorts of unsafe
type casts.

Colleague: (unconvinced of the strength of
this argument) Are vectors efficient?

Me:Yes! About as efficient as you can get for
an array-like container that can grow.

Colleague: You mean, as efficient as the
MFC containers?

Me: (becoming irritated) No. More efficient
than that.

Colleague: (with disbelief) Really? Why
doesn’t Microsoft provide the STL?

Me: Probably because they want to tie us all
in to Windows. Perhaps because they don’t
have the technical expertise.

Colleague: (looking at me as if I’m stark
staring mad) All right, then. Exactly what is it
that makes the STL containers so much better
than MFC’s?

Me: (with a sigh) For a start, STL
containers are accessed using iterators, which
de-couples the implementation of the
containers from the algorithms that use them.
That means that the standard algorithms will
work for all the STL containers. And because

 Page 30

 Overload – Issue 26 – June 1998

iterators are a generalisation of pointers, the
standard algorithms will work with ordinary
arrays, too. Furthermore, the containers are
class templates, so they can hold any object,
including those particular to our applications.

Colleague: (whose eyes have glazed over)
Templates? Are they supported in Visual
C++?

Me: No, but we could always use another
compiler.

Colleague: (shuffles off with a look of sheer
horror on his face)

I’d blown it, of course. That colleague was
now convinced that all my ideas were
positively dangerous. A commercial
organisation can’t afford to waste time on
fancy ideas nor to take risks with new and
unproved technologies.

Ahead of My Time

Eventually, we upgraded to VC++ 4.0.
Templates were supported and MFC acquired
some container class templates. Microsoft’s
Help even explained why the templates were
a Good Thing.

The old arguments were raised again. By
now, our software engineers were more
comfortable with C++ and a little more
willing to explore new language features. But
there were still no vectors in Visual C++.

We looked at the Hewlett-Packard STL. It
seemed to work well, but it was unsupported
and it didn’t have strings. A search through
some magazines turned up three more STL
implementations: those by Modena, Rogue
Wave and ObjectSpace. The Modena library
was not available in Europe. The Rogue
Wave library seemed to be carrying some
baggage from earlier Rogue Wave class
libraries. So we ordered a trial version of the
STL<ToolKit> from ObjectSpace.

STL<ToolKit> by ObjectSpace

I was immediately impressed by the
STL<ToolKit>. The software itself came on a

single floppy disk which contained full source
code for the STL together with over two
hundred examples and a configuration
program. There was also a comprehensive
manual with an excellent tutorial. (For the
record, this is still the best tutorial on the STL
I have seen.)

The installation procedure was simple and
painless. There followed a rather longer
configuration phase. To see why, put yourself
in the position of a library implementer.
Remember, this was back in1996 when the
C++ standard was in flux and some compiler
vendors were tracking the standard more
closely than others. The STL has always
stretched compilers to the limit and
ObjectSpace were forced to code round all
sorts of bugs and missing language features.
Even worse, new versions of compilers were
coming out every few months. To have any
hope of delivering a stable product, the
STL<ToolKit> had to be easy to configure.
ObjectSpace solved this problem with a
configuration program.

The configuration program ran your compiler
(from the command line) on several tens of
source files. Each file tested a particular
feature of the compiler. If the compilation
failed the configuration program added a
#define to the config.h file which was
included by all the headers in the
STL<ToolKit>. The #defines ensured that the
STL implementation worked with your
compiler. If you changed from one compiler
vendor to another or upgraded from one
version of compiler to another the
STL<ToolKit> could be reconfigured by
running the configuration program again.

Having configured the product, I built the
example programs. As far as I can remember
there were two failures among the 250 or so
programs and neither were attributable to
ObjectSpace. After a little playing we ordered
a few licences for production code.

The only real problem we encountered was
that debugging was sometimes tricky. On the
rare occasions when we wanted to trace into
the STL code we found it difficult to
understand. This was partly because of the

 Page 31

 Overload – Issue 26 – June 1998

requirements of the Standard, partly because
of the many #if directives that provided
configurability and partly due to
undocumented macros used to help the
implementers.

