
 ISSN 1354-3172

Overload

Journal of the ACCU C++ Special Interest Group

Issue 27

August 1998

 Overload – Issue 27 – August 1998

Contents
Software Development in C++ 3

UML Interactions & Collaborations By Richard Blundell 3
Patterns in C++ 6

Exploring Patterns Part 2 by Francis Glassborow 6
Almost a Pattern By Alan Griffiths 12
Self Registering Classes – Taking polymorphism to the limit By Alan Bellingham 15

Whiteboard 20
Hotel Case Study Comments By Roger Lever 20
Hotel Case Study Comments By Detlef Vollmann 23
Object (low-level) Design and Implementation by The Harpist 24
Broadvision – Part 2 By Sean Corfield 31

Reviews 34
Designing Components with the C++ STL 34

Beyond ACCU... Patterns on the ‘net 36

 Overload – Issue 27 – August 1998

Editorial

Once again, I've left it too late to write you a
studied piece, so I'm going to produce the
familiar plea, recount some recent news, and
subject you to one of my rants

Patterns
This issue the software patterns section swells
with some more excellent discussion of
common architectural solutions. Look to
your project for an elegant reusable concept
that you could document for the membership.

Linux
At the end of July Linux received a healthy
endorsement from a group of software
vendors. Informix and Oracle are porting
their database servers, and Netscape is
porting both Directory and Messaging
servers.

Since Linux was introduced, about eight
years ago, I've viewed it as a curiosity. I
remember installing Minix, the Andrew
Tanenbaum tutorial Unix implementation,
around that time. I suffered the various trials
of downloading disk drivers, patching up the
code, compiling it, and re-linking it – all on a
single sided 360k floppy. Since those
university days, I've been a corporate DOS,
Windows, and NT programmer. Not much
motivation for battling with homebrew unix.

Anyway, yesterday, I picked up a copy of
RedHat 5.1 (a popular Linux distribution) at
the local high-tech supermarket – which,
incidentally, is now stocking propane fuelled
BBQs. I slapped the CD into my homebrew
PC. It was installed and running in fifteen
minutes. It's amazingly speedy, but the X
based administration tools are pitiful, in
comparison to NT.

Looking forward, some things need to happen
before Linux will be a widely acceptable
alternative. PC manufacturers will have to
start offering it as a pre-installed option on
new machines. There need to be big name
companies offering technical support

contracts. And, the chip manufacturers need
to open labs specifically for performance
tuning Linux applications. Rumours have it
that Intel and Compaq/Digital are looking to
fill these roles. Hopefully, this will all come
about over the next couple of years.

Anyway, try Linux, you can dual boot it with
Win98 ☺

 Page 1

 Overload – Issue 27 – August 1998

 Page 2

Software Installation
this. They put a one

If you’re the unlucky developer creating the

Advice 1: Make your software self installing.

I've seen two projects do
month task in the project plan for
'installation'. No one wants much to do with
it. It's left unassigned, slowly creeping out to
the middle of the schedule. Then someone is
lumped with it, and the real requirements start
trickling down from management. Suddenly,
it’s the behemoth of all installation scripts -
implemented in that awful windows package
that everyone uses. It has Typical install,
Custom, install, Upgrade install, Silent install,
Migrate 1.x install, Migrate 2.x install,
Deploy Standalone, Deploy Cluster, Add-on
Package #1, etc, etc.

software to be is delivered by the 'Mother of
all Installers' you're tightly coupled to its
progress. You can't install to test when it's
broken, or out of date. To try a feature you
need to build the code, package the bits, run
the installer, curse, fix the installer, package
the bits, run the installer, etc, etc.

If the expected configuration information

doesn't exist, then dump out a default one
from static memory. This de-couples the
developers, makes the software more resilient
to environmental changes, and makes the
installation software simpler.

Advice 2: Don't write all those fancy wizards
in the installer. Put them in the administration
tools so they may be used over and over
again. The installation delivers the bits, then
launches the regular administration interface.

So, thumping fist on pub table, the
installation package should do only what's
necessary to bootstrap the software, then
you're on to administration.

John Merrells

merrells@netscape.com

Copy Deadline
All articles intended for publication in
Overload 28 should be submitted to the editor
by September 1st, and for Overload 29 by
November 1st.

mailto:merrells@netscape.com

 Overload – Issue 27 – August 1998

 Page 3

Software Development in C++

UML
Interactions & Collaborations

By Richard Blundell

Introduction
In earlier articles we have covered a number
of techniques for documenting and designing
the static behaviour of systems. We saw one
way of representing dynamic behaviour when
we looked at State-Transition diagrams [1],
but these diagrams only really deal with a
single object at a time.1 This month we shall
look at collaborating objects and their
interactions over time. The charts we will use
are useful for documenting real-time systems
as well as for complicated processes
involving many calls between the objects
involved.

Interactions
Conceptually, objects interact by exchanging
messages. A message is typically ‘sent’ using
a normal function call, but can also be sent as
an inter-thread or inter-process signal, or an
event triggered by a hardware device or
operating system interrupt such as a timer.
An interaction is a set of message exchanges
that collectively achieve some purpose,
usually one that represents some higher-level
action. In other words, an interaction is the
collection of inter-object messages that
produces some outcome.

In system design and documentation, it is a
common requirement to document the (non-
trivial) interactions of a system, and there are
two types of Interaction diagram with which
this can be done – Collaboration diagrams
and Sequence diagrams.

1 Although of course that object can be an
aggregation of other objects, or a system or
subsystem with conceptual ‘states’.

Collaborations
A collaboration is a set of objects involved in
completing some action or operation,
combined with the interaction that produces
the action. The collaboration contains only
those objects that are involved in the action
(or actions – a collaboration can describe
several related or even unrelated operations or
interactions).

Collaboration Diagrams
Collaboration diagrams document
collaborations. Visually, a collaboration
diagram looks like an object diagram,
complete with associations between the
objects shown in the normal way. On top of
this diagram are superimposed an ordered set
of message flow arrows showing the pattern
of messages that form the interaction. A
simple example is shown in figure 1.

SlugFarm

Hedgey : hedgehog

Boris : slug

SlugFactory

2: addToPopulation()

3*: feed(prizeLettuce)

4: bigAndjuicy()

5: slugReady()
5.1: destroy()

1.1: create() 1: create()

Figure 1 – A collaboration diagram showing the creation of

a slug in a slug farm, and its ultimate consumption, after
fattening, by a hedgehog.

A message flow shows the transfer of a
message from one object to another. A short
arrow is used to denote a message flow.
Typically, the arrowhead is solid, indicating
sequential or nested operation as is used in
normal single-threaded procedural design. A
half stick arrowhead is often used to denote
asynchronous calls. If an object sends a
message to itself (to show iteration, for
example) the arrow can follow a self-
association line, as shown in step 2 of the

 Overload – Issue 27 – August 1998

 Page 4

figure (and can optionally be labelled with the
stereotype «self»). Each arrow can be
labelled with a set of expressions that show
details of the messages, and the conditions
under which the message is sent.

Simple message flows are labelled with a
sequence number and a message name,
possibly with a return type. For example:

1.1.4: ret := process(arg, …)

The sequence number is the part before the
first colon. Sequence numbers show the
order in which the message flows occur. The
number of decimal points shows the call
depth. In the above example, this message
flow is the fourth at the current nesting level,
and is nested three levels deep. An example
numbering scheme can be seen in the figure.
After the colon, we have the return value,
name of the message, and argument list for
the message.

There are several extensions to this basic
syntax. A guard condition can be added (in
square brackets) before the sequence number
to show a conditional message. The message
is only sent if the condition is true:

 [t > last] 1.3: update()

As well as digits, letters can be used in a
sequence ‘number’ to show concurrent
threads. Thus, a step 1.2 could be followed
by 1.2.1a and 1.2.1b, showing that it passes
control to two threads.

Before the guard condition, another form of
condition can be added that shows the
predecessor of the message flow. This is a
list of sequence numbers of messages
(followed by a forward slash) that must all
have occurred before the current message will
fire. This allows threads to be synchronised
by requiring different threads to all have
reached some designated point:

 1.4a,1.2b/ 2: theyveFinished()

Here, message 2 is only sent after the first
thread has sent message 1.4a, and the second
thread has sent 1.2b.

Branches and iteration can be shown by
appending a recurrence term (in square
brackets) after a sequence number. An
example of a branch would be message labels
such as 1.1[t = t0] and 1.1[t < > t0], and the
message actually sent depends upon the value
of t. If the recurrence conditions are mutually
exclusive (as here), then a single procedural
branch is suggested. If the conditions
overlap, concurrent sequence numbers can be
used to show the start of multi-threaded
processing. Iteration is shown using an
asterisk and an expression showing the details
of the iteration, for example 2.5*[i := 0..n-1].
In this example, the labelled message fires n
times in succession.

The lifetime of an object in a collaboration
can be shown using the stereotypes «new»,
and «destroyed», with «transient» meaning a
combination of the two. Sometimes these are
shown as constraints in curly braces instead
of stereotypes. As we shall see later, object
lifetimes can be shown more explicitly on
sequence diagrams.

Design patterns are collaborations (plus
additional information such as examples of
use, limitations, usage guidelines, etc.), and
as such can be partly documented using
collaboration diagrams. Once a pattern has
been documented and named, it can be shown
on diagrams using the dashed-oval
representation described in an earlier article
[2], with the actual objects that enact the
pattern bound to the roles within the pattern
definition.

That is pretty much it for collaboration
diagrams. A normal static structure diagram
with message flows to show the interactions
that occur.2 Collaboration diagrams are
useful because they show not only the
sequence details of the interaction, but also its
full context – which objects are involved and
how they are related. The disadvantage of
these diagrams is that for complicated

2 A few other capabilities include showing
active objects with a heavy border to their
rectangular symbol, and nesting objects
within others.

 Overload – Issue 27 – August 1998

 Page 5

interactions they can become very cluttered
and difficult to interpret.

Sequence Diagrams
Sequence diagrams are the second type of
interaction diagram, and these primarily show
the interaction details, omitting much of the
information about the collaboration. The
objects involved in the interaction are shown,
but no relationships are given. To offset this
restriction, however, the time-order of the
message flows and object lifetimes are much
more obvious, and very involved interactions
are much simpler to interpret.

A typical sequence diagram has time down
the page, and individual objects laid out
across the top of the diagram, as shown in
figure 2. Lifelines for each object are drawn
as vertical dashed lines. The lifeline begins at
the top of the page or at the point that the
object is created in the interaction, if later.
The lifeline stops at the bottom of the
diagram, or at the point of a large X where
the object is destroyed, if earlier. Message
flows are shown as horizontal arrows3 from
one object to another, and the messages are
laid out in time-order down the diagram.
Conditional (or concurrent) behaviour can be
shown using multiple message arrows, each
labelled with a guard condition. Target
lifelines can split in two to show alternative
or parallel scenarios, with a recombination
possible further down the page.

A feature known as focus of control can be
added to diagrams to show the intervals over
which each object is ‘active’ in the sense that
it is either processing itself or waiting for
another object to finish processing
(sometimes these two cases are distinguished
by shading the box (described next) in the
former case). When an object is active, its

3 … in the case of messages that can be con-
sidered to be instantaneous. If there could be
a significant delay in the receipt of the mes-
sage, and if this delay could mean the se-
quence of messages could be interrupted, a
downward-slanted arrow can be used to show
this.

lifeline temporarily becomes a long thin box.
Recursive calls are shown by drawing an
additional activation box offset from the main
one. The depth of nesting can be shown by
multiple offset boxes if you care to go to that
much effort!

SlugFarm Hedgey :
hedgehog

Boris : slug

SlugFactory
1: create 1.1: create

2: addToPopulation

3*: feed
4: bigAndjuicy

5: slugReady
5.1: destroy

Figure 2 – A sequence diagram corresponding to the
collaboration diagram in figure 1. The slug farm, slugs and
hedgehogs each have their own thread, so I have shown their
focus of control boxes as continuously active (assuming they
do other processing in the background), whereas the factory
is only active when the create method is called by the farm.

As with collaboration diagrams, message
flows can be labelled with guard conditions,
message name, arguments, etc. Sequence
numbers are usually omitted in single-
threaded interactions because the sequence of
messages is shown explicitly by the ordering
of the arrows. In addition, returns from
procedure calls can be shown using dashed
return arrows.

Conclusion
Over the months we have seen how to
document some of the static and dynamic
details of a system. State-Transition
diagrams are useful for describing the
behaviour of a single class, but to document
collaborating objects the Sequence and
Collaboration diagrams (collectively called
Interaction diagrams) described above are
very handy. Next time I’ll go back to the
design stage taking a look at Use Cases and
Use Case diagrams, and see how these can be
used to define the scope and behaviour of a
system.