With hindsight, there was one other point that
should be mentioned - STL<ToolKit> was an
implementation of the STL containers and
algorithms, not a complete implementation of
the Standard Library. In particular, it did not
support wide character I/O streams or locales.

The DinkumWare Implementation

A few months later Microsoft brought out VC
4.2, which boasted a full implementation of
the C++ Standard Library written by P. J.
Plauger and his colleagues at DinkumWare.
For us this meant three things:

1. The STL was provided (free) with our VC
4.2 licences.

2. We had a complete implementation of the
Standard Library.

3. The new implementation had the best
possible pedigree.

No matter how good the ObjectSpace library
was, there was (sadly) an unassailable
commercial case for switching to the
DinkumWare offering, which we did.

The transition was not entirely painless.
ObjectSpace had chosen to omit the default
template parameters specifying allocators,
whereas DinkumWare had chosen to make
them obligatory in the standard set of header
files. Microsoft provided an additional non-
standard header file, <stl.h>, that enabled the
allocator parameters to be omitted, but it had
some obvious bugs and we decided not to use
it. That meant that we had to change all our
container declarations. Either we had to use
long-winded type names or we had to add lots
of typedefs. It’s surprising how irritating this
turned out to be.

The code for the new library was also a lot
more difficult to understand than the
ObjectSpace code. This was partly because it

was a full implementation, partly because it
used rather terse variable names and partly
because the layout was cramped and
unfamiliar.

Although I can’t remember the details, we
also found a bug or two. So, on balance, I
think it would have been better to have waited
for a later release before switching to the
DinkumWare Library. The experience did
bring home to me, though, that implementing
the C++ Standard Library is an enormous task
for a small company. That first release wasn’t
perfect, but it was a tremendous achievement.

We used this version of the Standard Library
for the “core” of our application. The User
Interface and “infrastructure” used MFC
extensively and the developers on those teams
preferred to stick with the MFC containers.
Whether the developers were ever really
convinced of the merits of the STL I’m not
sure because I moved on to other things.

Pastures New

Last year (1997) I joined another company.
The tool set, however, remained the same.
(Visual C++ 4.2 on Windows NT 4.0.) The
mind-set was similar, too. The team was
using MFC, including MFC container classes.
The project was only just beginning to
generate code, so introducing STL containers
was not unthinkable. And, as it turned out,
there was a good reason for changing
direction. The software was planned to run
partly under a real-time operating system for
which MFC was not available. So for this
part, at least, standard containers made sense.

Once again, there were some concerns about
the STL and the Standard Library in general.
It was (and still is) regarded as difficult to
learn and difficult to use. Particularly
scathing comments have been made about
Microsoft’s documentation and the number of
warnings generated by the DinkumWare
library at maximum warning level. For
comparison, at warning level 4, a trivial
program generated about 500 warnings using
the DinkumWare headers; this went down to
2 warnings using the ObjectSpace headers!

 Page 32

 Overload – Issue 26 – June 1998

The DinkumWare library also causes memory
leaks under some circumstances.

As a result of this experience we planned to
abandon the DinkumWare library in favour of
a revised version of the STL<ToolKit> now
called Standards<ToolKit>. But then other
events overtook us. First, we decided that we
probably don’t need to use a real-time
operating system - NT will do what we need.
Also, to make better use of our existing
Delphi expertise we decided to switch to
Borland’s C++ Builder. And that comes with
the Rogue Wave version of the Standard
Library.

The Rogue Wave Implementation

With a certain feeling of déjà vu, I embarked
on an informal feasibility study. What would
we need to do to convert from DinkumWare
to Rogue Wave? The answer turned out to be
removing the allocator template parameters,
adding a few namespace directives and
setting the include directories in the IDE. Not
too painful.

I have only had two or three weeks to get to
know the Rogue Wave implementation. The
biggest problem so far has been that standard
strings don’t seem to work in the DLL
version of Borland’s Run-Time Library. In
trying to track down the cause I spent far too
many hours poring over the string code, both
in the header files and in the assembler code
in the CPU window of the debugger. In the
end I gave up and switched back to the static
Run-Time Library, which mysteriously cured
the problem.

It was also necessary to be explicit about the
library namespace, std. VC++ 4.0 did not
support namespaces, so we had configured
the ObjectSpace library not to use them. The
DinkumWare implementation either didn’t
put the STL in a namespace or included a
“using namepsace std;” directive (I forget
which). The Borland/Rogue Wave package
conforms to the standard; it puts all the
standard declarations in namepsace std and
does not provide a using directive. This meant
adding “std::” to declarations of vectors, lists,

etc. in header files or adding the appropriate
using directive in .cpp files.

One more small code change was necessary
(due to a change in the Standard, I think): the
Rogue Wave erase() functions returned void,
in the other implementations it returned an
iterator to the next element. This presented no
more than a minor inconvenience.

Rogue Wave’s source code looks similar to
that from ObjectSpace. It uses pre-processor
macros to get round compiler limitations and
is only moderately difficult to read. Both the
ObjectSpace and Rogue Wave headers
provide unsurprising implementations; in
contrast, the DinkumWare code often chooses
a less obvious technique.

Conclusions

It would be a brave man who would pass
judgement on STL implementations and I am
not going to try. Rogue Wave have been
writing class libraries for a long time and
there is not doubt that they do a good job. P.
J. Plauger is renowned as an expert on
libraries, in both C and C++. ObjectSpace I
know less about, but I very much like their
product and their style.

All the STL implementations I have seen
were written by better software engineers
than myself. Even so, there are some
conclusions that I think can be drawn.

First, and most important, I did not find any
differences in behaviour. A vector in one
implementation behaved in exactly the same
way as a vector in the each of the others.
Apart from the few things already mentioned
I did not need to change the code. This is, of
course, as it should be, but it is also an ideal
that is rarely achieved. It is the precise
definition of the STL that made this possible
and I think we should congratulate Alex
Stepanov and the C++ standardisation
committee for this.

There is a world of difference between the
original STL from HP and the complete C++
Standard Library. The HP implementation did
not track the evolving C++ Standard and is

 Page 33

 Overload – Issue 26 – June 1998

 Page 34

now out of date, but it is a perfectly
serviceable package of generic containers and
algorithms. The commercial STL vendors
have kept up to date, but from a user’s point
of view this is a relatively minor advantage if
all you want is basic containers and simple
algorithms. The big difference is that
DinkumWare and Rogue Wave supply the
full Standard Library. ObjectSpace do not
offer a complete C++ Standard Library as far
as I know. They do, however, have a range of
cross-platform libraries that provide facilities
like threads that are not in the Standard
Library.

So, if you need high-quality, cross-platform
libraries with facilities beyond those of the
C++ Standard Library, see what ObjectSpace
have to offer. (Try
http://www.objectspace.com.) If that is not

important to you, I would suggest you use the
Standard Library that comes with your
compiler. And if you use Visual C++ 4.X I
guess it would be worth upgrading to 5.0 on
the assumption that some bug fixes will have
been made in the Library.

I will offer one final piece of advice. The STL
really is a quantum leap forward. Use it. Use
it in preference to vendor-specific
alternatives. Use it in preference to containers
based on class hierarchies. And use the
principle of generic programming on which
the STL is based as another tool in your
software developer’s toolkit.

Phil Bass

Phil@stoneymanor.demon.co.uk

Reviews

Java 1.2 and JavaScript
for C and C++ Programmers

Authors: Daconta, Saganich, Monk,
Snyder

Published by: John Wiley & Sons Inc

ISBN: 0-471-18359-8

Format: Softback 822pp w/CD-ROM

Price: 39.95 UKP

Supplied by: John Wiley & Sons Inc

Target Audience

This book is primarily aimed at C and C++
programmers looking to move into Java
programming but also tries to cover
JavaScript within the context of HTML
programming and Java applets

The CD

As with many other books, the CD contains
all the source of the book but also adds many
demos and trial versions of development
tools, along with Voyager from ObjectSpace

and their Java Generic Library (STL for
Java).