 Overload – Issue 27 – August 1998

 Page 6

References
 [1] “UML – State Transition Diagrams”,
Overload 24 pp 2 – 5

 [2] “UML – Objects and Patterns”, Overload
23 p 6

Richard Blundell

RichardBlundell@dial.pipex.com

Patterns in C++

Exploring Patterns Part 2
by Francis Glassborow

Before I focus on the pattern for this issue I
want to tell you about something that I learnt
whilst doing further research for the Singleton
pattern.

As most of you know, declaring a copy
constructor for a class inhibits the compiler
from generating its own. After considerable
pressure from several people (I think I was
among the most vociferous) WG21 & J16
specified that all the following were classified
as copy-constructors (for the sake of example,
I am assuming that I am dealing with a class
MyType):

MyType(MyType &);
MyType(MyType const &);
MyType(MyType volatile &);
MyType(MyType const volatile &);

In addition all constructors with a first
parameter matching one of those four and
defaults for all the other parameters will also
be copy constructors. The clarification
concerned whether the volatile qualified
parameters resulted in inhibiting the compiler
from generating a copy constructor or a
default constructor. Note my wording, I
fondly believed that any constructor would
only inhibit one or other but not both of the
possible compiler generated ones. This
believe seems to be shared by many good,
even expert, writers. On numerous occasions
I have had cause to point out the flaw in code
such as:

class MyType
{
 MyType();
public:
 // whatever
};

where the clear intent is that it should not be
possible to create public instances of
MyType. The flaw is due to a quirk of the
grammar for declarations that results in the
following code being syntactically correct
(though usually hiding undefined behaviour
because storage is copied before it has been
initialised):
 Mytype mt = mt;

It is the quirky grammar for initialisation in
this form that leads me to strongly
recommend that you always use the function
form for user defined types. If you wrote:
 MyType mt(mt);

You would get a compile time error unless an
mt of appropriate type had been declared in
an outer scope. In other words, always call a
constructor explicitly rather than use an
implicit constructor and call to the copy
constructor. Actually, as more programmers
recognise that object types (as opposed to
value types) should not have publicly
accessible copy constructors the problem will
occur less often.

Back to the main point. Unless you have
declared one of the copy constructor forms,
the compiler is at liberty to attempt to
generate one of the form MyType(Mytype
const &).

However when I have raised the issue of the
missing declaration of a private copy
constructor, all I have ever had is ‘Ahh… I
missed that’ and the writer has added a copy
constructor. None of them has ever removed
their declaration of a default constructor. I
think, that like me, many of them have always
thought in terms of two almost disjoint sets of
constructors, copy constructors and non-copy
constructors (with an overlap caused by

 Overload – Issue 27 – August 1998

defaulting parameters so as to leave a more
general constructor useable as a copy
constructor). Even though I have explicitly
made that statement (about two disjoint sets)
in the presence of some of the World’s
greatest C++ experts, none have ever
corrected me (perhaps some of them just
heard what they expected, and some were too
polite – though I doubt it, that kind of
politeness is unhelpful).

In fact, declaring a copy constructor inhibits
the compiler from generating a default
constructor as well as any other copy
constructor. This means that if you want to
prevent public creation of a type all you need
to do is to declare a private copy constructor.
For example:

class MyType
{
 MyType(Mytype &);
public:
 // whatever
};

correctly does what was intended by the
earlier flawed case.

So we see that the correct idiom for a class
that must not be publicly constructable is to
declare a private copy constructor.

Now we also need to know what to do if we
want to prevent copying but are happy to
allow default construction (needed for
example if you are intending to provide
dynamic arrays of the type – but not the STL
containers that require access to a copy
constructor). The fix is easy:

class MyType
{
 MyType(Mytype &);
public:
 MyType(){};
 // whatever
};

That default constructor with an empty body
tells the compiler to do exactly what it would
have done had it been able to generate a
default constructor for itself.

The Visitor Pattern
When you read the following please do not
take my word for it, wait until the experts
have had a look and either confirm, extend or
correct my interpretation. Think of this as an
essay being read by a student at a seminar,
only after the discussion is complete will
those involved know confidently what is true
and what is not.

In general we are concerned with providing
stable, well-defined behaviour for our
abstractions. At the same time we want to
reserve the right to change implementation
details. This is the main motive for the
concept of private/protected/public
interfaces. However there are cases where we
have a clear idea about how we wish to
provide our data but wish to reserve the right
to alter behaviour.

One way of tackling this problem is by using
a base class to provide the data (together with
protected read and write member
functions) and using derived classes (or
classes with pointers to the desired data
structure) to provide the behaviour. This
works well where we have a single
fundamental data type but it does not work
when we need a hierarchy. One example
given (in Design Patterns) of such a hierarchy
is that of the different node types required for
a parse tree used by a compiler for a
computer language. For example in C the
node for an assignment must provide a left
pointer to an expression node that evaluates
as a modifiable lvalue and a right pointer to
an expression node that evaluates to an
rvalue. Arithmetic operator nodes need left
and right pointers to nodes for expressions
evaluating to rvalues.

While the data requirements are very stable
(fortunately computing languages
infrequently add features requiring new node
types) the desired behaviour can change.
Indeed the desired behaviour will depend on
exactly what you are trying to do(compile,
optimise etc.). It is usually unwise to have an
interface cluttered with a large number of
member functions, particularly if these are
only tenuously related to each other. Even if

 Page 7

 Overload – Issue 27 – August 1998

we could provide an exhaustive list of all the
behaviour we want in such a class hierarchy it
is probably a poor idea to provide it in the
classes.

The idea behind the Visitor pattern is to allow
programmers to encapsulate coherent
behaviour across a number of classes (not
necessarily even in the same hierarchy) into a
single class. Typically, we have something
like:

class A_type;
class B_type;
class C_type;
// etc.

These declarations can be replaced with
definitions and the various classes are usually
part of a hierarchy but this is not necessary
for the pattern to work.

class MyVisitor
{
public:
 virtual MyVisitor&
 VisitorToA_type(A_type *) = 0;
 virtual MyVisitor&
 VisitorToB_type(B_type *) = 0;
 virtual MyVisitor&
 VisitorToC_type(C_type *) = 0;
 // etc
 virtual ~MyVisitor() throw() {};
};

This is an abstract base class from which
concrete classes providing single behaviours
can be derived. Actually all the functions
could share the same function name as
overloading would resolve which one to use.
Whether you use function overloading or not
is a matter of style (shorter names requiring
thoughtful reading versus longer names
providing specific information). If the visitor
is not intended to mutate (change the state of)
the host objects then the parameters in the
above should be of type const *.

Each of the classes to be visited must include
a member function of the form:
 MyVisitor & host(MyVisitor &);

Again, const qualification should be used
as appropriate: const member function if
the Visitor is non-mutating and const
qualified parameter if the Visitor is not
mutated by visiting.

The body of host() depends upon the class
in which it is placed so that it calls the
appropriate member function of the Visitor.
For example:

MyVisitor & A_type::host(MyVisitor & v)
{
 return v.VisitorToA_type(this);
}

If you have chosen the function overloading
mechanism then all host types will have
apparently identical bodies (though the type
of ‘this’ will select the correct overload
version from the visitor’s members
functions):

MyVisitor & A_type::host(MyVisitor & v)
{
 return v.Visitor(this);
}

The return type of the host functions and the
members of the visitor could be void but I
have a strong preference for returning an
object for possible reuse. It doesn’t cost
much but provides one extra resource for
those that wish to use it.

Let me offer a trivial example where you
want to be able to dispatch the data to some
form of output. You would write something
such as:

class StoreData: public MyVisitor
{
 istream & output;
 // inhibit copying
 StoreData(StoreData const &);
 void operator = (StoreData const &);
public:
 explicit StoreData(istream & out =
cout) : output(out) {}
 virtual MyVisitor&
 VisitorToA_type(A_type *);
 virtual MyVisitor&
 VisitorToB_type(B_type *) ;
 virtual MyVisitor&
 VisitorToC_type(C_type *) ;
 // etc
 virtual ~StoreData() throw() {};
};

Now we come to a problem. The bodies of
the member functions of StoreData
require access to the specific data of the host
classes. This means that each of these classes
must provide public access functions for its
data (this does not break encapsulation but it
does restrict the owners of the host classes

 Page 8

 Overload – Issue 27 – August 1998

(but remember that a pre-condition for the use
of the Visitor pattern is stable data structures).

Remember that the advantage of the Visitor
pattern is that you can retrofit behaviour to a
bunch of (usually related) classes. Of course,
you can install any specific behaviour into the
classes themselves, but one major advantage
of the Visitor pattern is that it supports
extensible behaviour.

It also works well where you have collections
of objects, or even composites of
heterogeneous objects. Design Patterns gives
the example of something like a piece of
equipment (such as a computer) that is built
from components that are themselves built
from components etc. If you want to cost
such equipment you could (if you thought far
enough ahead) provide a visitor object that
was passed around collecting cost
information from each sub-component (to do
that it would have to visit each sub-sub
component recursively). This may sound
complicated until you realise that all that is
required is that the host() function of a
component dispatches the visitor to each of
the sub-components before calling the
specific member function of the visitor object
on itself.

I think that the Visitor pattern is a powerful
program technique that deserves to be widely
known. If you are serious about software
development you should work through at
least one implementation of Visitor to ensure
that you understand it and will remember to
provide the groundwork where it has potential
use. For example, the Harpist’s Hotel project
might benefit from a Visitor facility in all
classes that provide charges (a bill is made up
from a variety of costs that are certainly not
all from objects in the same hierarchy; think
about meals and rooms.) Of course this
problem has many other solutions (such as
ensuring that each object includes a
reference/pointer to a bill object) and the lack
of the need for extensible behaviour probably
makes other methods more appropriate.

Before I wrap this up I want to speculate a bit
on the possibility of avoiding the need for

public read/write access functions for data in
host classes.

Keeping Data Out of Reach
The first thought when tackling this problem
(restricting access to data) is to consider using
friendship. Unfortunately there is no
mechanism for granting friendship to a
hierarchy of classes and part of the
fundamentals of the design of the Visitor
pattern seems to require a hierarchy. We
need a base class so that the parameter of the
host() functions can provide polymorphic
behaviour (select the type of behaviour that
the visitor is going to add). But that does not
mean that we need a hierarchy of derived
types (to which friendship can only be
granted on a one by one basis, which would
rather defeat the object of the exercise).

We have another possibility via templates:

class MyVisitor
{
public:
 virtual MyVisitor&
 VisitorToA_type(A_type *) = 0;
 virtual MyVisitor&
 VisitorToB_type(B_type *) = 0;
 virtual MyVisitor&
 VisitorToC_type(C_type *) = 0;
 // etc
 virtual ~MyVisitor() throw() {};
};

enum Operation {Op1, Op2};

// to provide a tool for instantiating
template classes
template <Operation op> class Guest :
public MyVisitor
{
 // inhibit copying
 Guest(Guest const &);
 void operator = (Guest const &);
public:
 ~Guest() throw() {}
};

// Note this is still an Abstract Base
Class and so instances
// must be specialised, or be used as
ABC’s
// Here is an example of a specialisation
template <> class Guest<Op1>
{
 istream & output;
public:
 explicit Guest(istream & out = cout) :
output(out) {}
 MyVisitor& VisitorToA_type(A_type *);
 MyVisitor& VisitorToB_type(B_type *) ;

 Page 9

 Overload – Issue 27 – August 1998

 MyVisitor& VisitorToC_type(C_type *) ;
 // etc
};

Unfortunately, though templates can declare
friends and ordinary classes can declare
instances of templates to be friends there is no
syntax available to declare a template class as
a friend. So this idea may be interesting but it
does not solve the problem of finding a way
whereby the various host classes can provide
privileged access rights to a Visitor hierarchy.

My next idea was to try and increase the
security by using namespaces coupled with
fuzzing the types used (remember that the
data types/structures for the host classes must
be stable if we are using the Visitor pattern.)
This is my first attempt:

namespace ControlAccess
{
 typedef int Int; // just as an example
 class Object
 {
 Int value;
 public:
 Object(int i=0):value(i){}
 void set_value(Int v){value = v;}
 Int get_value(){ return value;}
 };
}

int main()
{
 ControlAccess::Object obj;
 obj.set_value(3);
 cout << obj.get_value();
 return 0;
}

I hoped that by hiding the typedef in a
namespace that its implicit use outside the
namespace would create an error. I agree that
this was a pretty vain hope because a
typedef does not create real type. Of
course this code compiled.

So next I tried replacing the typedef by a
real type:

class Int
{
 int value;
public:
 Int(int i=0):value(i){}
 operator int () {return value;}
};

Unfortunately, the so called Koenig lookup
allows the compiler to find the Int type in

the context of obj.set_value(3) and
obj.get_value(). I had one last shot in
my locker (remember that my purpose is to
make it possible to force programmers to
think about using the access functions they
have in host classes). Consider:

class Int
{
 int value;
public:
 explicit Int(int i=0):value(i){}
 int convert_to_int () {return value;}
};

Now the two function calls in question fail
and require an explicit cast (for seti) and a
call to convert_to_int (for geti) to
make the compiler happy.

So, if there is data in a host class that you are
reluctant to make easily accessible to the
world at large, but that you do need to make
available to Visitor, you can add this extra
layer. Visitors will have to use this as well,
but we are assuming that we are catering for
data that needs thoughtful use.

Conclusion
I have learnt a lot while putting this article
together, and I know I have ranged further
afield than strictly required for the topic.
However, I think some of the ideas and failed
attempts may prove instructive. What I do
know is that the process of active exploration
rather than passive reading is what provides
the value to me. I think the same will apply
to you.

Postscript
It has just occurred to me that there is one
other mechanism available. Have each host
class that has data that you do not want to
make generally accessible declare the visitor
ABC (MyVisitor for example) a friend. Now
you can place those access functions that you
want to restrict in the protected interface of
the ABC. That way all the concrete visitors
will have the access they need but no-one else
will. Here is some code by way of example.

class MyVisitor;
// sample host classes
class First

 Page 10

 Overload – Issue 27 – August 1998

{
 friend class MyVisitor;
 int val;
public:
 First(int i=0):val(i){}
 MyVisitor & host(MyVisitor &);
};

class Second
{
 friend class MyVisitor;
 float val;
public:
 Second(float f=0.0):val(f){}
 MyVisitor & host(MyVisitor &);
};

class Aggregate
{
 First f;
 Second s;
 int val;
public:
 Aggregate(int v=2,
 int first = 1,
 float second=1.0)
 :f(first), s(second), val(v){}
 MyVisitor & host(MyVisitor &);
 int geti(){return val;}
 void seti(int i){val = i;}
};

// now the visitor base class
class MyVisitor
{
protected:
 int getFirstval(First & f){return f.val;}
 void setFirstval(First & f,int i){f.val=i;}
 float getSecondval(First & f){return f.val;}
 void setSecondval(First &f,float i){f.val=i;}
public:
 virtual MyVisitor& visitFirst(First *) = 0;
 virtual MyVisitor& visitSecond(Second *) =0;
 virtual MyVisitor& visitAggregate(Aggregate
*) = 0;
 virtual ~MyVisitor() throw() {};
};

class PrintData: public MyVisitor
{
public:
 MyVisitor& visitFirst(First *);
 MyVisitor& visitSecond(Second *);
 MyVisitor& visitAggregate(Aggregate *);
 ~PrintData()throw(){}
};

The implementation of the three member
functions might go like this:

MyVisitor& PrintData::First(First * f)
{
 cout<< “First is ” << getFirstval(*f);
 return *this;
}

MyVisitor& PrintData::Second(Second * s)
{
 cout<< “Second is ”<< getSecondval(*s);
 return *this;
}

MyVisitor& PrintData::Aggregate(Aggregate
* a)

{
 cout << "Aggregates own data is:" <<
 a.geti();
}

And the implementations of the host
functions are:

MyVisitor & First::host(MyVisitor & v)
{
 v.visitFirst(this);
 return v;
}

MyVisitor & host(MyVisitor & v)
{
 v.visitSecond(this);
 return v;
}

MyVisitor & host(MyVisitor & v)
{
 f.host(v);
 s.host(v);
 v.visitAggregate(this);
 return v;
}

And finally a very short program to use this:

int main()
{
 Aggregate test; // use defaults
 PrintData pd;
 test.host(pd);
 return 0;
};

The above code is untested so it is up to you
to debug it, in doing so you will need to
understand it.

Post-Postscript
Before writing this article I had thought there
was a way of declaring a template class a
friend. When I failed to get my code to
compile I checked with a couple of UK C++
experts who opined that it was not possible,
hence the assertion. I have now had a chance
to check the FDIS and find that my original
belief is justified though the syntax is
counter-intuitive.

The inclusion of the line:

template<Operations> friend class Guest;

in each host class should provide the desired
access. However, I cannot find a compiler to
compile it. Anyway, I believe that my

 Page 11

 Overload – Issue 27 – August 1998

 Page 12

postscripted solution is technically better as
well as being compilable with the current
compiler releases.

Francis Glassborow
francis@robinton.demon.co.uk

Almost a Pattern
By Alan Griffiths

Introduction
This article describes a recurring problem in
program design and presents both a method
of design and an implementation of part of
that solution. The problem in question is that
of separating the application logic that
governs the changes a user may make to
objects within the application from the detail
of the user interface.

I first documented this problem and solution
as part of the development of Experian’s
“Micromarketer” application. This formed the
basis of my presentation at the AGM. Kevlin
Henney informs me that he’s used a similar
design for a similar problem. (This makes two
uses: one more and I can call it a pattern!)

The context
Many applications (including
“Micromarketer”) can be divided into three
conceptual layers:

• GUI

• Business abstractions

• Core functionality

Each of these provides services to the layers
above and makes use of services provided by
the layers below.

Abstraction layer components have attributes
(e.g. names) that may be accessed and
amended via the user interface (in the case of
Micromarketer, wizards & property dialogs).
The mechanisms for validating these updates
should be independent of the user interface.

For instance, the same component attributes
may be exposed through several parts of the
user interface and the validation needs to be
consistent.

Some early parts of Micromarketer were
developed with the validation of changes in
the user interface. It has proved difficult to
ensure that these remain consistent. In
particular it is possible to change the name of
most component in three ways: via the
component “browser” (similar to “Windows
Explorer”), via the component properties
dialog, or via a wizard. At one stage it was
possible to place “invalid” characters into a
component name via the browser and to
subsequently crash the property dialog by
cancelling out of it.

A related problem is that changing some
component attributes via wizard
page/property sheet may impact another
wizard page or property sheet. This could be
because the value is displayed there, or
because there are some options that may be
enabled/disabled accordingly. In practice an
approach in which the wizard pages or
property sheets implement these notifications
has proven error prone, hard to maintain and
clearly breaks encapsulation.

Finally it may be observed that changes may
not be made (and validated) directly on the
component because:

• the component may not yet exist (as in a
wizard that creates the component),

• the changes may not be complete (so that
the attributes are temporarily inconsistent),
or

• because the wizard/properties may be dis-
missed without performing the update.

Consequently, the wizard/property dialog
needs to keep a copy of the component
attributes.

The Solution

 Overload – Issue 27 – August 1998

M6Property<>

create
addListener
delListener
getValue
setValue

M6XProperties

M9XWizard

M9XWizardPageA M9XWizardPageB

M6XComponent

create
getProperties
setProperties

*1

1

1

1

1

1

1

1

*

1

*

The Property Template
The behaviour of a “property” is generic (and
is templated on the value type):

• it holds a value,
• if an attempt is made to change a value

then the change is “validated”,
• “interested” objects are notified of value

changes.

Validation of changes will be the
responsibility of the ComponentProperties
class (e.g. M6XProperties). The wizard,
wizard pages, and, possibly, the
ComponentProperties register as “interested”
objects.

Component Properties Classes
Corresponding to each abstraction layer
component type (e.g. M6XComponent) there
should be a ComponentProperties class (e.g.

M6XProperties). This is implemented in
the abstraction layer alongside the component
and exposes the accessible attributes of the
component as “properties”.

The ComponentProperties class implements
any validation methods required for the
component attributes (and attaches them to
the appropriate “properties”). In many cases
it needs to implement a validation check that
cross checks properties for consistency. This
can be used to maintain an additional
“isValid” property.

Each abstraction layer component has a
factory method (or a constructor) and instance
methods “getProperties” and “setProperties”
all of which accept the corresponding
ComponentProperties class.

Object interactions

 Page 13

 Overload – Issue 27 – August 1998

Description

OnNewX

create properties

create isValid property

create name property

Listen to name changes

register with isValid

create page A

get name

register page A

create page B

get name

register page B

OnUpdateName

update property

validateChange

notify listener...

...notify listener...

...notify listener

update "isValid" property

notify listener

enable "Finish"

OnFinish

create an X component

(MFC)
user i/face

user i/face
(MFC)

(M9XWizard)
wizard

wizard
(M9XWizard)

(M6XProperties)
properties

properties
(M6XProperties)

(M9XWizardPageB)
pageB

pageB
(M9XWizardPageB)

(M9XWizardPageA)
pageA

pageA
(M9XWizardPageA)

(M6Property<bool>)
isValid

isValid
(M6Property<bool>)

(M6Property<string>)
name

name
(M6Property<string>)

(M6XComponent)
new component

new component
(M6XComponent)

newX [Doc.]

create

create

create (properties)

create (properties)

create (*this, &M6Properties::validateName, "")

create (false)

addListener

addListener

getValue

getValue

addListener

setValue

validateName

OnUpdateName

addListener

nameChange

nameChange

nameChange

setValue (true)

isValidChange

enableFinish
OnFinish

create (properties)

When a wizard (for example) is invoked it
creates an instance of the corresponding
ComponentProperties object. (The
ComponentProperties object could then be
initialised from an existing component if this
is appropriate - which is the case for a
properties dialog.)

During construction the
ComponentProperties object sets up the
validation for any properties and also attaches
listener methods to any properties that have
an overall effect. (For example properties
that affect the overall self-consistency of the
ComponentProperties.)

The wizard adds “listener” methods on itself
to selected properties. That is, to any
properties that affect the wizard globally - for
example requiring adding/removing wizard
pages, or enabling/disabling “finish”.

Each wizard page is initialised with a
reference to the wizard’s
ComponentProperties object. It then controls
the associate between dialog controls and the
properties and can add “listener” methods on
itself to any properties that affect the content
or behaviour of the page.

When the “Finish” button is selected the
component is constructed using (or has its
attributes set from) the ComponentProperties
object.

An outline implementation
The following code outlines an
implementation of the “Property” generic
used in the above solution (full source code
has been was supplied - I presume it will find
its way onto the C Vu disc.):

template<typename MyValueType> class
M6Property
{
public:

A constructor for an unvalidated value:

M6Property(MyValueType initValue);

This constructor accepts both an initial value
and an object and a method on that object that
provides the validation check:

template<typename MyValidatorObject>
M6Property(
 MyValueType initValue,
 MyValidatorObject& validator,
 int (MyValidatorObject::*
method)(MyValueType));

Methods to access and modify the value.
“setValue” returns a non-zero error code if
the validation fails:

MyValueType getValue() const;
int setValue(MyValueType newValue);

Methods to allow objects (normally the “user
interface” and the owning “component
properties”) to register for notification of
changes to the value of the property.

template<typename MyListenerObject>
void addListener(

 Page 14

 Overload – Issue 27 – August 1998

 MyListenerObject& listener,
 void
(MyListenerObject::*method)(MyValueType))
;
template<typename MyListenerObject>
void delListener(MyListenerObject&
listener,
void (MyListenerObject::*
method)(MyValueType));
};

Known uses
As stated in the introduction Kevlin Henney
of QA says he’s used a similar
implementation (although he’s currently too
busy to give details). In addition John
Merrells (the overload editor) has used a
similar idea in a client server environment in
which the aggregated properties are passed
across the network.

References:
Diagrams are basically OMT (ISBN 0-13-
630054-5 Rumbaugh et. al.) with pointless
modifications by Select software.

Alan Griffiths

alan@octopull.demon.co.uk

Self Registering Classes –
Taking polymorphism to the limit

By Alan Bellingham

In this article, I wish to propose a method of
allowing easy addition and removal of classes
from an application. This will use registration
of class-factory functions to emulate virtual
constructors.

Introduction
One of the main aims of an Object-Oriented
programming language is to attempt to reduce
coupling between the parts of a program by
encapsulating the functionality and state of
data structures within class instances, and for
those classes to expose as little as possible to
the outside world. Taken to an extreme, this
becomes component-based software
development, in which an application may
comprise components written using a variety
of languages and possibly running on

disparate machines and architectures, but for
now, we’ll consider a single monolithic
application.

Coupling
Firstly, what is the coupling problem?

Simply stated, it’s the tendency for a
subsystem A to know how subsystem B
works, and vice versa. Any change to A
requires a change to B, any change to B
requires a change to A. Extend this to
subsystems C, D and E, and a combinatorial
explosion of dependencies occurs. Since
larger systems tend to have more subsystems,
one of the primary tasks of the software
engineer on such projects is to avoid such
reciprocal knowledge.

Ideally, then, a subsystem should have no
knowledge of any subsystem that knows
about it, and the grand design then tends
toward the composition of more complex
subsystems from simpler ones, somewhat like
this, where an arrow means ‘knows about’:

Application

Subsystem
A

Subsystem
B

Subsystem
C

Subsystem
D

In this case, whoever is implementing B
doesn’t need to know about A, and the
implementor of C needs to know only about
C.