The Book

The style of the book is very chatty and easy
to read although the introduction contains a
lot of the standard hype about Java being the
'way forward'. I was rather disconcerted by
the number of silly typos and poor grammar
which a careful proof review should have
caught - indicative of a book somewhat
rushed to market.

A standard example is used throughout much
of the book as a teaching aid, that of a
bookshelf containing a series of books.
Immediately, poor design rears its head with
the book class inexplicably containing a 'next
book' member used by the bookshelf to
manage its list of books. The examples are a
bit sloppy too with the program output not
always quite matching the actual code shown.
This will confuse beginners and, again,

 Overload – Issue 26 – June 1998

should have been caught in the technical
review of the book prior to publication.

The book goes on to compare C & Java, then
C++ & Java, and this shows up some holes in
the authors' knowledge of C (especially the
ISO standard preprocessor) and C++
(especially the explanation of the scope
resolution operator :: in relation to global
names). The worst example of this begins on
page 126 where RTTI in C++ is being
compared to Java: the rather contrived C++
example has a virtual method which is
overridden in two derived classes, yet still
uses 'typeid' and a downcast to determine
which method to actually call. The
supposedly 'identical' Java code uses a direct
virtual method call which is precisely what
the C++ code ought to do, despite the
mention of 'instanceof' which is the closest
Java equivalent to RTTI!

Even the authors' knowledge of Java is called
into question by comments such as "[the
'super' variable] is conceptually identical to
the 'this' variable". When discussing inner,
local and inline classes) introduced in Java
1.1, the book managed to totally confuse me
and even several re-readings didn't help clear
the issue up until I went back to Sun's own
documentation.

Given that the book is an extremely recent
publication (1998), I was annoyed on behalf
of several compiler vendors when the book
blithely claimed that "Naturally, no compiler
vendor has yet implemented the entire C++
Standard Library as specified in the latest
draft standard". Having dismissed many of
C++'s language features as "complex", it then
praises STL and Daconta says "It would not
surprise me if Sun did not add generics just to
have the STL". Aside from the double
negative, this book comes with a CD that
contains ObjectSpace's JGL: a Java version of
the Standard Template Library!

Throughout the book I found the Java
examples to be unidiomatic although the C++
style of many of the programs probably
makes them easier for a C++ programmer to
follow. However, each example is attributed
to its particular author and you can easily spot

the differences in style, with some of the
authors clearly being more at ease with Java
than the others. Overall, the writing styles
seem to blend well and the book does not
often give the impression of being knitted
together from four separate contributions.

Once the language has been introduced in
some breadth, the book turns to a detailed
look at specific standard Java classes, with
good coverage of all the Java exceptions and
how they occur, and it is at this point the
book improves dramatically. Instead of
contrived code fragments, whole programs
are given with items of interest clearly
highlighted in bold print. I still got the
impression of a run-through of language and
library features rather than a 'how to'
approach which would be more productive in
my opinion, especially where the Abstract
Windows Toolkit is concerned.

After the AWT, the book moves on to beans
and applets and then looks at the current
flavour of the month: CORBA. RMI, DCOM
and CORBA are compared and then IDL is
explained followed by complete programs,
again with items of interest clearly labelled. A
brief detour through 2D graphics, maths and
RMI is followed by a good exposition of
security in Java, including signed JAR files
and cryptography, again with complete
examples showing how each feature or class
works.

At this point the book dips again with a very
cursory look at 'java.sql' which, to my mind,
fails to clearly explain the transactional
elements of the code examples given. Perhaps
it is unfair to expect a thorough grounding in
relational database access at this point but
some more 'hints & tips' would make the
section more worthwhile.