In general, an attempt to design in this way
will lead to reduced maintenance problems,
and produce cleaner code. It shouldn’t be
hard to see that conceptually each subsystem
roughly corresponds either to a single class,

 Page 15

 Overload – Issue 27 – August 1998

or to a class with helper classes that the client
need not know about.

Back to reality
In real life, it’s rarely this easy. Subsystems
may need to notify their parents of changes,
proxy classes may be returned that multiple
subsystems need to understand, and the result
becomes somewhat more of a cobweb.
However, with suitable use of callback
functions, notifications mean that a subsystem
doesn’t actually know anything about its
owner, and common classes should be
considered almost as built-in types and
changed about as frequently ☺.

However, there is another potential problem,
and that is hinted at by the “Law of 5 plus or
minus 2”. It is well known that human beings
have problems really understanding what’s
going on when a large number of entities is
under consideration, unless all the entities are
the same, as in an array or list. In this case,
consider the following:

J

A B C D E F G H

In this case, subsystem J has to know how all
the subsystems from A to H all work.
However, much of the time, many of these
subsystems, although different in detail, do
similar work, and this is where a language
such as C++ can simplify things by
presenting all of these as being effectively the
same class, by allowing the designer to use
polymorphism.

By providing an abstract base class which
exposes a common interface for all of these
classes, instead of 9 subsystems A to I, we
should be able to treat it as 9 copies of a
single subsystem that just happen to be
different internally.

The problem of creation
Indeed, careful use of C++ virtual functions
does allow us to use polymorphism to
dramatically reduce the number of times that
an owner actually has to know about which
concrete class it is currently using. However,
there is one major function that cannot be
made virtual: the constructor. As a result,
there is often a switch statement, that looks
something like this:

void Figure1Func(int objectType, int
param)
{
 GraphicItem * AC = NULL ;
 switch(objectType)
 {
 case 0:
 AC = new TextItem(param) ; break ;
 case 1:
 AC = new Box(param) ; break ;
 //...
 case 99:
 AC = new FilledEllipse(param); break;
 }

 if (AC)
 {
 AC->DoWhatever();
 delete AC ;
 }
}

Figure 1 - calling constructors from a
switch statement

Also, it is frequently the case that there will
be a requirement to serialise such items in or
out of memory. Serialising out is easy - it just
requires a suitable virtual function call, and
the object will write itself out. Serialising into
memory, though, is harder - because there is
no existing object that can be called that is
known to be of the right type. So, a switch
statement will occur there as well:

void Figure2Func(istream& inputstream)
{
 int objectType ;
 GraphicItem * AC = NULL ;

 inputstream >> objectType ;
 switch(objectType)
 {
 case 0:
 AC = new TextItem(inputstream) ;
 break ;
 case 1:
 AC = new Box(inputstream) ;
 break ;
 // ...
 case 99:

 Page 16

 Overload – Issue 27 – August 1998

 AC= new FilledEllipse(inputstream);
 break ;
 }
}

Figure 2 - serialising from a switch state-
ment

If the application is only ever to have a fixed
number of such classes, there wouldn’t be too
much of a problem. Unfortunately for
software developers, there is rarely such a
creature as a finished program. New classes
get added in. Special versions get written that
have classes deliberately left out. Menus exist
listing the options, and these need to be
changed. Sooner or later, someone is going to
miss updating the switch statements correctly,
and all hell will be let loose.

Banishing the constructor
The whole problem is that the owner has to
know exactly what concrete classes are
available. It would be so much simpler if a
list could be built automatically. And who
knows better than the classes themselves?

Consider a class:

class GraphicItem
{
protected:
 GraphicItem(int param) { ; }

public:
 virtual ~GraphicItem () = 0 ;
 virtual void DoWhatever () = 0 ;
} ;

Figure 3a: GraphicItem.h

We may then derive the concrete types from
it, like this:

class FilledEllipse : public GraphicItem
{
private:
 FilledEllipse(int param) ;

public:
 virtual ~ FilledEllipse () ;
 virtual void DoWhatever () ;

 static GraphicItem *
 Construct (int param) ;
 enum { ID = 99 } ;
 // Different for each class
} ;

Figure 3b: FilledEllipse.h

This class has a private constructor, and a
public class factory function - i.e., a function
that returns a constructed instance of the
class. The class factory function actually uses
the private constructor.

We could have a table (or better yet, a map),
of these class factory functions against class
IDs, and the client code could then scan the
table for the right function to call in order to
construct a new FilledEllipse given only an
ID:

#include “GraphicItem.h”
// typedefs to reduce typing later
//
typedef GraphicItem *
 (*ClassFactoryFn)(int params) ;
typedef std::map<int, ClassFactoryFn>
FactoryMapType ;
typedef FactoryMapType::const_iterator
FactoryMapIter ;

FactoryMapType FactoryMap ;

// Somehow FactoryMap is initialised ...

void Figure5Func(int objectType, int
param)
{
 FactoryMapIter it =
 FactoryMap.find(objectType) ;
 if (it != FactoryMap.end())
 {
 GraphicItem * AC =
 (*it).second(param) ;
 AC->DoWhatever();
 delete AC ;
 }
}

Figure 4: using a factory map

You will see that, if FactoryMap is
constructed to contain object IDs and function
pointers to the class factories, the client has
no idea at all what the real objects constructed
are. This is polymorphism taken to the limit.
Note especially that it doesn’t have to include
the subsidiary include files for the individual
concrete types - all it needs to know is listed
in the abstract base class declaration.

Since there should only be a single instance
of the Factory and it should exist for the
whole program run, it’s probably best
implemented using the pattern:

FactoryMapType& FactoryMap()
{
 static FactoryMapType FMT ;

 Page 17

 Overload – Issue 27 – August 1998

 return FMT ;
}

Figure 5: a singleton factory map

This means that anything attempting to access
it cannot see it before it’s constructed.

Building the class factory map
“Aha,” I hear you say, “this has only moved
the problem elsewhere. Something has to
build the Factory map, and that something has
to know about the functions.”

Well, not quite.

What if the classes themselves cooperate in
building the map, or at least, helper classes
do. All the client has to supply is a function
for the classes to register themselves:

void RegisterFactory(int ID,
ClassFactoryFn fn)
{
 FactoryMap()[ID] = fn ;
}

Figure 6a: registering with the factory

Now all that is required is to ensure that this
function is called for each of the classes. That
can be done by a helper class:

template<class T> class FactoryRegistrar
{
public:
 FactoryRegistrar()
 {
 RegisterFactory(T::ID, T::Construct);
 }
} ;

Figure 6b: FactoryRegistrar.h

#include “FactoryRegistrar.h”
#include “FilledEllipse.h”

static FactoryRegistrar<FilledEllipse> FRFE ;

// Implementation of FilledEllipse

Figure 6c: FilledEllipse.cpp

The construction of the static helper class
does the class registration. Assuming one
module per concrete object, then all that
needs to be done is to link the required
modules to the main client code, and on
program startup, the FactoryRegistrars get
constructed, the class factory functions get

registered and the client suddenly “knows”
about the available classes.

The snake in the grass
But there is a problem with this approach. In
fact, there are two, closely related.

According to the ISO C++ Standard, §3.6.2
(Initialization of non-local objects
[basic.start.init]):

“It is implementation-defined whether the
dynamic initialization (_dcl.init_,
class.static, class.ctor_, _class.expl.init_) of
an object of namespace scope with static
storage duration is done before the first
statement of main or deferred to any point in
time after the first statement of main but
before the first use of a function or object
defined in the same translation unit.”

This means that the implementation may
decide not to construct our FactoryRegistrar
at all, since until it has been constructed, there
is no way that any function or object in that
translation unit is used.

Secondly, it might be useful to build a library
of these classes. However, modern linkers
making use of such a library will only include
those units which they can see are used.
Again, because no function call is made into
these units, the linker will totally ignore them.
This becomes even more obvious when you
consider a set of ten classes, of which you
want five - only pure telepathy on the part of
the linker would help it.

So, we need an answer.

The huge source unit option
The first method is crude, but it should work -
compiler limits aside. Simply create a source
file that will be linked in, and #include within
it all the source files for the classes you want.
It will also need a function called within it
before the Factory map is used for the first
time:

void InitGraphics ()
{
}

 Page 18

 Overload – Issue 27 – August 1998

// Change these lines to change
// which classes are available
//
#include “FilledEllipse.cpp”
#include “Box.cpp”

Figure 7: AllGraphics.cpp

You’ll need to ensure that the headers can be
multiply included, and it would be an
extremely good idea to put the contents of
each of the sources within its own namespace.
This solution means that the statics should be
constructed, as long as some function in this
unit gets called. However, putting the classes
into a library is no longer possible, and a full
compilation of this unit is required, which
may be quite time consuming, whenever a
configuration change occurs.

The one call option
An alternative method is somewhat cleaner.
Again, we define a function that the client
code should call. But this time, it calls a
function in each of the class units to be used
in this configuration:

extern void InitialiseFilledEllipse() ;
extern void InitialiseBox();

void InitGraphics ()
{
 // Change these lines to change
 // which classes are available
 //
 InitialiseFilledEllipse() ;
 InitialiseBox() ;
}

Figure 8a: AllGraphics.cpp

#include “FactoryRegistrar.h”
#include “FilledEllipse.h”

void InitialiseFilledEllipse()
{
 static FactoryRegistrar<FilledEllipse> FRFE;
}

// Implementation of FilledEllipse

Figure 8b: FilledEllipse.cpp

Now we can place the class units into a
library, and because we know that the class
factory registrar will be constructed, we know
that the class factories will be registered.
Also, when a configuration is changed, it’s a
much smaller unit that gets recompiled.

Cleaning up
By now, we have a two functions that are
global, but that deal with the singleton
FactoryMap, either directly or indirectly:
RegisterFactory() and InitGraphics(). It
makes sense to make them member functions
of the FactoryMap itself, and for the
functionality in InitGraphics() to be called by
the constructor. So let’s see what our final
result looks like:

class GraphicItem
{
protected:
 GraphicItem(int param) { ; }

public:
 virtual ~GraphicItem () = 0 ;
 virtual void DoWhatever () = 0 ;
} ;

GraphicItem.h

#include "GraphicItem.h"
#include <map>

typedef GraphicItem * (*ClassFactoryFn)(int
param) ;

class GraphicsFactoryMapImpl : public
std::map<int, ClassFactoryFn>
{
public:
 GraphicsFactoryMapImpl() ;
 void Register(int ID, ClassFactoryFn fn) ;
} ;

typedef GraphicsFactoryMapImpl::const_iterator
GraphicsFactoryIter ;

GraphicsFactoryMapImpl& GraphicsFactoryMap() ;

template<class T> class
GraphicsFactoryRegistrar
{
public:
 GraphicsFactoryRegistrar()
 {
 GraphicsFactoryMap().
 Register(T::ID, T::Construct);
 }
} ;

GraphicsFactoryMap.h

#include "GraphicsFactoryMap.h"

GraphicsFactoryMapImpl &
GraphicsFactoryMap()
{
 static GraphicsFactoryMapImpl FMT ;
 return FMT ;
}

#define INCLUDE_UNIT(a) extern void
Initialise##a();Initialise##a() ;

GraphicsFactoryMapImpl::GraphicsFactoryMa
pImpl()

 Page 19

 Overload – Issue 27 – August 1998

 Page 20

{
 // Change these lines to change
 // which classes are available
 //
 INCLUDE_UNIT(FilledEllipse)
 INCLUDE_UNIT(Box)
}

void GraphicsFactoryMapImpl::Register(int
ID, ClassFactoryFn fn)
{
 (*this)[ID] = fn ;
}

GraphicsFactoryMap.cpp

// No need for a separate header
// since nothing else includes it
//
#include "GraphicsFactoryMap.h"

namespace {
class FilledEllipse : public GraphicItem
{
private:
 FilledEllipse(std::string params) ;

public:
 virtual ~FilledEllipse () ;
 virtual void DoWhatever () ;

 static GraphicItem *
 Construct(int param) ;
 enum { ID = 99 } ;
} ;

// Actual implementation here ...

} /* namespace anonymous */

extern void InitialiseFilledEllipse () ;
void InitialiseFilledEllipse ()

{
 static
GraphicsFactoryRegistrar<FilledEllipse>
GFR ;
}

FilledEllipse.cpp

#include "GraphicsFactoryMap.h"

void SomeFunc(int objectType, int param)
{
 GraphicsFactoryIter it =
GraphicsFactoryMap().find(objectType) ;
 if (it != GraphicsFactoryMap().end())
 {
 GraphicItem * AC = (*it).second(param)
;
 AC->DoWhatever();
 delete AC ;
 }
}

Actual usage

Conclusion
In reality, there are likely to be more
functions than just a simple class factory that
will want to be registered - and it’s quite
feasible that the registration will insert string
descriptions into menus as well. This example
should be sufficient to demonstrate a
methodology that can be extended to such
cases safely and easily.