Next up is internationalisation which is quite
well explained, showing how to write an
applet that uses locales to provide a
multilingual interface - something that more
programmers would do well to consider in
this increasingly global market! Microsoft's
ActiveX and COM technologies are touched
on next - I shall not comment being rather a
fan of portability - and then a relatively short

 Page 35

 Overload – Issue 26 – June 1998

section on JFC, the Java Foundation Classes,
which could no doubt justify a book in its
own right.

Finally, on page 749, we come to JavaScript
with a quick run-through of the differences
between Java and JavaScript followed by
some short examples on how to use the two
languages together to simplify form
validation and so on.

Conclusion

My initial misgivings about this book
dissolved as I got further into it. I still don't
believe it's a good introductory book for
programmers coming fresh to Java, but for
those programmers with some Java already
under their belt and an appreciation of
idiomatic Java, this book is useful as a ready
reference for many of Java's associated
technologies without being dry. It covers an
extremely broad range of material and, from
Chapter Six onwards, is generally good value
for money. I shall be returning to those later
chapters again and again as I gain more real
world experience with Java.

Sean A Corfield

sean.corfield@issolutions.co.uk

 Page 36

 Overload – Issue 26 – June 1998

 Page 37

Beyond ACCU... Patterns on the ‘net

In the world of software today there is one
topic which seems to be mentioned in every
single design discussion -- patterns!

Software design patterns are descriptions of
deisgns which, over the years, have been
proven to be useful in a variety of situations.
Most will be aware of Gang of Four book
(it’s been mentioned in this publication
before) which helped bring patterns to
prominence over the last few years. Exactly
what consitutes a pattern I won’t try to pin
down here, but I will try to point you in the
direction of some interesting resources on the
web. However, even if you don’t have web
access, perhaps only email, there are still
ways in which you can participate in the
worldwide discussion of patterns.

So, you want to find out about patters on the
web? Where do you start? The first time I
wanted to see what was out there I went
through my usual actions...go to Yahoo, type
“patterns” in the search box and sit back to
see all those sites come up. And yes, they did
come up - sites on knitting patterns, china
patterns and clothes patterns! Software design
patterns? Few and far between. Fortunately, I
happened on a very interesting site that led to
many others...

The place I started was http://hillside.net/
patterns/patterns.html. This site is
increasingly becoming a good jumping off
spot for obtaining more information on
patterns. It includes links to online tutorials
about patterns, downloadable papers from the
academic community, a variety of
presentations given at past conferences,
notices of upcoming patterns-related
conferences and many other valuable
resources.

It also provides a comprehensive listing of
mailing lists you can subscribe to in order to

partake in patterns discussions. These mailing
lists encompass topics such as business
patterns, IPC, consurrency and distribution
patterns and CORBA patterns to take a brief
selection. Be warned - the traffic on these
lists can be quite heavy and some of the
discussions very abstract!

While monitoring some of the discussions on
these mailing lists it is often possible to pick
up on further web sites that have interesting
material on them. One in particular is that of
Brad Appleton, located at
http://www.enteract.com/~bradapp/. This site
contains one of the most complete resource
lists I’ve seen in a while! His list of pattern
related links
(http://www.enteract.com/~bradapp/links/sw-
pats.html#Sw_Pats) is one I frequently revisit.
It gives information on tutorials, papers,
further sites of interest to patterns and lists of
“Patterns User Groups”, where people get
together to have discussions. However, you
will find the last mainly restricted to the US!

Another site which is perhaps more generally
relted to object oriented matters is Cetus at
http://www.cetus-links.org/, which boasts
“8757 Links on Object-Orientation”. Again,
this has its own patterns section, but also
provides many jumping off points for topics
such as software metrics, frameworks, reuse
and testing. It has a superb section on the
many object oriented languages, with about
360 links on C++ alone!

I have only mentioned three web sites in
particular, but even those seem to open up
further avenues of exploration exponentially.
The few I mentioned seem to be well
targetted and have a good signal-to-noise
ratio, so I would recommend them highly.

einar@rhuagh.demon.co.uk

einarnn@atlan-tech.com

 Overload – Issue 26 – June 1998

Credits

Editor
John Merrells

merrells@netscape.com

c/o Einar Nilsen-Nygaard
65 Beechlands Drive

 Clarkston, GLASGOW, G76 7UX.
UK

P.O. Box 2336,

Sunnyvale, CA 94087-0336,
U.S.A.

Readers
Ray Hall

Ray@ashworth.demon.co.uk

Ian Bruntlett
ibruntlett@libris.co.uk

Einar Nilsen-Nygaard

EinarNN@atl.co.uk
einar@rhuagh.demon.co.uk

Production Editor
Alan Lenton

alan@ibgames.com

Advertising
John Washington

accuads@wash.demon.co.uk
Cartchers Farm, Carthouse Lane

Woking, Surrey, GU21 4XS

Membership and Subscription Enquiries
David Hodge

davidhodge@compuserve.com
31 Egerton Road

Bexhill-on-Sea, East Sussex. TN39 3HJ

Copyrights and Trademarks

Some articles and other contributions use terms which are either registered trademarks or claimed
as such. The use of such terms is intended neither to support nor disparage any trademark claim. On
request, we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of ACCU. An
author of an article or column (not a letter or review of software or book) may explicitly offer
single (first serial) publication rights and thereby retain all other rights. Except for licences granted
to (1) Corporate Members to copy solely for internal distribution (2) members to copy source code
for use on their own computers, no material can be copied from Overload without written
permission of the copyright holder.

Copy deadline

All articles intended for publication in Overload 27 should be submitted to the editor by July 1st,
and Overload 28 by September 1st.

 Page 38

 Overload – Issue 26 – June 1998

 Page 39

 Overload – Issue 26 – June 1998

PAGE 30 IS THE 32nd PAGE.

IT IS RESERVED FOR THE BACK COVER

 Page 40

	Contents
	Editorial
	Broadening
	Sean's Show
	Copy Deadline

	Software Development in C++
	Make a date with C++,A Touch of Class By Kevlin Henney
	Open to abuse
	Presentation versus representation
	Firewalls
	Firewalls with class
	D'you know what I mean
	Come together
	Summary

	Dynamic Function Calling Using Operator OverloadingBy Richard Blundel
	Introduction
	Printf and Dump functions
	Thunking
	OLE/COM and IDispatch
	Encapsulating type information
	Handling variable numbers of parameters
	Examples – Dump-type functions
	Examples – Thunking
	Examples – IDispatch
	Flexible (and even Multiple) Return Values
	Safety issues
	Summary

	Patterns in C++
	Exploring Patterns: Part 1by Francis Glassborow
	Patterns & Anti-Patterns
	Distilled Wisdom
	The Singleton Pattern

	Whiteboard
	Structured Analysis:OOD’s older brother?By Alan Bellingham
	Caveat
	Let me tell you a story.
	And they all lived happily ever after
	Putting it together - the Data Flow Diagram
	The Data Dictionary
	Sub diagrams
	Structured English
	So?
	Watch the rabbit
	Conclusion
	References

	Object Designand Implementationby The Harpist
	Paul writes
	Defining PresentationEquipment
	And Next

	Broadvision: A lesson in application frameworksBy Sean Corfield
	First Impressions
	Second Impressions
	The Learning Curve
	Architecturally Speaking

	STL Implementations:Personal ExperiencesBy Phil Bass
	In the Beginning
	Revelations
	First Impressions
	The Evangelist
	Ahead of My Time
	STL<ToolKit> by ObjectSpace
	The DinkumWare Implementation
	Pastures New
	The Rogue Wave Implementation
	Conclusions

	Reviews
	Java 1.2 and JavaScript for C and C++ Programmers
	Target Audience
	The CD
	The Book
	Conclusion

	Beyond ACCU... Patterns on the ‘net
	Credits
	Copyrights and Trademarks
	Copy deadline