Alan Bellingham
alanb@episys.com

Whiteboard

The Harpist has been writing a series of
articles discussing the design and
implementation decisions made for a sample
case study. Roger Lever and Detlef Vollmann
have written questioning some of the
decisions made so far.

Hotel Case Study Comments
By Roger Lever

The code review for the Hotel application
illustrated a number of useful points, such as
the use of the canonical class form and the
liberal use of const. But, these are all
implementation level details.

Well defined objectives are the key to good
design. From the article we don't know what
all of the objectives are, but that doesn't stop
us from making some intelligent guesses! At
a high level we want to achieve a number of
good 'ilities' such as maintainability and
extensibility as part of the objectives.
However, we want to achieve a balance
between these and delivering a timely and
effective solution.

Achieving this balance is difficult because of
the number of competing and possibly
conflicting project requirements. Considering
top level issues provides a valuable scoping
mechanism. It forms a basis for documenting

 Overload – Issue 27 – August 1998

design assumptions, which typically are not
included in project documentation. This
applies to corporate developer and hobbyist
alike. So, let us assume our objectives
incorporate scalability, distribution, etc. That
leaves us to focus on the application level
design (the Hotel) and the important facets
here are perspective, boundary and
granularity.

Perspective addresses the focal point for the
design of the application (presumably the
hotel staff), who is it for, what do they want it
do now, and later. It also provides the first
part of the mechanism to scope reuse. Reuse
is a term that has been applied at many
different levels and has plenty of baggage
with it particularly following the market
hype. So to focus our thoughts on reuse here,
we are concerned with being able to reuse
design via patterns (which is not considered
here) and code via reusable objects
(components) and extension of code via
inheritance and polymorphism.

Boundary, addresses the system boundary,
what is within the system and by definition
what is therefore excluded. This is also the
second part of the mechanism to scope reuse.
The questions that we are interested in here
are what are the current boundary points and
which ones are likely to extend outwards? For
example, what information about a customer
needs to be captured? If initially that is
scoped to include only their name, and
payment method is separate for now, that
might later be extended to include their
address for future marketing mailshots.

Granularity relates to the question of what
level of detail do we need to decompose the
problem. This helps to define internal
boundaries achieving the appropriate balance
between the general and the specific, the
complex and the simple. In principle we want
a design that exposes a simple and general
interface and hides the specific and complex
implementation. In our example, we want our
hotel design to hide detail that is too complex
or unnecessary. For example, our hotel might
be built up from objects that are contained
within a room, (bed, bathroom, TV, fridge)
but is that necessary? Is it decomposing the

rent-a-room issue to a level of detail that is
not useful? However, we definitely need to
know how many people the room can
accommodate. In addition, if these rooms are
conference rooms we will need to know what
presentation equipment is available. This
forms the third and final part of the
mechanism to scope reuse, which is discussed
next.

Now that we have a perspective, an idea on
the system boundaries and the granularity that
we need to work at, we need to reconsider
these in terms of likely boundary extensions
or future reuse. For example, initially all of
the bedrooms or meeting rooms had the same
equipment level and were only differentiated
by capacity and price - is that likely to
change? Will these rooms have further factors
that we may need to model in our design? For
example, adjoining bedrooms for families, or
special facilities for children. What about
other hotel facilities such as lounge, diner, bar
or staff facilities? Considering the hotel
design model in this fashion allows us to
make meaningful choices regarding reuse and
explicitly understand what choices we are
making and why.

So, to look at the design in terms of
perspective, boundary and granularity, we
could start by producing a design such as
below. The numbers refers to indentation
levels.

(1) Hotel (Top level class to provide hotel
facilities for customers)

(2) Facilities (customer facilites, free or paid
for)

(3) HireFacilites (in use for a period of
time)

(4) BedRooms (bedroom for one or
more)

(4) Conference Rooms

(4) Presentation Equipment (used in
meetings)

(3) Bar Lounge (recreation)

(3) Breakfast/Dining Room (restaurant
facilities)

 Page 21

 Overload – Issue 27 – August 1998

(2) Staff

(2) Private areas

(3) Kitchen

(3) Storage

To interpret this poor man's class inheritance
diagram, a hotel is composed (HAS-A
relationship) of customer facilities, which are
either hired or rented for a period of time, or
are generally available to customers. Notice
that the Presentation Equipment is currently
considered as part of the HireFacilities (IS-A
relationship) since it is in use for a period of
time and it is not a permanent fixture of a
conference room. We can also reason about
the design in terms of reuse and possible
mechanisms to extend the design such as
other hotel facilites (gymnasium, swimming
pool...) or new HireFacilities (video
equipment to record presentations). Does the
current design support that?

So far we are considering reuse as primarily
an extension mechanism (inheritance and
polymorphism) and additional selective
composition. We could also think in terms of
reusable objects or components, such as the
hotel itself. What interface specification
should it support? Is that specification a
general or specific case? Can we use the hotel
generalisation in another similar context?
What effort should we put into being able to
use the hotel abstraction for similar concepts
such as Bed and Breakfasts? Or could the
HireFacilities concepts be used for a company
to manage its own facilities?

In terms of perspective, boundary and
granularity we may have created the above
model of the hotel that is sufficient for our
purposes. But, we will not really know that
until we place it into context with other
important classes that compose the solution's
design. It is the essential Customer class that I
wish to deal with next. From the
implementation perspective Paul's original
customer class had a number of problems
(p19), however, although these were dealt
with in terms of design consideration at
implementation level coding with C++ (p20)
I think it missed the point. Let me explain. A

customer books one or more rooms for a
defined time period and can pay in any
number of ways (cash, cheque, credit card,
account...) or that customer may not pay at all
as the customer's company will pay the bill
instead. Therefore we clearly have a number
of concepts that emerge from this simple
statement (a) Customer and (b) Payment.
From the problem statement we already know
that the Payment may not actually be related
to the Customer, since it may be separately
settled by the company. However, a further
relationship ties these together, (c) Booking.
The Hotel knows that once a booking is
made, that room is now unavailable for a
defined time period and a charge is due that
will be paid. Therefore, in class design terms
,we could be considering the problem as:

(1) Booking (transaction that ties hotel,
customer and payment together)

(2) Hotel (facilities being hired or rented)

(2) Customer (customer who will be using
those facilities)

(2) Payment (mechanism to settle hotel bill
for use of facilities)

We assume that the customer also books the
facilities so need not model a separate entity
for the booking customer. However, if a
company secretary is booking the facilities
then that may need to be captured for
reference so we might do that like this:

(1) Booking (transaction ties hotel, customer
and payment together)

(2) Hotel (facilities being hired or rented)

(2) Customer (name, address, telephone
number)

(3) Guest (person going to the hotel)

(3) Contact (person doing the booking of
facilities)

(2) Payment (mechanism to settle hotel bill
for use of facilities)

Now we must question our Booking,
Customer and Payment classes before looking

 Page 22

 Overload – Issue 27 – August 1998

at their implementation. For example, one
question might be why is Booking the top
level class and is composed of a Hotel,
Customer and Payment? Why not let the
Hotel be a collection of Bookings? Good
question! Perhaps booking could be a
centralised function, as when a group of
hotels has a central booking office. This saves
duplication and offers other advantages such
as a customer may find that one hotel, in the
area, is fully booked but that another hotel
has spaces. If the bookings were part of the
hotel only then that facility would not be
available to a would-be customer.

Another possibility is to look at this in terms
of distributing logic and what it exposing
interfaces. For example, if the hotel simply
informs the booking office of what is
available it can attend to all of the low level
day-to-day management issues of staff,
rooms, etc. The booking office concentrates
on providing a single point of contact for
prospective customers.

In summary, after a sufficent period of
poking, prodding and adjustment to our
overall class design we would move on to the
implementation and coding level
considerations, which is really the point
where The Harpist's code review comes in.
The general coding advice offered seems
sound and is not something I would question,
except (given the design above) that the
CustomerRecord (p20) is trying to do too
much. Also, an opportunity was missed to
discuss the design in more general terms and
to offer concrete advice on how to apply the
concept of reuse to a design. But more than
that, in not considering the design as opposed
to the implementation, a useful separation of
Customer and Payee did not occur.
Consequently we have a CustomerRecord
which mixes up static members and pointers
in an effort to address what may be
considered a flawed design.

Roger Level
RogerLever@aol.com

Hotel Case Study Comments
By Detlef Vollmann

Dear Harpist,

First, I share your expierience of being a local
expert, and so I'm not sure about my own
ideas. But I put them in anyway and would
like to receive your and other readers'
comments.

I currently don't want to say anything about
the general design, as I liked your comments
on Paul's code. Some remarks about some
subtle points might follow when I have seen
more of your design. Here, I only want to
share some thoughts about exception
declarations. These thoughts relate to your
following definition of class Customer:

class Customer
{
 string name;
 string payee;
 Customer(Customer const &);
 Customer & operator=(Customer const &);
public:
 Customer();
 ~Customer() throw();
 string const &getName() const throw();
 string const &getPayee() const throw();
};

Is it a good idea to put an empty exception
specification to the read access functions?
You write "...reading data should not cause an
exception". But then you continue "...[this]
might not always be the case", which is
certainly true. With the empty exception
declaration you give garanties about your
class which unnecessarily narrow your
possibilities to change your implementation
later. E.g., you might later decide to store
your Customer objects on a database, and
your access functions will read directly from
that DB. Then, these functions might well
throw an exception. But if you then change
your interface and define "string const &
getName() const throw (DB_lost);" you might
break existing code. And if you leave your
empty exception declaration, and catch the
possible exceptions inside getName, you have
to handle the exception inside the class
Customer, which might not be the best place

 Page 23

 Overload – Issue 27 – August 1998

to handle environmental exceptions such as
loosing the connection to the DB, and you
prevent your client application, which might
well be prepared to cope with the DB
exception, to receive the exception and
handle it. So, I believe its not so good an idea
to add any exception specification to the
access functions.

The same reasons which apply to the access
functions hold true for the destructor as well.
It might well be that in a future
implementation of your Customer class the
destructor has to commit some DB
transactions and so has to throw an exception
in case of a connection failure. I think, the
long time proclaimed rule that a destructor
should not throw any exception simply is not
true. And this probably is excactly the reason
why the standards committee added the
"uncaught_ exception()" function. So, your
destructor might do anything like this:

Customer::~Customer() // no exception
specification!
{
 if (uncaught_exception())
 {
 try
 {
 // do everything necessary, but
 // perhaps performing a rollback
 // instead of a commit, something
 // probably went wrong.
 }
 catch(...)
 {
 // this might do nothing, or might
 // set a global flag or anything
 // else to signal the ignored
 // exception to the client app
 // do not rethrow the exception!
 }
 }
 else
 {
 // normal destructor execution,
 // which well might throw an
 // exception
 }
}

So, you prevent an exception leaking out of a
destructor only in case of stack unwinding
due to another exception, but allow normal
exception handling otherwise.

What's the bottom line? Should you omit
exception specifications completely?
Perhaps, this is the easiest way which gives

you maximum flexibility for the future. But
this flexibility is not always required. For me
(and this goes much to general design
questions), there are different kinds of C++
classes. You have general application classes
(which typically map directly to
corresponding classes from the analysis),
which essentially give the interface which is
used by all your application programs. For
these classes, you need maximum
implementation flexibility.

On the other hand, you have basic building
blocks, or components, which you use to
implement the general application classes.
E.g. you might have classes like
SimpleCustomer (which just implements the
interface of Customer straightforward directly
in memory), DBCustomer (which maps the
class to a DB table), CorbaCustomer (which
uses a Customer object anywhere in your
distributed network), etc. These classes state
their implementation in their names and
interfaces, and so might well give garanties
about exceptions without locking future
implementation changes more than they are
anyway locked by the name.

Of course, there are cases where (empty)
exception declarations are absolutely
necessary, e.g. for most member functions of
an exception class itself, but this is not the
scope of my remarks here.

These are my thoughts on exception
declarations, but certainly there are other
opinions on this topic, and I would like to see
them.

Detlef Vollmann
dv@vollmann.ch

Object (low-level) Design and
Implementation
by The Harpist

I was delighted to receive not just one but two
responses to my last article, see the preceding
articles. Before I go any further let me
respond to the substance of these items.

 Page 24

 Overload – Issue 27 – August 1998

Using exception specifiers
The introduction of exceptions into C++
raises a number of design issues and it has
taken several years for the best C++
programmers to refine their understanding of
their correct use. The concept of an
exception specification caused considerable
trouble. It is my understanding that the UK
originally wanted them removed because they
could not be used for static checking of code.
That left the problem that they required a
runtime feature to support them.

While in the strictest terms this is correct,
exception specifications provide a number of
positive benefits. While complete static
checking cannot be provided, some static
checking is possible. For example:

void fn() throw()
{
 Mytype * ptr = new Mytype;
 // rest of function
}

Can be checked. It does not catch the
bad_alloc exception that new can produce
and so is clearly making a promise that
cannot be kept. Any halfway reasonable
compiler should raise an objection to such
code.

The second thing, that exception specifiers
provide, is a statement of intent for the
benefit of other programmers. It is a
condition applied to the function, and like all
other features of a declaration it provides a
constraint that users can (or should be able to)
rely on. Once I decide, as part of my low-
level design, that a function does not allow
exceptions to leak it is a commitment that I
must abide by. Like the return type, a throw
specifier is part of the signature of a function
that cannot be overloaded.

Readers of the latest edition of ‘The C++
Programming Language’ will know that there
are some clever fixes that can be applied to
handle functions that are not supposed to
throw exceptions by providing special
versions of the handler for ‘unexpected’,
but I will leave that to experts.

Whether read functions should or should not
have an empty exception specifier is a class
design decision, however the logic of Detlef’s
letter would be that we should never use
exception specifiers because they commit us
for all time to a specific policy with regards
to a function. I find this too negative. So, let
me explore some options.

The first is to provide overloading via an
extra dummy parameter. For example,
suppose we declare a global enum type:

enum CanThrow {canThrow};

Now suitable pairs of functions can co-exist:

string const & getName() const throw();
string const & getName(CanThrow) const;

This empowers the user of the Customer
class to write either:

cout << customer.getName();

or

cout <<
customer.getName(canThrow);

depending on whether the user wants to
handle exceptions or not. That means that the
version with an empty exception specifier
must handle exceptions internally and provide
some dummy return if no genuine value is
available. The definition of the ‘throwing’
version should use the anonymous parameter
facility to handle the CanThrow parameter
because there is no practical use of the
parameter in the body of the function. The
parameter is purely to provide overloading,
and the type name and value are chosen to
alert the user to the need to handle
exceptions.

The second option is to have a specific
exception type as the only one that can be
thrown by the function. Something along the
lines of:

enum NoName{noName};
string const & getName() const
throw(NoName);

and the definition would be:

 Page 25

 Overload – Issue 27 – August 1998

string const & getName() const
throw(NoName)
{
 try
 {
 // body of function
 }
 catch (…) { throw noName; }
}

Of course there could be many more catch
clauses that handled individual problems but
each would terminate with either a return of
some string or with throw(noName).

Programmers should know which exceptions
they may have to handle. Until library
designers get in the habit of providing
exception specifiers, programmers must
assume that all exceptions may need
handling. We can argue about the merits of
different strategies, but pretending that we
need do nothing isn’t a professional option.
Like too many things however, exception
specifiers are going to be ignored by most
authors of books because they will seem like
just another complication.

Exceptions & Destructors
While I agree with Detlef that it is a (low-
level) design decision as to what exception
specifier should be attached to ordinary
member functions I completely disagree
when it comes to destructors. I think he has
misunderstood the purpose of uncaught_
exception(). But I will return to that in a
moment.

Constructors can and should be able to throw
exceptions. If something goes wrong during
the process of constructing an object some
way is needed to get your program back onto
safe ground. The biggest problem was
finding a mechanism to handle an exception
thrown from some part of a constructor-
initialiser list. I believe that this problem
actually generated some new syntax so that
entire function definitions could be
encapsulated in a try block but I have never
seen this used. Suffice to say that the
exception mechanism is particularly useful
for dealing with problems during the process
of construction.

But what about the other end of an object’s
life? Suppose that a destructor throws an
exception, what am I supposed to do? In
general all I will know is that I am handling
an exception, no clue that I have an
incompletely destroyed object on my hands.
For example, suppose that I have some local
object that handles a file and a serial port.
The destructor is called for the object when
the function is cleaning up before returning.
Something happens during the process of
closing the file that results in an exception,
unless that exception is handled locally the
serial port is never released. OK that is a bit
obvious and the programmer of the destructor
should handle that but what if he doesn’t?
Your program is now unstable and should
raise an ‘unexpected’ exception.

I am not going to claim that no destructor
should ever, under any circumstances, throw
an exception. What I do claim is that if a
designer finds it necessary to allow a
destructor to throw then the exact nature of
the exception must be documented and a full
justification for allowing it should be
required.

In my opinion, destructors should always
have exception specifiers. In the
overwhelming majority such a specifier
should be empty. I believe that writing a
destructor without an exception specifier is
unprofessional and a sign of incompetence or
ignorance. Yes we all forget sometimes, but
we should be embarrassed if it happens very
often.

Now a brief word about
‘uncaught_exception’. When we write
functions that may be used inside exception
handlers we have to consider that possibility
and arrange some tolerable behaviour (if
possible) when they would normally throw an
exception. The purpose of
uncaught_exception() is to provide
the tool that programmers can use when they
have no other viable alternative. This is
particularly true of mission critical programs
that must not abort. Every effort should be
made to ensure that functions used during the
process of handling an exception do not

 Page 26

 Overload – Issue 27 – August 1998

throw exceptions. Only in the most unusual
circumstances might you tolerate different
behaviour from a function depending upon
whether it was called during exception
handling or otherwise. Such special
behaviour during EH would be some
compromise (such as letting a resource leak)
that was undesirable but less so than aborting
the process.

I would welcome alternative views on this
subject because I currently can see no
justification for allowing a destructor licence
to throw anything and everything.

Design Issues
I am very grateful for Roger Lever’s
thoughtful commentary on the subject of
design. I think one problem is that the term is
used in several ways. I think that I ma largely
focused on the low-level aspects. To me,
design is a matter of deciding what a class (or
function) shall do while implementation is a
matter of deciding how it shall do it. I
consider design to be a matter of deciding
what the interfaces of a class shall be. Roger,
quite correctly, is taking the broader view that
design is a matter of deciding what a class is
for. Let me try to elucidate, and Roger can
come back next time to correct me as
appropriate.

What constitutes a ‘room’ depends upon
whose viewpoint you take. An architect has
one view, and architectural engineer
(responsible for considering such things as
the loading on floors, the stresses on walls
etc.) has another. The architect might be
concerned about the placement of windows,
the shape of the room, the location of a
fireplace etc. without too much regard as to
other rooms adjacent to the one in focus. The
architectural engineer has to consider what is
adjacent. It is her job to note external walls
and the potential for heat loss, the existence
of upper floors with the consequential
requirements for load bearing walls.

One of the UK TV channels has been running
a series of programs on design. The second
of these was about designing a new toilet for
a leading UK manufacturer of bathroom

suites. They had commissioned two
designers. It became clear during the course
of the program that the designers and the
company directors meant very different
things be a design and design brief. The
company was mainly concerned with the
external appearance and just wanted a new
(but not too new) ‘shape’. The designers
wanted to consider the function and produce
something that better met the needs of male
and female users, was easier to keep clean
etc. There was another aspect to this in that
those actually responsible for production (the
‘implementors’) had another view – what
could practically be produced by the
equipment available. Moulds must work, the
items must be fired without too much wastage
etc.

Professional designers should provide design
documents for their code. These should be
based on an understanding as to what aspects
of objects are to be represented. The hotel
designer, the builder and the receptionist have
very different views as to what is important
about a room.

In the days before we focused strongly on
reuse the context of the application we were
writing implicitly defined the design (making
it explicit would have been a good thing and
much of the abuse of code by cut and paste
coding might have been avoided had
programmers had a better understanding of
the relevance of viewpoint to code design).
Now that we increasingly focus on reuse we
need to be conscious of reuse at all levels.

My view (and I think that intended by Paul) is
that of the manager of the hotel. Roger
suggests that we should up this a level to that
of the manager of a chain of hotels. I think
this is an excellent extension and the kind of
thing that comes with increased experience of
using object-oriented techniques. However I
am mainly focusing on low-level design
because, no matter how elegant the high-level
design, without good low-level design
everything falls apart. Look at an ordinary
building brick. There is a lot of low-level
design involved. For example, the shape is a
cuboid whose dimensions are approximately
3:2:1. The dimensions are intended to be

 Page 27

 Overload – Issue 27 – August 1998

exactly 3:2:1 when the thickness of the
mortar is taken into account. If you did not
know how bricks were used you might be
puzzled by the approximations.

Objects & Copying
There seems to be a widely held belief that
the default behaviour of providing copy
constructors and copy assignment is correct.
I reject this. Consider my favourite ‘playing
card’ type. How many Spade Aces should
there be in a pack of cards? One, and if you
were playing Poker and two Spade Aces
turned up you would know someone was
cheating. Each card in a back is a unique
item in context. It might be possible to
duplicate that item but such duplication
should be a careful and considered action, not
some by-product of a desire to have a second
object that was identical to the first. This is
even more the case when it comes to
assignment. It should be completely
meaningless to assign one object to another.

I think that object types should never have
public copy constructors and copy
assignments. Sometimes it may be desirable
to provide such functionality privately, or
even to other class designers via the protected
interface. The existence of a public copy
constructor is what distinguishes a value type
from and object type. Values may be freely
copied, objects should only be cloned. If you
do not understand this distinction you do not
understand object based/oriented
programming.

Unfortunately we get very casual about our
use of terminology. We often talk about
throwing an exception object. We should
never do this. We should throw an exception
value (remember that exception ‘objects’ are
always copied to the point where they are
caught). This looseness does not matter as
long as we understand what we mean, sadly
many of those listening do not and so get
confused.

So let me consider my Customer type.
Should this be a value or an object type? I
think we must be careful about what we
mean. There is nothing to prevent us from

having multiple but identical objects. Indeed
my junk mail shows that many companies are
quite happy with having multiple instances of
me in their databases. What I am asking is
should we allow a ‘Customer’ to be copied
without explicitly choosing to do so? My
feeling is that the answer should be ‘no’.

There is a problem with strictly adhering to
the concept of an object and removing
publicly available copy constructors: all the
STL containers are value based. In other
words the STL containers require access to
copy constructors. We would expect to be
able to produce a customer list, yet to do so
we must provide access to a copy constructor.
Before we consider possible solutions we
must ask ourselves about our concept of a
customer and how we expect it to be used. Is
‘customer’ intended to be a base class? In
other words, do we expect to derive from
customer? If so we cannot have a simple
container of customers because the STL
containers do not work well with
polymorphic types (unless they all have the
same size, which is unlikely). If we want to
manage collections of polymorphic objects
we must provide a surrogate or handle type, a
smart pointer or use a raw pointer. A suitably
designed smart pointer (not, PLEASE,
auto_ptr, because that was not designed
for such use) would be best because it would
handle extensions to customer easily (the cost
is in designing the smart pointer, anyone offer
a smart pointer for container use?) might be
best but a well designed surrogate would be
good as well. I would not be keen on using
raw pointers as they would be responsible for
large scale resource leakage.

Our collections would have to manage our
objects via (smart-)pointers or surrogates
which might have public copy constructors.
Actually, I am slightly uneasy with the
concept of a surrogate with a public copy
constructor.

On the other hand if you have an essentially
non-polymorphic object type (playing cards
would be a good example) then we can fix the
problem in a different way. Let me give you
an example:

 Page 28

 Overload – Issue 27 – August 1998

class PlayingCard
{
 friend vector<PlayingCard>;
 PlayingCard(PlayingCard const&);
 void operator =(PlayingCard const &);
 // rest of class interfaces
};

By making vector<PlayingCard> a
friend of PlayingCard I have provided it
access to the private copy constructor. Of
course the only containers you can have will
be vectors, perhaps you might want to add:

friend list<PlayingCard>;

as well.

I think that this is a legitimate use for
friend. What do you think? I wish that
there was a way to provide special access to
the protected interface so that I could
grant special access rights to third parties
without having to go the whole way and give
them access to everything.

Mixins
I am never very happy with this term and
suspect that it is often misused. I understand
that it originated from the idea of basic ice
creams to which a selection of extras could be
added. In programming terms it seems to
refer to a basic class to which various extras
can be added by multiple inheritance (Java, I
guess, would use interfaces for this purpose).
The idea is that these extras are free standing
abstract base classes that represent some
specific abstraction. In the context of our
hotel as a commercial enterprise we have a
couple of candidates for ‘mixins’.

The concept of being hireable is one that
applies to much more than rooms and
presentation equipment. Complementary
with the concept of being hireable is the
concept of being billable.

Hireable might be provided by something
along the lines of:

class Hireable
{
 ChargeInfo * rates;
public:
 Hireable(ChargeInfo *lookup = 0)

 : rates(lookup){}
 // despite the pointer,
 // shallow copies work
 Currency getRate(TimePeriod)
 throw(Invalid) const;
 void setRate(ChargeInfo *) throw ();
 virtual ~Hireable() throw() = 0;
};

This class raises a number of issues. The first
is that several other ADTs naturally arise and
will have to be designed and implemented.
Anything that is hireable will have to have
some form of rate-table. We will also need
some form of time information (hourly, daily,
weekly etc.) and something to represent the
currency used. I am not providing details of
these but have added them to highlight the
kind of thing that starts to happen as you try
to work in an OO fashion. It would seem that
ChargeInfo should be some kind of
external data structure that can be accessed
with TimePeriod data. I have used a
pointer rather than a reference because it
seems likely that you might want to replace
the rate-table, you will also need to handle the
creation of hireable objects even if you do not
know what rate-table to use. The nature of
ChargeInfo is left for consideration by the
designer of that class with the proviso that it
should work with the TimePeriod class to
generate Currency information.

There is another interesting aspect of this
class in that it is a user of ChargeInfo but
is not responsible for its creation. That means
that the raw pointer can be copied by both
copy-constructor and copy assignment. It is
not always the case that you must provide the
copying functions if one or more data element
is a pointer. On the other hand this is a risky
technique because we are using a pointer to
data that is outside the control of the object.
Such pointers are always vulnerable to
becoming hanging pointers if the object they
are pointing to is removed or relocated.

The reason for taking this risk is that many
objects may need to share a look-up table of
rates. Such a table would be subject to
amendment and so needs to be unique. There
is another option. We can allow each object
to hold its own local copy and register this
information with the master copy. The

 Page 29

 Overload – Issue 27 – August 1998

functions that change the master copy would
then be responsible for notifying the copy-
holders. The destructor for the master would
then be responsible for notifying all current
holders of local copies to reset their pointers
either to null or to some substitute. In the
long term a technique such as this is
preferable and professional class designers
should be familiar with the idea and the
principles for implementing it. Experience
suggests that few are.

The reason that an empty destructor has been
declared is to provide a hook for making
Hireable an abstract base class.
Hireable is an abstraction and we do not
want free standing instances. What we want
to be able to produce is something like:

class RentableRoom :
 public Room,
 public Hireable
{
 // what ever
};

As we think deeper and deeper into this
problem we become aware of many other
classes that we should work on. For example
we will need to consider the payment method
(cash, credit card, cheque etc.) This seems a
good target for a class hierarchy with an
abstract base class PaymentMethod and
shallow hierarchy to provide the various
options.

I think it is because of this requirement to add
layers of classes that so many programmers
retreat to simple non-reusable solutions.

This article is already late and getting rather
long. I think it is about time that I looked at
some more of Paul’s code. This time I am
going to look at some of his implementation.

Implementing the Original Customer
Class
#include <iostream.h>
#include <string.h>
const int maxName = 30;
// reserve storage for the static
int Customer::customerCount;
Customer::Customer(
{
 char temp[maxName];
 int size;

 cout << "Enter customer name: ";
 cin >> temp;
 size = strlen(temp);
 name = new char[size + 1];
 strcpy(name, temp);
 cout << "Enter payee name";
 cin >> temp;
 size = strlen(temp);
 payee = new char[size + 1];
 strcpy(payee, temp);
 customerCount++;
}

When we look at the above code we will
realise that several poor decisions relate back
to his original design. The pollution of the
global namespace by maxName (an
unfortunate choice of identifier as it is certain
to be popular in other code written at the
same level of expertise – a good reason for
hiding such in a named namespace) can be
avoided by recognising that the only code that
depends upon this value is the temporary
array of char used to capture the data. In such
a case the manifest constant should be
declared close to its point of use (like
immediately before its first use). Of course
once we feel comfortable with using string
instead of char[] the problem goes away,
though might still want to apply some form of
validation by restricting the number of
characters used. I always feel unhappy with
the use of int for the sizes of things. Surely
this should either be size_t or unsigned int?

The next problem is that no attempt has been
made to ensure that the input does not over-
write the provided storage, nor has code been
provided to handle names that include
embedded whitespace.

I offer the following re-write (I am focusing
on implementation here because writing good
implementation code is also important).

// select standard library identifiers
using std::cin;
using std::cout;
using std::istream::get;
// reserve storage for the static
int Customer::customerCount = 0;
Customer::Customer()
{
 const int maxNameLength = 30;
 char temp[maxNameLength];
 size_t size;
 cout << "Enter customer name: ";
 cin.get(temp, maxNameLength);
 size = strlen(temp);

 Page 30

 Overload – Issue 27 – August 1998

 // clear input buffer

 while(cin.get()!= ‘\n’);

 name = new char[size + 1];
 strcpy(name, temp);
 cout << "Enter payee name";
 cin.get(temp, maxNameLength);
 size = strlen(temp);
 // clear input buffer
 while(cin.get()!= ‘\n’);
 name = new char[size + 1];
 strcpy(payee, temp);
 customerCount++;
}

As I wrote this I became very conscious that a
large chunk of that code is almost duplicated.
That provides a maintenance problem as well
as making the function larger than necessary
(pragmatically the error rate goes up as
function size increases). Consider the
following alternative:

void initName(char const * prompt, char *
& dest)
{
 const int maxNameLength = 30;
 char temp[maxNameLength];
 size_t size;
 cout << prompt;
 cin.get(temp, maxNameLength);
 size = strlen(temp);
 // clear input buffer
 while(cin.get()!= ‘\n’);
 dest = new char[size + 1];
 strcpy(dest, temp);
}

Customer::Customer()
{
 initName("Customer name: ", name);
 initName("Payee name)", payee);
 customerCount++;
}

Note the type of the second parameter of
initName(). This handles a situation that
many programmers get wrong. I want to pass
a pointer for modification. By passing a
reference to a pointer I make it more likely
that I will write what I intend. By the way
should initName be a private member
function? Perhaps it should be a utility
function in namespace Harpist, or perhaps
there should be a third parameter passing the
maximum acceptable length. As I would use
string instead of char[] I am not going to
worry too much this time around, but this
kind of small utility function is a prime
candidate for very low-level reuse.

Customer::~Customer()

{
 customerCount--;

 delete name;

 delete payee;
}
int Customer::getCustomerCount()
{
 return customerCount;
}
char* Customer::getName()
{
 return name;
}
char* Customer::getPayee()
{
 return payee;
}

Of course these last two functions are badly
flawed because they provide write access to
private data and hence allows fraudulent
changes to the data. We know that the
original design was faulty because it failed to
qualify these functions as const (read only)
and without that qualification we can get the
return type wrong. With the qualification the
compiler knows that we have just provided
illegal write access to instance data. The
various uses of const are designed to
reinforce each other. However I am just
improving the implementation of the original
so these two functions should at least
become:

char const * Customer::getName()
{
 return name;
}
char const * Customer::getPayee()
{
 return payee;
}

Well I think that is all I have time for this
time. Keep the comments flowing so that we
all become better C++ programmers.

The Harpist

Broadvision – Part 2
By Sean Corfield

Recap
In last issue's piece, I described what
Broadvision was and gave a flavour for how
it worked, looking in particular at extending
some of its classes to work around design

 Page 31

 Overload – Issue 27 – August 1998

blind spots. I said that this time I'd look at
database access and encapsulating the
Broadvision API as well as more information
on session management. The pressures of
work have meant that I haven't had much time
to prepare this piece as I'd like - ironically,
I'm working on another Broadvision-powered
web site and it's keeping me very busy!

Sessions
I touched briefly on the concept of web site
sessions in the first article in this series and in
order to explain what follows, I shall
elaborate a little on session management. The
web is essentially stateless: you visit a site,
the browser requests the page, the server
fetches (or generates) it and sends it to your
browser. At that point, you can request
another page from that site or another and the
browser maintains only a history of which
pages you've requested. The server on the
other hand, spends its time fetching or
generating pages in response to requests from
any number of users. For a personalised web
experience, someone has to maintain
information about your choices within a web
site, for example a 'shopping basket' within an
e-commerce (electronic commerce) web site.

Broadvision chooses to maintain this session
'state' information on the server. When you
connect to a Broadvision site, it allocates a
unique session 'ID' and uses it in every
generated link and form so that with each
incoming request, it can work out which of its
currently active users is making the request.
Naturally, an application built using
Broadvision will need to maintain its own
state information: an example from our travel
site is the set of destination / price range /
date range choices that you make as you
wander around the site.

Broadvision provides a very simple interface
for application data: an associative array of
strings called the application data dictionary.
In C++ terms, this is effectively
map<string,string> but wrapped up in a
session ID based lookup mechanism (i.e.,
map< SessionID, map<string,string> >). The
base Broadvision class, Dyn_Object, provides
'store_app_data' and 'find_app_data' methods

to access the application dictionary (thus
hiding the session ID lookup - the object
already knows about session IDs).

The first part of the application we tackled
was the foreign currency section of the site.
We needed to store the user's choices of
currency and amounts for the conversion
process. We tried to fit in with Broadvision's
application dictionary by mapping our array
of currencies, rates and amounts down to
strings and then converting them back when
we needed them. It worked but it was
painfully ugly and very inefficient. I looked
in vain for a more generic way to deal with
state data - Broadvision had none.

After a bit of thought about the way
Broadvision worked, I realised that I could
solve the problem with static member data -
the Broadvision CGI application ran
continuously in the background so static data
would have a suitable lifetime. So I wrote a
small template class called 'SessionStore<T>'
to store data of type 'T'. Since I could now
store arbitrarily complex data structures on a
per session basis, I decided to allow only a
single object of each type to be stored for any
one session and to have it accessed through a
writable reference, i.e., the one and only copy
of each state object for a session lived in its
own 'SessionStore' container. We didn't
bother rewriting the currency handler - after
all, it worked and we were somewhat pressed
for time - but we used the new 'SessionStore'
for our search context objects and our
customised shopping basket. It's a trivial
template class and it seems an obvious
omission from the Broadvision framework.
Another design blind spot.

See API?
I've been very critical about many aspects of
the Broadvision architecture, taking up design
issues with everyone from technical support
up through the development team in the USA.
One of my main gripes about the architecture
was that most of the API smelled like C. You
know what I mean, you've seen this in other
frameworks: a huge slab of unrelated API
calls disguised as methods in an umbrella
class. Broadvision suffers from this in spades:

 Page 32

 Overload – Issue 27 – August 1998

pretty much the entire session management
API lives in one class. In fact, it goes further
than just session management, it also includes
database access functions and many other
tasks.

Naturally, I don't like this. If I'd wanted that
architecture, I'd be programming in C. I like
C++ because it can provide a better match to
the problem domain by encapsulation. Part of
our application generates emails from the web
site to back office staff containing certain
details of the user's profile (name, address
etc). As part of our OO design, we wanted to
pass a UserProfile object into the
EmailRequest object so that it could
interrogate the profile to fill out fields in the
email message. Broadvision doesn't have a
UserProfile object, instead it provides the
equivalent of get_user_profile_field /
set_user_profile_field as API calls.
UserProfile became the first of many classes
that we created to wrap up parts of the API so
we could pass suitable objects around within
our application. Like many such wrapping
classes it is rather crude and was tedious to
write:

class UserProfile
{
public:
 UserProfile() { }
 RWCString name() const
 {
 return get_user_profile_field("NAME");
 }
 UserProfile& name(RWCString n)
 {
 set_user_profile_field("NAME",n);
 return *this;
 }
 // about a dozen similar methods
};

Now, I don't think of myself as an OO purist,
nor do I think I'm an unreasonable man, but
given a framework for an application where
concepts such as 'visitor', 'profile', 'shopping
basket' are absolutely key, doesn't it seem
somewhat disappointing that equivalent
classes are not provided within the
framework?

An object lesson
I'm going off on one of my tangents now, as
I'm wont to do. I mentioned in the 'Recap' that
the reason I haven't had as much time to work

on this article as I'd have liked, is that I'm
currently building another Broadvision web
site. In fact, I'm not building it, I'm just
designing it: through the vagaries of office
politics and a natural evolution of my position
at my client's, I no longer do any
development per se, I'm a designer. I recently
evaluated 'Together/J' from Peter Coad's
Object International company
(http://www.oi.com). 'Together' comes in
several flavours dealing with C++ and Java
(and other languages). I chose the Java
version because I wanted to avoid the
temptation of generating C++ and then
slipping back into development (our target
development language is C++). I downloaded
the Whiteboard edition that provides object
diagram functionality and the ability to
browse 'use case' diagrams produced by the
full edition. The object diagram editor has
four panes: a navigation pane showing either
a thumbnail of the entire diagram with a
scrollable shadow or a directory hierarchy
showing packages and their contents; an
attribute pane allowing direct editing of
object attributes; a diagram pane showing
standard UML notation for classes and
relationships; and a code pane showing Java
class & method code for the corresponding
elements of the class diagram. The latter is
very slick: change the diagram or attributes
and the code updates immediately, change the
code and the diagram and attributes change to
match. The whole product has a very
responsive feel and is very flexible. I was
sufficiently impressed to purchase the full
version of the product which adds the ability
to create and edit use case diagrams as well as
state and sequence diagrams.

Using such a UML based CASE tool on a
Broadvision project helps you separate the
meat of the design from the continual
workarounds that arise from struggling with
the application framework. One of the first
tasks was to create diagrammatic (and, hence,
Java) representations of the main Broadvision
classes on which to build the application-
specific classes. It's been a much more
pleasant way to work, being able to
concentrate on the design and get that right.
I'd like to think that the rigours of working

 Page 33

 Overload – Issue 27 – August 1998

within a strict OO design framework have
made me a better designer overall and I'm off
on a QA Training course for OOA/D using
UML shortly so I'll probably write up specific
pieces both on the course and the 'Together'
tool in due course.

What's next?
We've recently completed the data model for
the current project and we've taken on board
much of what we've learnt about Broadvision
over the past year. We're approaching the
current project from a rather different angle to
the one I've been describing here. In the next
article, I'll look at database access, as
promised, but with a 'compare & contrast'
showing how we fought with the framework
last time and how we're attempting to work
within it this time, hopefully illustrating how
suitable compromises make frameworks more
effective. Since we're trying to stick more
closely within Broadvision's framework this
time around, I'll also look at other aspects of
Broadvision. In the fourth and final article in
the series, I'll go back to more of the C++
customisation we've done - on both projects -
and again, make comments about blind spots
within the framework.

Sean A Corfield

sean.corfield@issolutions.co.uk

Reviews

Designing Components
with the C++ STL

Author: Breymann

Published by: Addison-Wesley

ISBN: 0-201-17816-8

Format: Hardback 306pp

Price: 29.95 UKP

Supplied by: Addison-Wesley Longman

Target Audience
This book is intended for anyone involved in
C++ development who already has a basic (I
would say 'intermediate' at least) knowledge
of C++. In three parts, the book begins with
an introduction the STL, its concepts and
components, moving on to a catalog of the
STL algorithms illustrated with examples and
finishing with examples and discussions
about how to build applications and complex
components on top of STL. That latter part of
the book makes up about half of the book and
is where the meat of the material lies. As
usual with books of this type, all the code
examples are available over the Internet.

The Book
Breymann moves the reader on at a cracking
pace - ten pages into the introduction we've
already moved from a simple array-based
example to a full STL container / algorithm /
iterator example with templates and then on
to writing our own singly-linked list class
with an iterator to illustrate how to make your
own containers interact with STL. I initially
had a bit of a problem with Breymann's
narrative style - an artifact of the translation
from German to English - but soon got used
to his precise, if occasionally unusually
constructed, prose. Regardless of this minor
criticism, it is certainly a lot more readable
than many of the pure reference materials
available on STL.

After the initial introduction of concepts,
Breymann lays bare iterators in a compact but
comprehensive manner, then moves on to
deal with containers. In both cases, the
interfaces are explained in detail and certain
implementation details are considered, partly
to shine light on aspects of the interface but
mainly to provide a deeper understanding of
how the iterators and containers perform their
tasks.

The second, central, section of the book
covers all the algorithms of STL in about 70
pages. By its nature, this section is almost
strictly a reference manual since their are so
many algorithms. Breymann provides
intelligent commentary throughout, especially

 Page 34

 Overload – Issue 27 – August 1998

where several similar algorithms need clear
explanation of their differences, e.g., the
sorting and merging algorithms.

Moving on to the third section of the book,
Breymann introduces various algorithms and
containers that provide solutions to some of
the annoying limitations of the STL
specification. In each case he explains the
benefits and drawbacks of the approach,
illustrating each with clear code examples. A
particularly good case in point is the chapter
on 'Fast Associative Containers' which are
implemented using hashing. Hash-based
containers were omitted from the (draft)
Standard C++ library mainly due to time
constraints and the committee has been
publically criticised for this omission.
Without grinding any particular axe,
Breymann provides full implementations of
hash-based containers with intelligent
commentary and analysis while conceding
that no standard exists for these containers,
therefore his are just examples.

In chapter 8, we move on to applications
constructed on top of STL, cross-referencers,
permuted index generators, thesaurus,
matrices and so on. Some of these build on
the raw STL, others on Breymann's own
extensions to STL. Breymann shows how
generic applications can be built that allow
selection of implementations (using different
STL-like containers) and discusses the
performance tradeoffs involved. I was
particularly impressed by chapter 11 which
deals with data structures and algorithms for
handling various types of graph (directed,
undirected, cyclic, acyclic, weighted etc).
Breymann manages to cram a lot of content
into a seemingly tiny amount of pages yet the
discussion, and code, make the solutions
seem comprehensible to the point of
simplicity.

Throughout the book, Breymann presents
exercises - most with solutions given in the
appendix - that test the reader's
comprehension and are often non-trivial. In
fact, the book scores highly on the integrity of
its examples and exercises by dealing with
complete programs that illustrate the concepts
and components being described.

There are occasional technical errors (e.g.,
using 'InputIterator_type' in a template
declaration followed by 'Input_iterator' within
the body) but these are few and far between
so readers are unlikely to be confused by
them. The technical reviewers have clearly
done a good job but with such a highly
technical subject under discussion, one or two
errors are bound to crawl by unnoticed.

Conclusion
Although the book is presented as more than
a reference manual for STL, it is still a bit dry
in places and might have benefitted from
more discussion material, expanding it
perhaps by a third. That said, it manages to
cover a lot of ground in clear, concise text
and examples and it should provide
something of value to anyone either currently
using STL or planning to in the near future.
There is no doubt about Breymann's expertise
and I certainly found some very useful
information in the book, despite my long
association with the machinations of the C++
committee - in particular the section on graph
algorithms impressed me. For nearly thirty
pounds, you have to consider whether it is
'the' STL book to own as there are quite a few
around. I don't think it quite lives up to the
hype of its title but as a reference manual for
STL and a good jumping off point for
applications built on top of it, this book
deserves a very solid recommendation.

Sean A Corfield

sean.corfield@issolutions.co.uk

 Page 35

 Overload – Issue 27 – August 1998

 Page 36

Beyond ACCU... Patterns on the ‘net

C++
http://www.research.att.com/work/

This site alone is enough to keep you
occupied all month, as long as you can do
without eating or sleeping.

C++ and OOP articles by Bjarne Stroustrup
can be downloaded.

• A brief look at C++
• A Perspective on ISO C++
• What is “Object-Oriented Programming”?
• Why C++ is not just an Object-Oriented

Programming Language.

The site also has software tools that can be
acquired, usually by Universities.

http://web1.ftech.net/~honeyg/articles/pda.ht
m

The Role of Patterns in Enterprise
Architecture

www.sgi.com/Technology/STL/other_resourc
es.html

A collection of STL links.

http://www.cyberdyne-object-
sys.com/oofaq2/

Object FAQ. An ambitious web site that is
being built around a FAQ.

Article source
http://www.byte.com/art/art.htm

BYTE articles archive. There are plenty of
“brochure-ware” web sites for magazines but
this seems to be one of the useful sites.

Bulk sites
These are sites providing masses of links or
huge archives of files.

http://sunsite.doc.ic.ac.uk/

Plenty of material to keep UK web surfers
occupied, this site is invaluable when the
internet slows down to a crawl.

http://www.devinfo.com

"The developer information site" by
Christopher Sokol, a gold mine of links for
archives & languages.

http://www.jumbo.com/pages/developer/

A large archive of files, not just for
development. I found it easier to navigate by
using

http://www.devinfo.com/operating_/index.ht
ml.

It covers Linux, Mac-OS, MS-Dos,
NeXTStep, OS/2, Unix and Windows

http://www.devinfo.com/networking/rfcs/inde
x.html

An Internet Standards repository. This set of
RFCs define how the internet interoperates.

http://developer.intel.com/design

Intel has a web site for developers. Strangely
Intel is offering free CD copies of its website.
I think this kind of behaviour should be
encouraged - instead of having common
downloads clogging up the internet, free CDs
and magazine CDs are a good distribution
medium.

Compiler resources
http://cuiwww.unige.ch/freecomp

Free compiler list can be searched or viewed
by category. Worth visiting and searching for
key items of interest - you may stumble
across something you ought to know about.
Unfortunately it is no longer being
maintained...

http://www.devinfo.com/operating_/index.html
http://www.devinfo.com/operating_/index.html

 Overload – Issue 27 – August 1998

www.geocities.com/SiliconValley/9498/watc
om.html

Good source of Watcom C/C++ links.

http://www.cygnus.com/misc/gnu-win32/

GNU-Win32 - NT/95 port of the GNU
development tools.

The GNU-Win32 tools are Win32 ports of the
popular GNU development tools for
Windows NT and 95. They function through
the use of the Cygwin32 library which
provides a UNIX-like API on top of the
Win32 API.

• Develop Win32 console or GUI
applications, using the Win32 API.

• Port significant UNIX programs to
Windows NT/95 with few changes.

• Use many common UNIX utilities (from
the bash shell or the standard Win32
shell).

Next issue... Java ?
Send links and suggestions to
ACCU.general.

 Page 37

 Overload – Issue 27 – August 1998

Credits

Editor

John Merrells
merrells@netscape.com

c/o Einar Nilsen-Nygaard

65 Beechlands Drive
 Clarkston, GLASGOW, G76 7UX.

UK

P.O. Box 2336,
Sunnyvale, CA 94087-0336,

U.S.A.

Readers

Ray Hall
Ray@ashworth.demon.co.uk

Ian Bruntlett

IanBruntlett@duzzit.globalnet.co.uk

Einar Nilsen-Nygaard
EinarNN@atl.co.uk

einar@rhuagh.demon.co.uk

Production Editor

Alan Lenton
alan@ibgames.com

Advertising

John Washington
accuads@wash.demon.co.uk

Cartchers Farm, Carthouse Lane
Woking, Surrey, GU21 4XS

Membership and Subscription Enquiries

David Hodge
davidhodge@compuserve.com

31 Egerton Road
Bexhill-on-Sea, East Sussex. TN39 3HJ

Copyrights and Trademarks

Some articles and other contributions use terms which are either registered trademarks or claimed
as such. The use of such terms is intended neither to support nor disparage any trademark claim. On
request, we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of ACCU. An
author of an article or column (not a letter or review of software or book) may explicitly offer
single (first serial) publication rights and thereby retain all other rights. Except for licences granted
to (1) Corporate Members to copy solely for internal distribution (2) members to copy source code
for use on their own computers, no material can be copied from Overload without written
permission of the copyright holder.

Copy deadline

All articles intended for publication in Overload 28 should be submitted to the editor by September
1st, and for Overload 29 by November 1st

 Page 38

 Overload – Issue 27 – August 1998

 Page 39

 Overload – Issue 27 – August 1998

PAGE 30 IS THE 32nd PAGE.

IT IS RESERVED FOR THE BACK COVER

 Page 40

	Contents
	Editorial
	Patterns
	Linux
	Software Installation
	Copy Deadline

	Software Development in C++
	UMLInteractions & CollaborationsBy Richard Blundell
	Introduction
	Interactions
	Collaborations
	Collaboration Diagrams
	Sequence Diagrams
	Conclusion
	References

	Patterns in C++
	Exploring Patterns Part 2by Francis Glassborow
	The Visitor Pattern
	Keeping Data Out of Reach
	Conclusion
	Postscript
	Post-Postscript

	Almost a PatternBy Alan Griffiths
	Introduction
	The context
	The Solution
	The Property Template
	Component Properties Classes
	Object interactions
	An outline implementation
	Known uses
	References:

	Self Registering Classes – Taking polymorphism to the limitBy Alan Bellingham
	Introduction
	Coupling
	Back to reality
	The problem of creation
	Banishing the constructor
	Building the class factory map
	The snake in the grass
	The huge source unit option
	The one call option
	Cleaning up
	Conclusion

	Whiteboard
	Hotel Case Study CommentsBy Roger Lever
	Hotel Case Study CommentsBy Detlef Vollmann
	Object (low-level) Design and Implementationby The Harpist
	Using exception specifiers
	Exceptions & Destructors
	Design Issues
	Objects & Copying
	Mixins
	Implementing the Original Customer Class

	Broadvision – Part 2By Sean Corfield
	Recap
	Sessions
	See API?
	An object lesson
	What's next?

	Reviews
	Designing Componentswith the C++ STL
	Target Audience
	The Book
	Conclusion

	Beyond ACCU... Patterns on the ‘net
	C++
	Article source
	Bulk sites
	Compiler resources
	Next issue... Java ?
	Credits
	Copyrights and Trademarks
	Copy deadline

